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ABSTRACT

Cancer is a genetic disease caused by somatic mu-
tations; however, the understanding of the causative
biological processes generating these mutations is
limited. A cancer genome bears the cumulative ef-
fects of mutational processes during tumor devel-
opment. Deciphering mutational signatures in can-
cer is a new topic in cancer research. The Wellcome
Trust Sanger Institute (WTSI) has categorized 30 ref-
erence signatures in the COSMIC database based
on the analyses of ∼10 000 sequencing datasets
from TCGA and ICGC. Large cohorts and bioinfor-
matics skills are required to perform the same anal-
ysis as WTSI. The quantification of known signa-
tures in custom cohorts is not possible under the
current framework of the COSMIC database, which
motivates us to construct a database for mutational
signatures in cancers and make such analyses more
accessible to general researchers. mSignatureDB
(http://tardis.cgu.edu.tw/msignaturedb) integrates R
packages and in-house scripts to determine the con-
tributions of the published signatures in 15 780 indi-
vidual tumors from 73 TCGA/ICGC cancer projects,
making comparison of signature patterns within and
between projects become possible. mSignatureDB
also allows users to perform signature analysis on
their own datasets, quantifying contributions of sig-
natures at sample resolution, which is a unique fea-
ture of mSignatureDB not available in other related
databases.

INTRODUCTION

Cancer is a genetic disease that is caused by somatic muta-
tions; however, the understanding of the causative biologi-
cal processes of these mutations is limited. The catalogue of
somatic mutations from a cancer genome bears the signa-
tures of the mutational processes that have occurred during
tumor development, which are the cumulative effects of the
DNA damage and repair processes. Accordingly, decipher-
ing these signatures in human cancer is a new trend in the
cancer research community. Researchers from the Wellcome
Trust Sanger Institute (WTSI) have analyzed somatic muta-
tion spectra from over 7,000 cancers and revealed more than
20 distinct signatures using the algorithm of WTSI Muta-
tional Signature Framework (1). This algorithm provides
a better understanding of cancer biology by linking signa-
tures to endogenous processes such as the enzymatic activ-
ity of DNA cytidine deaminases (APOBECs), the deficiency
of DNA mismatch repair, or mutations in POLE and to
exogenous mutagens such as tobacco, ultraviolet light and
toxic chemicals.

Until now, 30 reference signatures were identified using
the WTSI Mutational Signature Framework and have been
categorized in the COSMIC database (2). Due to the ubiq-
uitous nature of many of the signatures found across differ-
ent cancer types, researchers may be interested in interro-
gating the presence and prevalence of published signatures
in their collected tumor samples. As suggested in a previous
study (3), at least 200 cancer genomes are required to de-
compose 20 signatures from their corresponding mutation
catalogs, which means that large cohorts and adequate com-
puting resources are necessary to perform the same analy-
sis as WTSI. Additionally, the functionality of quantifying
known signatures in small cohorts or single samples is not
possible under the current WTSI framework.

*To whom correspondence should be addressed. Tel: +886 3 2118800 5136; Fax: +886 3 2118122; Email: petang@mail.cgu.edu.tw

C© The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by-nc/4.0/), which
permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact
journals.permissions@oup.com

http://tardis.cgu.edu.tw/msignaturedb


Nucleic Acids Research, 2018, Vol. 46, Database issue D965

To address the above issues, several R packages (4–6)
were implemented to provide the computing infrastructure
of the non-negative matrix factorization (NMF) algorithm,
which is the core methodology of the WTSI Mutational Sig-
nature Framework used to decompose a mutation spectrum
into signatures of biological processes. A recent develop-
ment by Rachel et al. (7) has made possible the identifica-
tion of mutational signatures within a single tumor sample,
thus eliminating the need for large cohorts; however, most
of the existing applications commonly lack the functionality
to compare decomposed signatures to published signatures,
which largely constrains their applicability. In addition, the
existing database (2) only provides the signature distribu-
tion map across 40 cancer types (http://cancer.sanger.ac.uk/
cosmic/signatures), detailed information such as the signa-
ture contributions in each cancer project or individual tu-
mors, analysis framework for signature identification, and
the search interface for comparing observed signatures with
reference signatures are not available under current frame-
work of the COSMIC database. Moreover, only half of the
published signatures can be attributed to known mutational
processes. Thus, an integrative database that comprehen-
sively gathers mutational signature profiles of individual
cancers as well as their corresponding clinical features may
be beneficial for disclosing new connections between muta-
tional processes and clinical features and identifying early
diagnosis markers and potential therapeutic targets.

