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A low-gluten diet induces changes in the intestinal
microbiome of healthy Danish adults
Lea B.S. Hansen et al.#

Adherence to a low-gluten diet has become increasingly common in parts of the general

population. However, the effects of reducing gluten-rich food items including wheat, barley

and rye cereals in healthy adults are unclear. Here, we undertook a randomised, controlled,

cross-over trial involving 60 middle-aged Danish adults without known disorders with two 8-

week interventions comparing a low-gluten diet (2 g gluten per day) and a high-gluten diet

(18 g gluten per day), separated by a washout period of at least six weeks with habitual diet

(12 g gluten per day). We find that, in comparison with a high-gluten diet, a low-gluten diet

induces moderate changes in the intestinal microbiome, reduces fasting and postprandial

hydrogen exhalation, and leads to improvements in self-reported bloating. These observa-

tions suggest that most of the effects of a low-gluten diet in non-coeliac adults may be driven

by qualitative changes in dietary fibres.
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Mechanistic and objective evidence on the effects of
excluding gluten-rich food items for healthy adults is
currently lacking, making the low-gluten diet highly

debatable in public. Although not the sole component changed in
a low-gluten diet, most discussion has centred on the dietary
component gluten. Gluten is a major dietary component in
wheat, rye and barley, and consists of proteins that are partially
resistant to proteolytic digestion due to a high content of proline
and glutamine1,2. Large gluten peptides including gliadin escape
gastric digestion and accumulate in the small intestine, where
they may interact with the immune system3,4, affect the intestinal
permeability5–7, and modify the gut microbial activity8,9. How-
ever, beyond the reduction in gluten, a low-gluten dietary regime
also entails a replacement of dietary fibres of gluten-rich cereals
such as wheat, rye and barley with dietary fibres from other
sources. Two short-term studies enroling 10 and 21 subjects
based upon 16S rRNA gene profiling, respectively, have suggested
that a gluten-free diet (GFD) changes the gut microbiome and
immune function in healthy adults, however, with discrepant
results10,11. Thus, it remains unsettled if a low-gluten diet affects
the taxonomic and functional microbiome and host physiology of
healthy individuals. Here we report the results of a randomised,
controlled, cross-over trial encompassing 60 Danish adults
without coeliac disease. We find that a low-gluten diet, in com-
parison with a high-gluten diet, induces changes in the compo-
sition and function of the gut microbiome (predefined primary
outcome12), the urine metabolome and markers of host phy-
siology (Fig. 1a, b).

Results
Cross-over intervention. To examine the impact of a low-gluten
diet on the composition and function of the intestinal micro-
biome, urine metabolome and measures of host physiology, we
undertook a randomised, controlled, cross-over trial with two 8-
week dietary interventions comprising a low-gluten diet and a
high-gluten diet, separated by a washout period of at least
6 weeks12. The trial was conducted from July 2012 to November
201312. A total of 81 individuals were assessed for eligibility of
which 18 did not meet the inclusion criteria12 and three declined
to participate. Of notice, one excluded individual displayed ele-
vated serum transglutaminase concentration (a marker of coeliac
disease) and was excluded from the trial and referred for further
clinical investigation. Sixty Caucasian Danish adults without
coeliac disease, diabetes or any other self-known disorders were
included12. They were between 22 and 65 years old, healthy by
physical and biochemical examination, weight stable and had a
body mass index (BMI) of 25–35 kg m−2 and/or increased waist
circumference (≥ 94 cm for men and ≥ 80 cm for women). No
study participants had a diagnosis of chronic disorders including
a gastrointestinal disease. Study participants were randomly
assigned to two groups: (1) undertaking either a low-gluten diet
followed by high-gluten diet, or (2) high-gluten diet followed by
low-gluten diet (Fig. 1a). In total, 51 participants completed the
study and 54 participants had more than two visits and were
included in the analyses (see baseline characteristics in Supple-
mentary Table 1 and CONSORT flow diagram in Supplementary
Fig. 1). During the two dietary interventions, study participants
were asked to replace all cereal products with freely provided low-
gluten or comparable gluten-rich dietary fibre-matched products
of high-nutritional quality (Supplementary Table 2), which they
were asked to consume ad libitum.

Overall, participants were highly compliant to both interven-
tions, as documented in both food diaries (Supplementary
Table 3) and according to measured fasting plasma alkylresorci-
nol concentrations, which were substantially reduced on the low-

gluten diet compared with the high-gluten diet (Supplementary
Table 4; P < 0.001, linear mixed model), providing objective
evidence of individual compliance13. During the interventions,
study participants consumed on average ± standard deviation 2 ±
2 g gluten per day (mainly from oats) during the low-gluten
dieting period and 18 ± 6 g gluten per day (mainly from wheat
and rye) during the high-gluten dieting period, in comparison to
their habitual intake of 12 ± 4 g gluten per day (Supplementary
Table 5). The habitual intake of gluten is comparable with a mean
intake of 10.4 ± 4.4 g gluten per day in Denmark14, and the intake
of gluten in the low- and high-gluten diets are in line with a
previous study testing the effects of a low-gluten (2 g gluten
per day) and high-gluten (16 g gluten per day) diet in patients
with non-celiac gluten sensitivity15. Importantly, there was no
difference between the two diet regimens in intake of total dietary
fibre content. Intake of wholegrain cereals (wheat, rye and barley)
was as expected lower in the low-gluten diet compared with the
high-gluten diet (Supplementary Table 5; P < 0.001, paired t-test).
There were no differences between the interventions in total
energy or macronutrients intake, except for a slightly reduced
protein intake during the low-gluten period (on average reduced
with 7 g per day during the low-gluten period; Supplementary
Table 5; P= 0.01, paired t-test). We compared the effects of the
diets on changes in composition and functional potential of the
gut microbiome, the urine metabolome, targeted serum and
faeces metabolites and markers of host physiology using
measurements of each variable taken at baselines (visit 1 and
visit 3) and at end-points (visit 2 and visit 4) (Fig. 1a, b).

