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Abstract

The interaction between a consumer (such as, a predator or a parasitoid) and a resource

(such as, a prey or a host) forms an integral motif in ecological food webs, and has been

modeled since the early 20th century starting from the seminal work of Lotka and Volterra.

While the Lotka-Volterra predator-prey model predicts a neutrally stable equilibrium with

oscillating population densities, a density-dependent predator attack rate is known to stabi-

lize the equilibrium. Here, we consider a stochastic formulation of the Lotka-Volterra model

where the prey’s reproduction rate is a random process, and the predator’s attack rate

depends on both the prey and predator population densities. Analysis shows that increasing

the sensitivity of the attack rate to the prey density attenuates the magnitude of stochastic

fluctuations in the population densities. In contrast, these fluctuations vary non-monotoni-

cally with the sensitivity of the attack rate to the predator density with an optimal level of sen-

sitivity minimizing the magnitude of fluctuations. Interestingly, our systematic study of the

predator-prey correlations reveals distinct signatures depending on the form of the density-

dependent attack rate. In summary, stochastic dynamics of nonlinear Lotka-Volterra models

can be harnessed to infer density-dependent mechanisms regulating predator-prey interac-

tions. Moreover, these mechanisms can have contrasting consequences on population den-

sity fluctuations, with predator-dependent attack rates amplifying stochasticity, while prey-

dependent attack rates countering to buffer fluctuations.

1 Introduction

Predator-prey dynamics has been traditionally studied using an ordinary differential equation

framework starting from the seminal work of Lotka and Volterra over a century ago [1–7].

The classical Lotka-Volterra model

dhðtÞ
dt
¼ rhðtÞ � fhðtÞpðtÞ ð1aÞ

dpðtÞ
dt
¼ fhðtÞpðtÞ � gpðtÞ ð1bÞ
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captures the dynamics of a predator-prey system, where h(t) and p(t) are the average popula-

tion densities (number of individuals per unit area) of the prey, and the predator at time t.
Here r represents the prey’s growth rate and h(t) grows exponentially over time in the absence

of the predator. Predators consume prey with a constant rate f that we refer to as the attack
rate, and each attacked prey leads to a new predator. Finally, each predator dies at a rate γ. In

addition to predator-prey systems, ecological examples of such dynamics include host-parasit-

oid interactions that have tremendous application in biological control of pest species [8–14].

In a typical interaction, parasitoid wasps search and attack their host insect species by laying

an egg within the body of the host. The egg hatches into a juvenile parasitoid that develops

within the host by eating it from the inside out. Once fully developed, the parasitoid emerges

from the dead host to repeat the life cycle.

The steady-state prey and predator equilibrium densities corresponding to the Lotka-Vol-

terra model (1) are given by

h� ¼
g

f
; p� ¼

r
f
; ð2Þ

respectively. It turns out that this equilibrium is neutrally stable resulting in cycling population

densities with a period of 2p=
ffiffiffiffirgp (assuming perturbations around the equilibrium) [15], and

such population cycles have fascinated theoretical ecologists with several interpretations/

extensions [16–18]. There is a rich body of literature expanding the Lotka-Volterra model to

understand how diverse processes can push the equilibrium towards stability or instability

[19–28]. For example, self-limitation in the prey’s growth in the form of a carrying capacity

stabilizes the equilibrium [15]. Interestingly, a wide class of two-dimensional predator-prey

models with an unstable equilibrium results in a stable limit cycle [29, 30].

In this contribution, we focus on generalizing (1) to

dhðtÞ
dt
¼ rhðtÞ � f ðh; pÞhðtÞpðtÞ ð3aÞ

dpðtÞ
dt
¼ f ðh; pÞhðtÞpðtÞ � gpðtÞ ð3bÞ

that considers a density-dependent attack rate f(h, p), where f is a continuously differentiable

function in both arguments. A generalized attack rate encompasses a wide range of ecological

mechanisms. At one end of the spectrum are prey-dependent attack rates that capture nonlin-

ear functional responses. For a Type II functional response

f ¼
c1

1þ c1Thh
ð4Þ

is a decreasing function of the prey density, where c1 > 0 is the attack rate at small prey densi-

ties and Th is the handling time [31–33]. Basically, the total attack rate per predator f(h, p)h
increases linearly with h at low prey densities, but saturates to 1/Th at high prey densities. Simi-

larly, a Type III functional response corresponds to a sigmoidal function

f ¼
cmaxhq

1þ cmaxThhqþ1
; q � 1 ð5Þ

that initially accelerates with increasing prey density and then saturates to 1/Th. At the other

end of the spectrum are predator-dependent attack rates. For example, a decreasing attack rate

with increasing predator density implies mutual interference between predators [34–37], or
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aggregation of predators to a subpopulation of high-risk individuals [38–43]. In contrast,

cooperation between predators is reflected in f increasing with predator density.

In this contribution we provide analytical conditions for having stable population dynamics

in terms of the sensitivity of f to prey/predator densities, thus combining the impact of differ-

ent mechanisms into a single generalized stability criterion. Furthermore, we consider a sto-

chastic formulation of the model by allowing the prey’s growth rate to follow an Ornstein-

Uhlenbeck random process that drives the deterministic predator-prey dynamics (3). While

both demographic and environmental stochasticity have been previously incorporated in

predator-prey models, they have primarily focused on characterizing the role of noise in driv-

ing population extinctions and facilitating coexistence [44–47]. It remains to be seen how

prey- and predator-dependent attack rates impact population density fluctuations, and to

address this we take a novel moment-based approach using the Linear Noise Approximation

technique to derive closed-form formulas quantifying the extent of fluctuations. Systematic

investigation of these formulas reveals how random fluctuations in the prey’s growth rate

propagate to population densities and uncover mechanisms that amplify or attenuate these

fluctuations. Moreover, our results show how simple statistical signatures (such as, the correla-

tion between population densities) can inform density-dependent mechanisms at play in regu-

lating population dynamics.

2 Stability analysis of the generalized Lotka-Volterra model

Setting the left-hand-side of (3) to zero, the equilibrium population densities h� and p� of the

generalized Lotka-Volterra model are the solution to

f ðh�; p�Þ ¼
r
p�
; p� ¼

r�h�

g
: ð6Þ

We assume that the function form of f is such that (6) yields a unique non-trivial equilib-

rium. Before performing a local stability analysis around the equilibrium, we define two

dimensionless log sensitivities

fh ≔ h�
f ðh� ;p�Þ

@f ðh;pÞ
@h jh¼h� ;p¼p�

log sensitivity of the attack rate f(h, p) to the prey density

fp ≔
p�

f ðh� ;p�Þ
@f ðh;pÞ
@p jh¼h� ;p¼p�

log sensitivity of the attack rate f(h, p) to the predator density

where
@f ðh;pÞ
@h jh¼h� ;p¼p� is the partial derivative of f with respect to h evaluated at the equilibrium.

To be biology realistic, we assume that f(h, p)p is an increasing function of the predator density

that constrains fp> −1, i.e., the decrease in f with increasing p cannot be faster than 1/p.

Linearizing the right-hand-side of (3) around the equilibrium yields the following Jacobian

matrix

A ¼
� rfh � fpg � g

rfh þ r gfp

2

4

3

5: ð7Þ

Stability of the equilibrium requires both equilibrium of the A matrix to have strictly nega-

tive real parts, and such a matrix is referred to as a Hurwitz matrix [48, 49]. For a two-dimen-

sional system, the equilibrium is asymptotically stable, if and only if, the determinant of the A
matrix is positive and its trace is negative [48, 49]. This implies that the equilibrium obtained
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as the solution to (6) is asymptotically stable, if and only if, both these inequalities hold

fp <
rfh
g
; 1þ fh þ fp > 0: ð8Þ

The grey shaded region in Fig 1 shows the stability region as a function of the log sensitivi-

ties fp and fh, with the neutrally stable Lotka-Volterra equilibrium corresponding to fp = fh = 0

on the edge of stability. Moreover, the intersection of the two lines in Fig 1 reveals

fh > �
1

1þ r
g

ð9Þ

as a necessary condition for stability. These stability conditions for continuous-time predator-

prey models are analogous counterparts to recently developed stability conditions for discrete-

time predator-prey models [50, 51].