A low-gluten diet alters the intestinal microbiome. To estimate
a potential impact of low-gluten versus high-gluten dieting on the
gut microbiome, we studied a total of 208 individual whole-
genome shotgun sequences of microbial DNA obtained from
stool samples. On average, we obtained 6.7 Giga base-pairs (bp)
per sample when including samples ranging from 3.7 to 13.6 Gbp
(Supplementary Data 1). The microbial sequences were mapped
to the integrated catalogue of reference genes of the human gut
microbiome16 and genes were binned into metagenomic species
(MGS; informal distinct microbial entities, from hereon called
species) according to co-abundance variation across samples17. In
total, 575 species were identified in at least ten individuals in this
cohort. Of these species, the relative abundance of 14 bacterial
species was altered during the low-gluten diet intervention
compared with the high-gluten diet intervention (Fig. 2 and
Supplementary Data 2; false-discovery rate (FDR) < 0.05, linear
mixed model). Consistently, the abundance of four species of
Bifidobacterium was diminished during the low-gluten diet
(Supplementary Fig. 2). The substantial reduction in Bifido-
bacterium spp., both in terms of absolute and relative abundance,
were confirmed by quantitative PCR (Supplementary Table 6). In
addition, the low-gluten diet resulted in a decrease of a species
annotated as Dorea longicatena and another species of Dorea, one
species of Blautia wexlerae, two species of the Lachnospiraceae
family, and two butyrate-producing bacteria Anaeostipes hadrus
and Eubacterium hallii, in comparison with the high-gluten diet.
At the same time, an unclassified species of unknown taxonomic
origin, an unclassified species of Clostridiales and an unclassified
species of Lachnospiraceae increased during the low-gluten diet
intervention compared with the high-gluten diet intervention.
Notably, we did not find any changes in alpha- and beta-diversity
(Supplementary Fig. 3).

To explore changes in the functional capacity of the intestinal
microbiome following low-gluten as compared with the high-
gluten dieting, all microbial genes annotated to prokaryotic Kyoto
Encyclopedia of Genes and Genomes (KEGG) orthologies (KOs)
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18 were tested individually, when grouped into KEGG modules19

and when grouped into customised reference
modules20, respectively. We identified 88 KOs and 37 modules
that changed following the low-gluten diet period compared with
the high-gluten diet intervention (Fig. 3 and Supplementary
Data 3 and 4; FDR < 0.05, linear mixed model). In particular, the
abundance of modules associated with carbohydrate metabolism
(i.e. arabinose degradation, pentose phosphate pathway, phos-
phate acetyltransferase-acetate kinase pathway and fructose-6-
phosphate shunt) and uptake of carbohydrates (L-arabinose/
lactose transport system, phosphotransferase systems (PTS) and
other sugar transport systems) was diminished following the low-
gluten dieting compared with the high-gluten dieting. This

suggests a change in bacterial carbohydrate degradation as a
response to the dietary intervention. Furthermore, abundance of
modules associated with bacterial transport of glutamate, zinc/
manganese and sulphate was diminished, whereas abundance of
modules associated with transport of cysteine and iron was
increased following the low-gluten diet compared with the high-
gluten diet period. A majority of the modules showed subtle
changes in the functional potential (Fig. 3a, b), high prevalence in
the species (Fig. 3c) and the significantly different species
comprised a minor percentage of the total functional poten-
tial (Fig. 3d). However, leaving out the significantly different
species showed that they contributed considerably to the observed
significant changes in functional potential for multiple of the
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Fig. 1 Experimental design, data overview and summary of the cross-over trial. a The study was a randomised, controlled, cross-over trial with two 8-week
dietary intervention periods separated by a washout period of at least six weeks, comparing the effects of a low-gluten diet and a high-gluten diet on the
gut microbiome (predefined primary outcome), untargeted urine metabolome and measures of host physiology12. Time points for data collections are
indicated by circles in the lower part panel (a). b Effects of a low-gluten diet compared with a high-gluten diet on the intestinal microbiome, urine/faecal
metabolome and markers of host physiology in apparently healthy adults. Measured variables that were found to be reduced (red arrow), increased (green
arrow) or unchanged (black horizontal arrows) following the low-gluten diet intervention compared with the high-gluten diet intervention are listed. MGS
metagenomics species, PYY peptide YY, SCFA short-chain fatty acids. The person icon and molecular structure images for the acetate anion, butyrate ion,
propionate ion and kynurenine were obtained from Wikimedia Commons, released under public domain
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modules (Fig. 3b). In summary, these findings demonstrate that
low-gluten dieting changes the gut microbiome composition and
functional potential in healthy adults.

A low-gluten diet changes the intestinal fermentation. We
found a reduction in both fasting and postprandial hydrogen

exhalation after an identical standardised test meal following low-
gluten dieting compared with high-gluten diet dieting (Fig. 4a and
Supplementary Table 7; P < 0.0001, linear mixed model). In
addition, participants reported improved postprandial well-being
after the standardised meal following the low-gluten diet com-
pared to the high-gluten diet (Supplementary Fig. 4). Whereas the
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change in breath hydrogen was primarily driven by the low-
gluten diet, the change in postprandial well-being was unex-
pectedly primarily driven by the high-gluten diet. However, the
reduction in breath hydrogen was convergent with participants
reporting less bloating following the 8-week low-gluten inter-
vention compared with the 8-week high-gluten intervention
(Fig. 4b). Together these observations suggest an altered intestinal
fermentation in accordance with the changes in bacterial modules
associated with carbohydrate metabolism (Fig. 3). Indeed, several
differences in carbohydrate composition were found between
diets including higher levels of galactose, rhamnose, mannose,
and galacturonic acid and lower levels of arabinose and xylose in
the low-gluten diet compared with the high-gluten diet

(Supplementary Fig. 5a). These nutritional changes were in
agreement with a reduced bacterial arabinose/lactose transport
potential following the low-gluten dieting (Fig. 3). There was no
differences in the total amount of dietary fermentable, oligo-, di-,
and monosaccharides and polyols (FODMAP) (Supplementary
Fig. 5b) or in intake of resistant starch (Supplementary Table 2)
between the two diets. Yet, qualitative differences were observed,
such as lower levels of fructooligosaccharides and mannitol/sor-
bitol and higher levels of lactose in the low-gluten diet. In support
of a changed intestinal fermentation, breath hydrogen con-
centrations were negatively associated with gut metabolic mod-
ules related to methanogenesis (Supplementary Table 8). The
latter comprises reduction of CO2 to CH4 using H2 or formate as
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(KEGG) orthologs (KOs) were grouped into KEGG modules and manually curated (customised) modules. The bar chart display the median log2 fold
change (median ± SEM) of all individual KOs within a module when comparing the relative abundance at baseline to the abundance following the low-
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comparing changes in the abundance of modules induced by the low-gluten diet with the changes induced in the high-gluten diet (black dots) adjusting for
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Fig. 2 A low-gluten diet alters the composition of the gut microbiome. a Scatterplot of the statistical significance of the metagenomic species (MGSs) as
assessed by a linear mixed model testing for the difference between the low-gluten and the high-gluten diets adjusted for age, gender, intestinal transit
time, participant (n= 51) and carry-over effect. Adjusted P values are displayed on the y-axis (log10 scale) and the effect size (absolute values were log10
transformed) is on the x-axis. Points are sized according to the total abundance (%) and coloured according to the ten most abundant taxonomic families.
The ‘Other’ category consists of the remaining families. The horizontal line represents an adjusted P value of 0.05 and the 14 species that changed
significantly (FDR < 0.05) between the interventions are labelled with their full taxonomic annotation. Only species that could be annotated to family level
and with abundance above 0.02% were included in the plot (255 species). b Bar chart of the 14 significant species showing the log2 fold change (means ±
SEM) between baseline and after the low-gluten diet (blue bars) and high-gluten diet (red bars), respectively. The black circles are sized according to the
negative log10 of the adjusted P values of comparison between the low-gluten and the high-gluten diet using a linear mixed model adjusted for age, gender,
intestinal transit time, participant (n= 51) and carry-over effect. Green circles are scaled according the species abundance. The last column lists the
number of participants in whom the given species were measured. Details on the individual species can be found in Supplementary Data 2
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electron donors21 occurring alongside proteolytic degradation
following prolonged intestinal transit times22. We did not find,
however, any changes in intestinal transit time (Supplementary
Table 7).

To further explore changes in intestinal fermentation, we
performed untargeted metabolic profiling of urine sampled
during the standardized meal tests by gas chromatography mass
spectrometry (GC-MS) as well as by ultra-performance liquid
chromatography mass spectrometry (UPLC-MS). We found
lower concentrations of wheat-derived compounds (3,5-dihy-
droxyhydrocinnamic acid-glucuronide and galactosylglycerol)
during the low-gluten intervention in comparison with the
high-gluten intervention. In contrast the urinary concentration of
a host-microbial co-metabolite of lignan degradation (enterolac-
tone-glucuronide) was increased during the low-gluten interven-
tion (Supplementary Table 9; FDR < 0.05, linear mixed model),
suggesting an altered dietary fibre degradation upon reduction in
gluten-rich food items during the low-gluten diet and related
changes in the gut microbiome.

To identify correlations between breath hydrogen levels and
changes in the gut microbiome and urine metabolome, we
developed a co-occurrence network of breath hydrogen and the

bacterial species and urine metabolites that responded to the
dietary interventions (Fig. 4c and Supplementary Data 5). Breath
hydrogen was positively associated with the wheat-associated
urine metabolites and B. longum and negatively associated with
urine enterolactone-glucuronide, substantiating that differences
in composition of dietary fibres between the two diet regimens
resulted in a changed colonic fermentation. The network analysis
identified the lactate-utilising, butyrate-producing Eubacterium
hallii as a key driver species, which was associated with the
lactate-producing Bifidobacterium, as well as the hydrogen-
producing Dorea longicatena and the hydrogen-consuming,
acetate-producing Blautia. Furthermore, the network analysis
highlighted associations between the wheat-associated urine
metabolites and the Bifidobacterium species, suggesting that the
reduction in Bifidobacterium abundance following the low-gluten
diet intervention was associated with the diminished intake of
wheat. Likewise, the abundance of microbiome modules asso-
ciated with uptake and degradation of mannose, sucrose and
arabinose was positively associated with wheat-associated urine
metabolites (Supplementary Fig. 6 and Supplementary Table 10).
Collectively, these results suggest that a changed gut microbiome
and altered fermentation resulting from qualitative differences in
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dietary fibre composition may explain the reduced breath
hydrogen and reduced bloating following the low-gluten diet.

A low-gluten diet results in weight loss. We did not find any
differences in measures of glucose and lipid metabolism (Sup-
plementary Table 7). However, we found a decrease in body
weight, on average 0.8 ± 0.3 kg, following the low-gluten dieting
for 8-week compared with the high-gluten diet period (Fig. 5a;
P= 0.012, linear mixed model). We also demonstrated an
increase in postprandial plasma concentrations of peptide YY
(PYY) in response to the standardised meal after the low-gluten
intervention compared with the high-gluten intervention (Fig. 5b
and Supplementary Table 7; PAUC= 0.012, linear mixed model).
PYY is a gut hormone released into the circulation in a nutrient-
dependent manner and is known to reduce appetite23. However,
we did not observe any differences in total energy intake during
the two interventions (Supplementary Table 5). There were no
changes in levels of the proximal incretin hormone gastric inhi-
bitory peptide (GIP), and no changes in the distal gut hormone
glucagon-like peptide 2 (GLP-2), a regulator of gut mucosal
adaptation and growth; GLP-2 is known to be secreted in com-
parable amounts in parallel to the appetite regulating hormone
GLP-1, and it may therefore be assumed that also GLP-1 secre-
tion was unchanged24 (Supplementary Table 7). Together, these
findings suggest that a different mechanism is responsible for the
weight loss. Colonic short-chain fatty acids (SCFA), synthesized
by the gut microbiota during fibre fermentation, are known to
increase plasma PYY levels, fat oxidation and energy expenditure
in overweight men25. However, we did not observe any associa-
tions between changes in fasting or postprandial plasma PYY
concentrations and changes in bacterial modules associated with
SCFA biosynthesis potentials (Supplementary Table 8) or in
faecal and serum concentrations of SCFA (Supplementary
Table 11). Fasting plasma PYY concentrations have been nega-
tively associated with various markers of adiposity and resting
metabolic rate in humans26, and long-term elevated PYY con-
centrations are associated with enhanced thermogenesis in
mice27. Among the differing urine metabolites, β-aminoisobutyric
acid (BAIBA) was increased following the low-gluten diet com-
pared with the high-gluten diet period (Fig. 5c and Supplemen-
tary Table 9; FDR < 0.05, linear mixed model). BAIBA induces
browning of white adipose tissue and increases hepatic fat
oxidation28. Changes in urine BAIBA concentrations were,