It is clear from Fig 1 that as reported in previous analysis [52], a Type II functional response

with fh< 0 and fp = 0 will lead to an unstable equilibrium. In contrast, fh> 0 and fp = 0 stabi-

lizes the equilibrium. As discussed earlier, fh> 0 arises in the initial phase of a Type III func-

tional response, where the predator attack rate accelerates with increasing prey density.

Interestingly, a Type II functional response (fh< 0) can provide stability in a narrow range if

combined with other mechanisms, such as mutual interference between predators where fp<
0. Overall these results show that an attack rate that increases with prey density is sufficient to

stabilize the equilibrium as long as −1< fp< r�fh. Similarly, a predator-dependent attack rate

with fh = 0 and −1< fp< 0 is sufficient to stabilize the equilibrium. Finally, we point out that

the line

fp �
rfh
g

� �2

¼
4rð1þ fh þ fpÞ

g
ð10Þ

divides the stability region into two parts—negative real eigenvalues of the Jacobian matrix

below the line, and complex eigenvalues with negative real parts above the line. With

Fig 1. The grey shaded region represents the region of stability for the equilibrium of the generalized Lotka-Volterra model (3). The stability

criterion (10) is plotted in terms of the log sensitivities of the attack rate f(h, p) to the prey (fh) and predator (fp) densities. The yellow line within the

stability region separates the regions of negative real eigenvalues of the Jacobian matrix and complex eigenvalues with negative real parts. For this plot,

the prey’s growth rate is assumed to be r = 2 per unit time and γ = 1 per unit time.

https://doi.org/10.1371/journal.pone.0255880.g001
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increasing r, the line shifts further to the left. This separation within the stability region is rele-

vant in the stochastic formulation of the model, where a stable equilibrium with complex

eigenvalues of the A matrix can yield signatures of oscillatory dynamics in the presence of

noise.

3 Stochastic formulation of the generalized Lotka-Volterra model

Having determined the stability regions of the deterministic model (3), we next turn our atten-

tion to the stochastic formulation of this model. In this context, much prior work has studied

demographic stochasticity arising at low population abundances using Lotka-Volterra and

spatial predator-prey models [48, 53–59] with important consequences on optimal harvesting

strategies of a fluctuating resource [60, 61]. Here, we focus on environmental stochasticity that

arises through randomness in the prey’s growth rate. Towards that end, we let the prey’s

growth rate r(t) evolve as per an Ornstein-Uhlenbeck (OU) process

drðtÞ ¼ grðr� � rðtÞÞdt þ sdwðtÞ ð11Þ

where w(t) is the Wiener process and r� is the mean level of r(t). By using an OU process we

capture memory in growth-rate fluctuations, with parameters γr> 0 and σ> 0 characterizing

the time-scale and magnitude of r(t) fluctuations, respectively. These growth-rate fluctuations

in turn drive population-density fluctuations through the model

dhðtÞ ¼ rðtÞhðtÞdt � f ðh; pÞhðtÞpðtÞdt ð12aÞ

dpðtÞ ¼ f ðh; pÞhðtÞpðtÞdt � gpðtÞdt: ð12bÞ

Before describing mathematical tools for quantifying statistical moments of population

densities, we point out that our approach of incorporating environmental stochasticity is dif-

ferent to other works that have considered either seasonal deterministic variations in r(t) [48,

62] or have added memoryless Brownian noise terms to the deterministic population dynam-

ics [44, 63, 64]. The main reason for choosing an OU process to emulate environmental sto-

chasticity is that it has a certain timescale of fluctuations. In that sense, a given environment

can persist for some time, and have an impact on the population dynamics. We believe this is a

much more ecologically relevant way to introduce environmental noise in contrast to white

noise that has a flat frequency spectrum, and this is indeed a novelty of the paper.