however, not associated with the bacterial pyrimidine degradation
module (Supplementary Table 8), which contains bacterial genes
involved in degradation of thymine into BAIBA, suggesting that
the observed changes in urine BAIBA were not related to changes
in the intestinal microbiome. Rather they might be directly
related to other effects of the low-gluten diet on host metabolism.
Together, the increased urine concentrations of BAIBA and the
elevated postprandial plasma levels of PYY suggest that intake of
the low-gluten diet modulated energy homoeostasis by changing
thermogenesis or fat oxidation. To explore these hypotheses, we
performed targeted metabolomics quantifying fatty acids, acyl-
carnitines (transport fatty acids into the mitochondria for
breakdown), and BAIBA in serum. Besides a significant increase
in serum linoleyl-carnitine following the low-gluten diet com-
pared with the high-gluten diet, these metabolites were not
changed (Supplementary Table 12), suggesting unaltered fat
oxidation. Further exploring possible reasons for the observed
weight loss, we targeted metabolites associated with the
microbiota-gut-brain axis including serotonin, kynurenine, glu-
tamate, γ-aminobutyric acid29,30 in faeces and serum. Analyses of
these metabolites did reveal a significant increase in faecal
kynurenine concentrations following the low-gluten diet inter-
vention compared with the high-gluten diet intervention (Fig. 5d
and Supplementary Table 12; P= 0.005, linear mixed model).
Compared with healthy controls, coeliac disease patients adhering
to a GFD have been reported to have lower serum concentrations
of aromatic amino acids including tryptophan, the substrate for
kynurenine31. Therefore, we quantified serum and faeces con-
centrations of the aromatic amino acids and their derivatives.
Since concentrations of tryptophan and microbial tryptophan
catabolites were unaltered (Supplementary Table 12), the
observed increase in kynurenine faeces concentration following
the low-gluten diet suggested altered microbiota tryptophan
degradation pathways rather than being a mere consequence of
substrate availability. Indeed, targeted metagenomic module
analyses revealed a proportional decrease in the potential of the
tryptophan to serotonin synthesis pathway (Supplementary
Data 6 and Supplementary Fig. 7) following the low-gluten diet.
Moreover, we found the ratios of the proportional abundances of
their respective production pathways and faecal concentrations to
correlate (Supplementary Fig. 8a; Spearman rho= 0.20; P=
0.004; Supplementary Table 13), suggesting a balance between
both tryptophan conversion routes (Supplementary Fig. 7). In
rodents, kynurenic acid, a downstream product of kynurenine,
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Fig. 5 Low-gluten dieting affects markers of host metabolism. a Plot showing participants’ changes in body weight following the low-gluten (blue circles)
and high-gluten (red squares) periods. b Plot showing participants’ plasma concentrations of peptide YY (PYY) following a standardised meal at all four
visits (low-gluten diet start, open blue circles; low-gluten diet end, blue squares; high-gluten diet start, open red triangle; high-gluten diet end, filled red
triangle). c Plot showing log2 fold changes in participants’ urine concentrations of β-aminoisobutyric acid (BAIBA) and d faecal concentrations of
kynurenine following the low-gluten (blue circles) and high-gluten (red squares) diet, respectively. Data are shown as means ± SEM, n= 50–54. Changes
were assessed by a linear mixed model adjusting for age, gender and intestinal transit time. *P < 0.05, **P < 0.01, ***P < 0.001. AUC area under the curve
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has been reported to enhance adipose tissue thermogenesis
through activation of G protein-coupled receptor Gpr3532, which
is also highly expressed in the gastrointestinal tract33. Here, we
observed faecal kynurenine concentrations to be positively asso-
ciated with urine BAIBA levels (Supplementary Fig. 8b; Spearman
rho= 0.26; P= 9.2E–05), indicating a potential role of the colon
microbial production in fat browning.

A low-gluten diet has subtle effects on the immune system. To
determine the potential impact of a low-gluten diet on immune
and inflammatory host responses, we assessed systemic inflam-
matory markers as well as ex vivo lipopolysaccharide (LPS)-
induced cytokine responses in whole-blood of study participants.
We did not find any changes in concentrations of systemic
inflammatory markers in serum (i.e., C-reactive protein (CRP),
interleukin (IL)-6 or tumour necrosis factor alpha (TNF-α);
Supplementary Table 7) or in counts of immune cell populations
in blood (i.e. leucocytes, lymphocytes, neutrophils, monocytes;
Supplementary Table 7). Neither did we find any changes in
markers of intestinal inflammation (i.e. fasting plasma citrulline
and faecal calprotectin; Supplementary Table 7) nor in intestinal
permeability as measured by fasting serum zonulin and urinary
excretion of lactulose and mannitol (Supplementary Table 7). Of
notice, ex vivo LPS-induced stimulation of whole-blood showed,
however, reduced release of the pro-inflammatory,
inflammasome-related cytokine IL-1β following the low-gluten
diet intervention compared with the high-gluten diet period
(Supplementary Table 7; P= 0.035, linear mixed model). None of
the other serum concentrations of non-inflammasome-related,
pro-inflammatory mediators such as IL-6, TNF-α and interferon
gamma (IFN-γ) were changed. These findings suggest a selec-
tively reduced activation of the inflammasome response following
the low-gluten diet intervention compared with the high-gluten
diet period. Intriguingly, we demonstrated a positive association
between the abundance of the bacterial Lipid A synthesis module
(present in all Gram-negative bacteria) and LPS-induced release
of IL-1β from whole-blood (Supplementary Table 8). Collectively,
these results suggest that a low-gluten diet confers a selectively
reduced activation of the inflammasome response.

Discussion
An overview of the outcome of this randomised, controlled,
cross-over trial with two 8-week dietary intervention periods
comparing the effects of a low-gluten diet and a high-gluten diet
is given in Fig. 1.