To obtain the time evolution of the statistical moments of r(t), h(t) and p(t) corresponding

to the nonlinear stochastic dynamical system (11) and (12) we use the following result. For any

continuously differentiable function ψ(r, h, p), its expected value evolves as

dhcðr; h; pÞi
dt

¼
@c

@r
gr r

� � rð Þ þ
1

2

@
2
c

@
2r
s2 þ

@c

@h
rh � f h; pð Þhpð Þ þ

@c

@p
f h; pð Þhp � pð Þ

� �

; ð13Þ

and moment dynamics is obtained by simply using a monomial

cðr; h; pÞ ¼ rm1hm2pm3 ; m1;m2;m3 2 f0; 1; 2; . . .g ð14Þ

in (13) [65]. Throughout the manuscript we use h i to denote the expected value operation. For

example, taking m1 = 1 or 2 with m2 = m3 = 0 yields the time evolution of the first two statisti-

cal moments of r(t)

dhri
dt
¼ gr r

� � hrið Þ;
dhr2i

dt
¼ 2gr r

�hri � hr2ið Þ þ s2 ð15Þ
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that result in the following steady-state mean and variance

lim
t!1
hri ¼ r� ð16aÞ

s2

r ≔ lim
t!1
hr2i � hri2 ¼

s2

2gr
; ð16bÞ

respectively. Similarly, to derive the mean dynamics of the prey’s population density we use m2

= 1, m1 = m3 = 0 to obtain

dhhi
dt
¼ hrhi � hf ðh; pÞhpi; ð17Þ

where the right-hand-side now consists of higher-order moments. This problem of unclosed

moment dynamics, where the time evolution of lower-order moments depends on higher-

order moments has been well described for nonlinear stochastic systems, and often arises in

the modeling of biochemical and ecological processes [14, 66–82]. Typically, different closure

schemes are employed to approximate moment dynamics and we use one such approach

known as the Linear Noise Approximation (LNA) [83–87]. In essence, assuming a stable equi-

librium (h�, p�) in the deterministic formulation as given by (replacing r by r� in (6))

f ðh�; p�Þ ¼
r�

p�
; p� ¼

r�h�

g
; ð18Þ

then for small fluctuations in r(t), h(t), p(t) around their respective equilibriums, the model

nonlinearities can be linearized as

rh � rh� þ r�h � r�h�; f ðh; pÞhp � r�h� 1þ ð1þ fhÞ
h � h�

h�
þ ð1þ fpÞ

p � p�

p�

� �

: ð19Þ

Moment dynamics is then derived after replacing these linear approximations in place of

their nonlinear terms in (13) resulting in a closed system—the time derivative of a second-

order moment now only depends on moments of order up to two. More specifically, if we col-

lect all the first and second-order moments within the vector

m ¼ ½hri; hhi; hpi; hr2i; hh2i; hp2i; hrhi; hrpi; hhpi�T; ð20Þ

then it’s time evolution is given by a linear time-invariant system

dm
dt
¼ â þ Amm ð21Þ

for some â and matrix Aμ. Solving this linear system at steady-state quantifies the magnitude

of fluctuations in the population densities.

4 Quantifying random fluctuations in population densities

In the previous section, we described a LNA-based approach to quantify the statistical

moments of population densities. Here we present some of the key results and insights from

the analysis of moments. We quantify noise in the random processes r(t), h(t), p(t) using the
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square of their respective coefficient of variations

CV2

r ≔ limt!1
hr2i � hri2

hri2
ð22aÞ

CV2

h ≔ limt!1
hh2i � hhi2

hhi2
ð22bÞ

CV2

p ≔ limt!1
hp2i � hpi2

hpi2
: ð22cÞ

Solving (21) in Wolfram Mathematica yields the following analytical expressions for the

noise in the prey and the predator population densities (normalized by the noise in the prey’s

growth rate)

CV2
h

CV2
r

¼
r̂�ððĝr � fpÞf 2

p þ fhf 2
p r̂
� þ ĝrð1þ fh þ fpÞr̂�Þ

ð1þ fh þ fpÞðfhr̂� � fpÞðĝrðĝr � fpÞ þ ð1þ fh þ ĝr fh þ fpÞr̂�Þ
ð23aÞ

CV2
p

CV2
r

¼
r̂�ð1þ fhÞ

2
ðĝr � fp þ fhr�Þ

ð1þ fh þ fpÞðfhr̂� � fpÞðĝrðĝr � fpÞ þ ð1þ fh þ ĝr fh þ fpÞr̂�Þ
; ð23bÞ

respectively, and they depend on four dimensionless parameters—the sensitivity of the attack

rate to the prey density (fh), the sensitivity of the attack rate to the predator density (fp), the

prey’s average growth rate and the time-scale of fluctuations in r(t) normalized by the preda-

tor’s death rate

r̂� ¼
r�

g
; ĝr ¼

gr
g
: ð24Þ

Recall from (10) that the stability of the deterministic equilibrium constraints fh and fp in

the stability region of Fig 1 which ensures positivity of noise levels. Moreover, as one gets

closer to the Lotka-Volterra model (fh! 0 and fp! 0), the system approaches the stability

boundary leading to (CV2
h !1 and CV2

p !1) in the LNA framework of noise derivation.

For an attack rate that only depends on the prey’s density (fp = 0), (23) reduces to

CV2
h

CV2
r

¼
ĝr r̂�

fhðĝr 2 þ r̂� þ fhr̂�ð1þ ĝrÞÞ
ð25aÞ

CV2
p

CV2
r

¼
ð1þ fhÞðĝr þ fhr̂�Þ

fhðĝr 2 þ r̂� þ fhr̂�ð1þ ĝrÞÞ
ð25bÞ

and fluctuations in population densities monotonically decrease with increasing dependence

of the attack rate on the prey’s density (Fig 2). A closer look at (23) reveals that while

lim
fh!1

CV2
h

CV2
r

¼ 0 ð26Þ

the noise in the predator’s abundance approached a non-zero limit illustrating noise
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propagation of growth-rate fluctuations to the predator density via the prey.

lim
fh!1

CV2
p

CV2
r

¼
1

1þ ĝr
: ð27Þ

Our analysis further shows that when r̂� < 1, then CV2
p > CV2

h . In contrast, when r̂� > 1,

then CV2
p < CV2

h for small value of fh, and CV2
p > CV2

h beyond a critical value fh.One observa-

tion from the equilibrium analysis in (18) is that for a prey-dependent attack rate, h� is inde-

pendent of r� implying that if the prey’s growth rate is chosen from a static distribution then it

will not create any fluctuations in the preys’ density. This can be seen by considering the OU

process in the limit γr! 0, σ! 0 keeping s2
r in (16) fixed. This limit corresponds to the sce-

nario where, for each stochastic realization of the OU process a random initial condition is

chosen with mean r� and variance s2
r , and this value remains the same over time. In this limit,

lim
ĝr!0;s!0

CV2

h ¼ 0: ð28Þ

However, as p� is linearly dependent on r�

lim
ĝr!0;s!0

CV2

p ¼ CV2

r : ð29Þ

While fluctuations in population densities monotonically decrease with increasing fh, the

impact of a predator-dependent attack rate is quite different with noise levels varying non-

Fig 2. Noise in the fluctuations of population densities as determined by (25) plotted for increasing fh for fp = 0. Realizations of the prey’s growth

rate, population densities of the prey and the predator as obtained by simulating (11) and (12) using f ðh; pÞ ¼ hfh are shown for fh = 0.5 (left) and fh = 10

(right). Each realization is normalized to its initial value so that it starts at a value of one. Note that for large values of fh fluctuations in the predator

density remain pronounced even though fluctuations in the prey density are minimal. For this plot, r̂� ¼ 1=3, ĝr ¼ 6, CV2
r ¼ 0:75.

https://doi.org/10.1371/journal.pone.0255880.g002
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monotonically with fp (Fig 3). This effect can be understood in terms of the stability region in

Fig 1, where for a given fh> 0 stability requires −1 − fh< fp< r� fh, and increasing fp on either

side puts the system closer to the stability boundary amplifying random fluctuations. This

results in a scenario where fluctuations in population densities are minimized at an intermedi-

ate value of fp.
We next investigate the predator-prey Pearson’s correlation coefficient

r≔ lim
t!1

hhpi � hhihpi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hh2i � hhi2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hp2i � hpi2
q : ð30Þ