We showed that a low-gluten diet in apparently healthy adults
changed the primary trial endpoint, the gut microbiome com-
position and functional potential. Among the 14 bacterial species
which changed between the two dietary regimens, particularly the
relative abundance of Bifidobacterium species was consistently
diminished following adherence to the low-gluten dietary regi-
men. This finding is in agreement with a microbiota gene marker
study involving 10 healthy adults showing that a shift to a GFD
for four weeks resulted in decreased proportions of Bifido-
bacterium10, as well as with reports of lower abundance of bifi-
dobacteria in celiac disease patients following a GFD34,35. In
addition, practicing a low FODMAP diet diminishes the abun-
dance of bifidobacteria in patients with IBS concurrent with relief
of gastrointestinal symptoms36–38. These interventions generally
reduce intake of wheat or exclude wheat, suggesting a close
relationship between wheat intake and the abundance of bifido-
bacteria in adults. This aligns with recent studies showing that
healthy populations living traditional lifestyles have low or absent
faecal abundance of bifidobacteria compared with the intestinal
ecosystems of individuals in industrialised parts of the world39,40.

Thus, the abundance of bifidobacteria in adults living a Western
lifestyle may to a large extent reflect intake of diets enriched in
wheat.

In parallel, we observed a reduction in butyrate-producing E.
hallii and A. hadrus as well as in the hydrogen-producing Dorea
and the hydrogen-consuming, acetate-producing Blautia, fol-
lowing the low-gluten diet compared with the high-gluten diet.
These interrelated species were positively associated, which is
consistent with reports on cross-feeding between Bifidobacterium
and butyrate-producing bacteria41–43, with Blautia’ ability to
produce acetate and utilise hydrogen during fibre
fermentation41,44,45 and with the ability of Dorea longicatena to
produce hydrogen46. Several in vivo and in vitro studies have
shown bifidogenic effects and stimulation of butyrate-producing
colon bacteria47–51 by arabinoxylan and arabinoxylan-oligo-
saccharides, abundant non-starch polysaccharides of cereal
grains52. Indeed, the fibre composition analysis of the two
intervention diets showed lower concentration of arabinose in the
low-gluten products compared to the high-gluten products. This
was in agreement with changes in the functional potential of the
microbiome upon the low-gluten dieting. A module representing
a L-arabinose/lactose transport system and a custom module
representing arabinose degradation, which converts L-arabinose
to L-ribulose-5-phosphate, were significantly reduced during a
low-gluten diet. Further, L-ribulose-5-phosphate is utilized by the
non-oxidative phase of the pentose phosphate pathway, which
was also significantly reduced during the low-gluten period
compared to the high-gluten period. This suggests that the
replacement of grain-derived fibres of wheat, barley and rye with
dietary fibres of other sources during the low-gluten diet inter-
vention caused the observed changes in the intestinal micro-
biome. Importantly, in accordance with the diets being matched
for dietary fibres, we did not during our 8-week intervention
observe any changes in faecal and serum SCFA. Furthermore, we
did not find any health implications associated with the reduction
in Bifidobacterium and butyrate-producing species following the
low-gluten diet, although the long-term health consequences
remain unknown.

Despite the unchanged concentrations of SCFA concentration
in serum and faeces, we observed a reduction in both fasting and
postprandial hydrogen exhalation following the low-gluten diet
intervention and multiple changes in urine metabolites reflecting
a changed intestinal fermentation. In line with this, a previous
study reported that fasting breath hydrogen concentrations were
significantly lower in coeliac disease patients on a GFD compared
with untreated coeliac disease patients53. Likewise, a low FOD-
MAP diet has been reported to reduce breath hydrogen and
ameliorate gastrointestinal symptoms compared with a high
FODMAP diet15,37. To which extent the concurrent improve-
ments in well-being and bloating following the low-gluten diet
intervention as compared with the high-gluten diet period, were
prompted by changes in the intestinal microbiome and fermen-
tation, or were due to psychological (placebo) effects remain
unresolved.

No effects on glucose and lipid metabolism were found.
However, despite unaltered self-reported energy intake by study
participants, the low-gluten diet was temporarily linked with a
significant weight loss. This is in line with two studies in mice fed
a gliadin-enriched, high-fat diet showing an increase in body
weight and adiposity54,55. Still, other studies in mice show no
effect of gluten on body weight3,56,57. Based on the observed
increase of plasma PYY and urinary BAIBA concentrations fol-
lowing the low-gluten diet, we hypothesized that the reduced
body weight induced by low-gluten intervention might in part be
mediated by an increased thermogenesis. Recent studies in mice
have indicated that increased intake of gluten may increase
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hepatic lipid accumulation3, reduce the thermogenic capacity of
adipose tissue55 and the size of adipocytes3. Here we found that
faecal concentrations of kynurenine were increased following the
low-gluten diet and associated with urine BAIBA, raising the
intriguing possibility that kynurenine, via the downstream pro-
duct of kynurenic acid, enhance thermogenesis32 through acti-
vation of Gpr35 in the gastrointestinal tract33. Obviously, further
interventions in humans are warranted to specifically delineate
whether intake of a low-gluten diet modulates energy
homoeostasis.

Our analyses showed that the low-gluten diet had no effect on
circulating white blood cell counts or markers of systemic
inflammation in unstimulated blood or on measures of intestinal
inflammation. Likewise, no effects were seen on intestinal per-
meability markers. We did, however, notice that LPS-induced
stimulation of whole-blood showed that immune cells had
reduced capacity to produce the pro-inflammatory,
inflammasome-related cytokine IL-1β58 following the low-gluten
diet period. Similarly, a previous study reported that production
of pro-inflammatory cytokines by peripheral blood mononuclear
cells stimulated with faecal water was reduced after a GFD10. As
the inflammasome-directed response also takes place in intestinal
cells in a similar manner, and is regarded as an important reg-
ulator of intestinal homoeostasis59,60, these findings might point
to a yet undescribed impact of a low-gluten diet on the immune
system that in future studies will need further clarification.

In conclusion, an 8-week low-gluten diet intervention in
healthy middle-aged adults induced changes in the intestinal
microbiome and fermentation of complex carbohydrates as
mirrored in changes of the urine metabolome and reduction in
breath hydrogen. Although the generalizability to other popula-
tions is to be determined as gluten consumption differs in Wes-
tern populations61,62, the changes in colonic microbial
composition and fermentation suggest that the effects of a low-
gluten diet in healthy middle-aged adults may to some extent be
driven by qualitative changes in dietary fibres upon reduction of
gluten-rich food items rather than by the reduction of gluten
intake itself.

Methods
Trial design. This was a randomised controlled (1:1) cross-over trial composed of
two 8-week dietary interventions comprising a low-gluten diet or a high-gluten
diet, separated by washout period for at least six weeks (range 6–23 weeks, median
of 8 weeks) with habitual diet. The trial design, intervention modes and primary
and secondary outcomes have been reported in a previous paper12 and registered at
www.clinicaltrials.gov (NCT01719913). The trial was conducted from July 2012 to
November 201312.

Participants. Participants were recruited from the general population studies
“Health 2008” and “Health 2010”, established at the Research Center for Preven-
tion and Health (RCPH) at Glostrup University Hospital in Copenhagen, Den-
mark63 and through the webpage www.forsogsperson.dk and advertisements in
local newspapers. Participants were non-diabetic, lean, overweight or obese adults
who were healthy by self-report and aged 22–65 years. Importantly, they did not
suffer from coeliac disease or other gastrointestinal diseases. In order to detect
latent coeliac diseases, levels of serum Immunoglobulin(Ig)A and IgG transgluta-
minase were measured at the first examination day. In case values exceeded the
acceptable maximum (> 8 units per mL for IgA and >10 units per mL for IgG)
participants were excluded from the study and referred to own general practitioner.
Further eligibility criteria have been published elsewhere12. Exclusion criteria
included antibiotic treatments (< 3 months prior to study start), intake of pre- or
probiotic supplements (<1 month prior to study start), medically prescribed diet
and intense physical activity (>10 h per week)12. Data on participants’ physiological
traits and smoking habits are available in Supplementary Table 1.

The study was led by the Novo Nordisk Foundation Center for Basic Metabolic
Research, Faculty of Health and Medical Science, University of Copenhagen and
conducted at the Department of Nutrition, Exercise and Sports at the University of
Copenhagen, Denmark. The Ethical Committee of the Capital Region of Denmark
approved the trial (H-2-2012-065), which was run in accordance with the Helsinki
declaration and endorsed by the Data Protection Agency (2007-54-0269). All
individuals gave written informed consent before participating in the study.

Interventions. The aim of the dietary interventions was to limit the daily gluten
consumption considerably in the low-gluten period (~2 g per day) and to increase
it in the high-gluten period (~20 g per day). For comparison, in the national survey
of dietary habits, Danish adults (n= 1494, 20–75 years) had a mean total gluten
intake of 12.0 ± 4.6 g per day in men and 9.0 ± 3.4 g per day in women14. During
the two dietary interventions participants were provided with a selection of low-
gluten or high-gluten products of high nutritional values and instructed to replace
all cereal products from their habitual diet with the study dietary products and to
consume these products ad libitum (Supplementary Table 2). Each participant was
randomly assigned to start on either the low-gluten diet or the high-gluten diet.
Participants were encouraged to contact the study staff if they experienced any
adverse health-related implications of the dietary interventions. The outline of the
trial is shown in Fig. 1.

Overview of protocol measures. The primary endpoint was an altered gut
microbiota composition and functional potential during consumption of a low-
gluten compared with a high-gluten diet as measured by shotgun sequencing-based
metagenomics analyses of microbial DNA isolated from faecal samples and
sequenced applying deep metagenomics sequencing12. Secondary outcomes12

included body weight, waist circumference, sagittal diameter, fasting concentra-
tions of plasma glucose, serum insulin, serum C-peptide plasma GIP, serum tri-
glycerides (TAG), serum total cholesterol, serum high-density lipoprotein (HDL)
cholesterol, serum low-density lipoprotein (LDL) cholesterol, serum alanine-
aminotransferase (ALAT), serum aspartate aminotransferase (ASAT), serum CRP,
serum IL-6, serum TNF-α, whole-blood haemoglobin, white blood cells, whole-
blood lymphocytes, mix of whole-blood monocytes, eosinophils as well as baso-
phils, whole-blood neutrophils, serum IL-6, serum TNF-α, serum zonulin, plasma
citrullin, homoeostatic model assessment for insulin resistance (HOMA-IR),
whole-blood glycated haemoglobin (HbA1c) and targeted serum and faeces
metabolites. In addition, during a standardized meal test measurement of post-
prandial responses of plasma glucose, serum insulin, plasma GLP-2, plasma pep-
tide YY (PYY), plasma free fatty acids (FFA), exhalation of H2, untargeted UPLC-
MS and GC-MS urine metabolomics, urine lactulose and mannitol excretion.
Further examinations included measurement of faecal calprotectin, intestinal
transit time, average number of defaecations over the last week, Bristol stool scale
estimates of stool consistence, well-being and gastrointestinal comfort indicators
(bloating), and ex vivo cytokine production in LPS-stimulated whole-blood.

Sample size. Estimations were based on 85% statistical power to detect a difference
of 0.4 standard deviation in metabolic quantitative traits, based on previous
observations from the MetaHit study64. It was estimated that 51 individuals were
needed, but to allow for a 15% dropout after randomization, a total of 60 parti-
cipants were invited for participation. Additionally, based on observed standard
deviations for the MGSs changing during the low-gluten and high-gluten inter-
ventions, we concluded that the number of included subjects was adequate to
provide evidence of a changed intestinal microbiome after a low-gluten diet
compared with a high-gluten diet.

Randomisation. The random allocation sequence was generated by an investigator
without contact to the participants (www.randomization.com). Details of the type
of randomisations and restrictions such as blocking and block size have been
published previously12. The random allocation sequence was implemented by the
dietician using a list of participant IDs matched with allocated sequences.

Blinding. The participants and the investigators involved in outcome assessment
were blinded until the first examination day. Thereafter, blinding was not possible
due to the nature of the intervention. However, blinding of the allocation sequence
was maintained during sampling of biological materials and initial steps of
bioinformatics and statistical analyses.