The moment dynamics (21) results in the following closed-form expression

r ¼ �
fp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ĝr þ fhr̂� � fp

q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðĝr � fpÞf 2

p þ fhf 2
p r̂� þ ĝrð1þ fh þ fpÞr̂�

q ð31Þ

highlighting an interesting result—while a negative dependence of the attack rate (fp< 0) on

the predator density leads to positive predator-prey correlations, a positive dependence fp> 0

leads to negative correlations (Fig 4). Moreover, predator-prey density fluctuations are pre-

dicted to be uncorrelated for a prey-dependent attack rate. To understand this result, one can

derive from (18) the following log sensitivities of the equilibrium densities to r�

r�

h�
dh�

dr�
¼ �

fp
1þ fp þ fh

;
r�

p�
dp�

dr�
¼

1þ fh
1þ fp þ fh

: ð32Þ

Thus, when fp> 0, the prey’s equilibrium density decreases with increasing r�, while the

predator’s equilibrium density always increases with r�. These opposing responses of equilib-

rium densities intuitively explain the negative correlation seen for fp> 0. In contrast, when fp
< 0, both equilibrium densities increase with r� and manifest in a positive correlation in the

stochastic model. Recent work in host-parasitoid discrete-time models with a random host

reproduction rate has also identified contrasting correlations depending on the mechanism

stabilizing the population dynamics [88].

Fig 3. Noise in the fluctuations of prey density CV2
h as determined by (23) plotted as a function of fp. Noise is minimized at an intermediate value of

fp and stochastic realizations of the prey and predator densities are shown for three different values of fp. For this plot, r̂� ¼ 2, fh = 0.5, σ = 1 and ĝr ¼ 1.

Note from Fig 1 that as fp increases from −1 to 0.75 (for a fixed value of fh = 0.5), one goes from real to complex eigenvalues that is reflected in the

pronounced oscillatory dynamics of population densities as seen in the simulations on the right.

https://doi.org/10.1371/journal.pone.0255880.g003
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5 Conclusion

In summary, we have developed a novel stability criterion for a generalized Lotka-Volterra

model with a density-dependent attack rate. (Fig 1). These results reveal that a Type II func-

tional response can stabilize the equilibrium if combined with mechanisms involving predator

inefficiency that puts the system in the grey shaded region corresponding to fh< 0 and fp> 0.

Moreover, stability arises quite robustly for a Type III functional response when fh> 0 as long

as fp is small enough to be in between −1 − fh and rfh.
Our stochastic analysis exploiting the linear noise approximation results in novel analytical

formulas for CV2
h and CV2

p , providing insights into the propagation of growth rate fluctuations

via the nonlinear dynamics to impact population density fluctuations. It is important to point

out that these LNA-derived formulas are exact only in the small-noise limit (i.e., CV2
h ! 0 and

CV2
p ! 0), and become less reliable as noise levels increase close to the stability boundary.

Through these formulas, one can grasp important qualitative trends, such as, density fluctua-

tions monotonically decrease with increasing fh for a prey-dependent attack rate (Fig 2). How-

ever, predator-dependent attack rates can amplify stochasticity as fp gets close to the stability

boundary on either side of the x-axis in Fig 1. The impact of these sensitivities on the magni-

tude of density fluctuations have direct consequences on population extinctions. Finally, we

have shown that population density correlations may contain signatures on stabilizing mecha-

nisms at play with no correlation in predator-prey densities implying a prey-dependent attack

rate (Fig 4), a negative correlation implying predator cooperation (fp> 0), and a positive corre-

lation implying mutual interference between predators (fp< 0). Future work will expand these

results to consider demographic stochasticity by explicitly modeling probabilistic birth-death

events. It will also be interesting to consider competition between two or more consumers,

and also look at the apparent competition between different prey species attacked by a com-

mon predator [89, 90]. Along these lines, new results have recently been developed in the dis-

crete-time framework [50, 91].

Fig 4. Pearson’s correlation coefficient between the predator and the prey population densities as predicted by (31) for varying levels of fp with fp
< 0 (fp> 0) driving a positive (negative) correlation. Sample trajectory paths are shown for fp = 1 and fp = −1. Other parameters taken as r̂� ¼ 2, fh =

0.6 and ĝr ¼ 1.

https://doi.org/10.1371/journal.pone.0255880.g004
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