Anthropometrics. On the four examination days, before and after each inter-
vention, participants met in the morning after an overnight fast of ≥10 h and
absenting from physical activity and alcohol consumption for ≥ 24 h. In addition,
participants were instructed to avoid smoking and tooth brushing in the morning
of the examination days. Prior to determination of body weight, participants were
asked to empty their bladder and to wear only underwear or light clothing. Body
weight was determined and registered to the nearest 0.05 kg (Lindell Tronic 8000,
Digital Medical Scale, Copenhagen, Denmark). At the first examination day only,
height was measured with a wall-mounted stadiometer while the participants were
barefooted and it was registered to the nearest 0.1 cm (Hultafors, Sweden). Waist
circumference was measured twice using a flexible measuring tape (Meterex,
Lagenfeld, Germany) at the point of the umbilicus after an exhalation and was
registered to the nearest 0.5 cm. Sagittal abdominal diameter was measured twice
using an abdominal calibre (Holtain-Kahn Abdominal Caliper, Crosswell, UK) at
the umbilicus level after an exhalation with participants lying on a flat bed with the
legs bent and was registered to the nearest 0.1 cm.
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Biochemical analyses of fasting blood samples. Blood samples were drawn via
an intravenous cannula in the participants’ antecubital vein at all four examination
days. Shortly after collection, the blood samples were stored in ice water, separated
into serum and plasma, and immediately stored at −80 °C until analyses. All blood
sample analyses were performed in one batch at the end of the study to ensure low
variability.

Plasma glucose, whole-blood HbA1c and serum TAG, total-, LDL-, and HDL-
cholesterol, ALAT and ASAT were analysed using automated, enzymatic,
colorimetric assay on ABX Pentra 400 chemistry analyser (ABX Pentra, Horiba
ABX, Montpellier, France). The coefficients of variation (CV) for these analyses
were between 1.3 and 7.2%.

Serum insulin and C-peptide were measured by a chemiluminescent
immunometric assay (Immulite 1000; Siemens Medical Solutions Diagnostics, Los
Angeles, USA). CV was < 5% for both. HOMA-IR was calculated according to
Wallace et al.65 as insulin resistance= glucose in mmol L−1 × insulin in pmol
L−1 × 135−1. Serum CRP was measured after a 1000× dilution in a high-sensitivity
single-plex assay (MesoScale Discovery®, Gaithersburg, MD, USA) using the
Sector Imager 2400A (MesoScale Discovery®). The lower limit of detection was
4.3 pg mL−1. Blood counts of total haemoglobin, leucocytes, neutrophils,
lymphocytes, and others immune cells (including monocytes, mast cells, basophils
and eosinophils) were obtained using a Sysmex KX-21 automated haematology
analyser (Sysmex America Inc., Lincolnshire, Illinois, USA). Serum IL-6 and TNF-
α were measures by high-sensitivity enzyme-linked immunosorbent assays (ELISA)
(R&D systems, Minneapolis, Minnesota, USA, HSLB00C, HS600B, and HSTA00D,
with detection limits: 0.15 pg mL−1 and 0.5 pg mL−1, respectively). The CV% was
3.6% and 5.2%, respectively.

Plasma citrulline, a marker of enterocyte capacity and mass, was measured
using ultra-performance liquid chromatography tandem mass-spectrometry of
acetonitrile-derived supernatants originally validated and described elsewhere with
a CV% of 2.0–4.366. Serum zonulin, a marker of tight junction regulation67, was
measured using IDK Zonulin ELISA kit (Immundiagnostik AG, Bensheim,
Germany). The CV% was 7.5%.

Plasma alkylresorcinols, markers of wholegrain wheat, rye and quinoa intake,
were analysed using normal-phase ultra-performance liquid chromatography
tandem mass-spectrometry68.

Dietary intake assessment. Participants completed a 4-day pre-coded dietary
record, developed and used at the National Food Institute at the Technical Uni-
versity of Denmark69,70 to assess the habitual dietary intake in the national dietary
survey. The record was filled out on two weekdays and two weekend days at study
start and at the end of both interventions. Daily intake of total energy, macro-
nutrients, certain food components and food groups were calculated (habitual diet
only without estimates from intake of study products). The gluten content of the
study dietary products was calculated based on data from the food database at the
Danish Food Composition Databank containing 1049 food items71.

Dietary compliance. Participants recorded a study diary, in which they registered
daily consumption (amount and type) of study dietary products throughout both
interventions as well as any deviations from the dietary instructions in the diary. A
trained dietician conducted a follow-up telephone call every second week prior to
home delivery of study dietary products, focusing on consumption of study dietary
products and adherence to the dietary regimens in general. The diary was used as
an objective measure of compliance to the intervention and to calculate absolute
consumption of study dietary products. In addition, the concentration of alkylre-
sorcinols in the blood was analysed as a measure of compliance, since these are
biomarkers of grains13. The study diary was also used for noting any illness and use
of antibiotics, during the interventions.

Dietary fibre composition of the two diets. The dietary fibre composition of the
two diets were determined by measuring the monosaccharide composition of a
representative meal of each distinct diet, the resistant starch composition of the
dietary study products, and the FODMAP (fermentable oligosaccharides, dis-
accharides, monosaccharides and polyols) composition of the provided low-gluten
and the high-gluten study products. The details are available in Supplementary
Methods.

Faecal sample collection and DNA extraction. Faecal samples were collected in
the morning of the four examination days and immediately stored at 5 °C for a
maximum of 24 h before equal volume of sterile water was added and the sample
was homogenised. The homogenised sample was aliquoted to cryotubes, and stored
at −80 °C. Microbial DNA was extracted from the faecal samples as previously
reported72.

Metagenomic sequencing and quantitative PCR. The community DNA from all
faecal samples was sequenced by metagenomics sequencing. In addition, quanti-
fication of Bifidobacterium spp. and total bacterial load in all faecal samples was
performed by quantitative PCR. Details are available in Supplementary Methods.

Ex vivo cytokine production after stimulation with LPS. Within 30 min of blood
sampling, 50 μL of whole-blood was LPS stimulated in triplicates after having been
diluted 1:10 in RPMI medium (LONZA, BE12-167F) supplemented with LPS
(Sigma-Aldrich, L2645-1MG) in a final concentration of 1 μg mL−1. Samples were
incubated for ~24 h at 37 °C and 5% CO2 in order to determine ex vivo cytokine
production. After incubation supernatants were harvested and stored at −80 °C
until ELISA measurements of IL-1β, IL-6, TNF-α and IFN-γ (R&D Systems,
DY201, DY206, and DY210, respectively)73. The CV% was 3.6–5.2%.

Standardised meal test. On the four examination days, participants were lying
and resting for at least 10 min before blood samples were drawn in the at least 8 h
fasting state (t= 0 min) and postprandial (t= 30, 60, 120 and 180 min) after
consumption of the same standardised breakfast, no matter which intervention the
study participant was allocated to. The meal consisted of white wheat bread, a
pastry, butter, jam, cheese and 200 mL water (∼3000 kJ, 52.6 E% fat, 39.7 E%
carbohydrate, 7.8 E% protein) and a standardised drink containing lactulose (5 g)
and mannitol (2 g). Participants rated their well-being twice at fasting, and every
30 min following the standardised breakfast using a 100 mm visual analogue scale
(VAS) with the most positive and the most negative ratings at each end of the line.

Biochemical analyses of postprandial blood samples. Upon the standardised
meal test, plasma glucose and serum insulin were measured in all postprandial
blood samples as described above and plasma PYY, plasma GIP and plasma GLP-2
were measured in all postprandial blood samples as specified in Supplementary
Methods.

Exhalation of hydrogen. Hydrogen exhalation was measured twice at fasting, and
every 30 min following the standardised breakfast and drink (t= 30, 60, 90, 120,
150 and 180 min). Breath hydrogen was measured in exhaled breath as a proxy
measure of colonic fermentation using a handheld calibrated Gastro+Gastrolyzer®

(Bedfont Scientific Ltd.). Participants were instructed to breath in deeply; hold their
breath for 15 s and then exhale at a steady pace into the cardboard mouthpiece of
the device until their lungs felt empty.

Visual analogue scoring of gastrointestinal indicators. Participants rated their
well-being and gastrointestinal symptoms (bloating) during the past week using
visual analogue scoring. The reliability and validity have been examined and a VAS
score is considered to be a methodologically reliable measure of gastrointestinal
comfort/discomfort74. Furthermore, participants provided information on smok-
ing, intake of medications and dietary supplements and assessed their stool con-
sistence on a 7-point scale (Bristol stool form scale) as well as their defaecation
frequency75.

Intestinal transit time. For six consecutive days before examination days 1, 2 and
4, the participants ingested 24 non-absorbable radio-opaque transit plastic ring
markers in the morning on a daily basis to ensure saturation and filled in a
defecation diary. Abdominal radiographs were performed in the afternoon at
Frederiksberg Hospital, Copenhagen, Denmark on day 7 (examination day: the
same day when faecal, blood and urine samples were collected), ∼30 h after the last
transit marker intake. Intestinal transit time was estimated (ranked) based on the
number of visible plastic markers on the obtained abdominal X-ray, adjusted for
time since last marker ingestion. This was calculated as follows: number of markers
counted from the X-ray film × the number of h between last marker ingestion and
radiograph divided by 24 (daily dose of markers). The resulting relative transit time
estimates enabled us to rank the participants according to transit time as
reported22.

Faecal calprotectin. Faecal calprotectin is used as a marker of inflammation of the
small intestine, large bowel or the stomach. Calprotectin content in stools was
measured using CALPROLABTM Calprotectin ELISA (ALP) (Calpro AS, Oslo,
Norway), which is an ELISA based on polyclonal antibodies to human calprotectin
with a reported CV% of 6.1–8.7% (S100A8/A9).

Gut permeability assessment. After ingestion of the standardised breakfast and
drink containing lactulose (5 g) and mannitol (2 g), urine was collected for 4 h.
During the time of collection, urine was stored in the fridge. After collection, the
urine samples were aliquoted into 2.0 mL tubes and stored at −80 °C. Quantifi-
cation of lactulose in urine samples was performed by chromatographic analysis.
Briefly, high-performance anion-exchange chromatography was performed with a
Dionex CarboPac MA1 BioLC Analytical 4×250 mm column. The carbohydrate
separation was performed using a Dionex CarboPac MA1 BioLC Guard 4×50 mm
column (Dionex Corp, Sunnyvale, CA, USA). The samples were eluted with 50 mM
NaOH at a flow rate of 1 mLmin−1. Urinary excretion of mannitol was quantified
using spectrophotometric analysis on a ABX Pentra 400 (Horiba Medical, Cali-
fornia, USA). The CV% was 12.8 for lactulose and 0.8 for mannitol. The percentage
of excreted lactulose and mannitol in urine after administration of the liquid
formulation was evaluated, and the lactulose/mannitol ratio was calculated for each
sample.
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Collection of urine samples. Upon arrival on each examination day, participants
emptied their bladder. Urine was collected for 4 h after the standardised breakfast
(containing approximately 3000 kJ, 52.6 E% fat, 39.7 E% carbohydrates, and 7–8 E
% protein) and the lactulose-mannitol containing drink. Urine was stored in the
fridge during collection, pooled, mixed and aliquoted into 2.0 mL tubes and stored
at −80 °C. A complete set of the 4 h urine samples was available from 51 of the
completing participants.

Urine creatinine measurement. Creatinine concentrations were measured using
urinary creatinine ELISA kit from Arbor Assays (Ann Arbor, Michigan, USA). All
samples were diluted 1:20 and measured in duplicates (CV% was 1.7%). The range
of the creatinine standard curve was 0.31–20 mg dL−1. Creatinine concentrations
were used to adjust the injection volume of each urine sample when analysed by
UPLC-MS as well as to normalise GC-MS data to account for the dilution of urine.

Metabolomics. Untargeted urine metabolomics as well as targeted serum and
faeces metabolomics quantifying short-chain fatty acids, fatty acids, acyl-carnitines,
BAIBA and metabolites associated with the microbiota-gut-brain axis including
serotonin, kynurenine, glutamate, γ-aminobutyric acid were performed by UPLC-
MS and GC-MS. Details are available in Supplementary Methods.

Statistical analyses. All statistical analyses were performed in R version 3.1 (The
R Foundation for Statistical Computing, 2012, Vienna, Austria)76. Available-case
analyses were carried out for all outcomes. The effects of the interventions on all
outcomes were analysed by a linear mixed model (LMM) using the lme4 R-
package77 with participant-specific and within-period participant-specific random
effects. The model included an intervention–visit interaction and adjustment for
age and gender as fixed effects. In addition, adjustment for intestinal transit time
was included since this parameter recently has been reported to be an important
confounder22. The effects of the intervention were assessed using the multcomp R-
package78. Four individuals underwent antibiotics treatment during the trial and
visits following antibiotics treatment were excluded from all statistics. Further
details on statistical analyses are available in Supplementary Methods.

Data availability
The raw Illumina read data for all samples have been deposited in the Short Read
Archive under the Bioproject: PRJNA491335. Other data supporting the findings of
the study are available in this article and its Supplementary Information files, or
from the corresponding authors upon request.
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