Our specific aim to construct mSignatureDB (http://
tardis.cgu.edu.tw/msignaturedb) is to make mutational sig-
nature analyses more accessible to a wider community of
researchers and to provide comprehensive insights into the
common biological processes underlying the development
of cancers. mSignatureDB integrates publicly available R
packages and in-house scripts to determine the contribu-
tions of each published signature in 15 780 individual tu-
mors from The Cancer Genome Atlas (TCGA) and the In-
ternational Cancer Genome Consortium (ICGC) across 73
cancer projects. User-friendly visualization options are pro-
vided to render the landscape of mutation signatures ac-
cording to cancer types, projects, countries or clinical in-
formation, thereby facilitating in-depth analyses to better
understand the etiology of mutational processes. Notably,
mSignatureDB also accepts mutation profiles provided by
users, ranging from a single tumor sample to a study co-
hort. The mutational signatures can be extracted from the
uploaded mutation profile and assigned to reference signa-
tures based on the NMF algorithm and cosine similarity
method, respectively, making the comparison of the signa-
ture patterns within and between projects become possi-
ble, a unique feature of mSignatureDB that is currently not
available in other related databases (2).

MATERIALS AND METHODS

Construction of mSignatureDB database

The current set of mutational signatures in mSignatureDB
is based on an analysis of 15 780 tumors across 73
TCGA/ICGC cancer projects. Our purpose is to pro-
vide a database for users to compare mutational signa-
tures with known mutation profiles collected from var-
ious resources, which is largely different from cBioPor-

tal (8) that provides a web resource for exploring, visual-
izing, analyzing and downloading multidimensional can-
cer genomics data except for mutational signature analy-
sis. The mutation profiles were downloaded from The Na-
tional Cancer Institute (NCI) Genomic Data Commons
(GDC) and the ICGC data portal data release 23 (https:
//dcc.icgc.org/releases/release 23/), along with their clinical
information, including sex, lifestyle, patient history and
tumor stage. The 30 published signatures categorized by
different combination patterns of 96 tri-nucleotide mu-
tation contexts were downloaded from COSMIC, which
can function as a reference template for evaluating the
degree of similarity between the observed and refer-
ence signatures (http://cancer.sanger.ac.uk/cancergenome/
assets/signatures probabilities.txt). For known signatures
quantification, the R deconstructSigs package (7) was
adopted to determine the composition of mutational signa-
tures in individual tumor specimens of each TCGA/ICGC
project as well as custom projects. For de novo and
novel mutational signature analysis, the R mutSigna-
tures package, an R-based implementation of the origi-
nal WTSI Mutational Signature Framework (https://cran.r-
project.org/web/packages/mutSignatures/index.html), was
used to perform the NMF decomposition and esti-
mate the stable number of decomposed signatures within
each cancer project. To compare the observed signa-
ture with published signatures, the bootstrapped co-
sine similarity function implemented in the R supra-
Hex package (9) was used to calculate statistical signif-
icance of the similarity between mutational signatures.
The Maftools package (https://bioconductor.org/packages/
release/bioc/html/maftools.html) was adopted to classify
the somatic mutations into different substitution types
to identify dominant mutation types as well as mutation
hotspots along a reference genome. The g:Profiler pack-
age (10) was used to perform statistical enrichment anal-
ysis to identify over-represented gene ontology terms from
top-ranked mutated genes associated with specific mutation
types.

Architecture of mSignatureDB

mSignatureDB includes three major components: (i) a web
interface for inspection and retrieval of mutational signa-
tures from a specific cancer project or individual tumors; (ii)
a relational database implemented by R for storing the sig-
nature profiles from TCGA/ICGC tumors and their respec-
tive clinical information and (iii) a flexible framework for
custom mutational signature analysis. The R shiny, plotly,
rbokeh and canvasXpress packages were used to construct
the interactive visualization framework of mSignatureDB
(Figure 1). The custom signature analysis framework was
linked to the Sun Grid Engine queuing system (11) to lever-
age the computationally intensive tasks.

RESULTS AND DISCUSSION

Web interface

To facilitate the use of the mSignatureDB, we have estab-
lished a user-friendly web interface to browse, search, and
analyze mutational signatures from TCGA/ICGC projects

http://cancer.sanger.ac.uk/cosmic/signatures
http://tardis.cgu.edu.tw/msignaturedb
https://dcc.icgc.org/releases/release_23/
http://cancer.sanger.ac.uk/cancergenome/assets/signatures_probabilities.txt
https://cran.r-project.org/web/packages/mutSignatures/index.html
https://bioconductor.org/packages/release/bioc/html/maftools.html
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Figure 1. Overview of mSignatureDB. Somatic mutation profiles were gathered from TCGA/ICGC large-scale genomics studies. mSignatureDB comprises
four components: (i) browse; (ii) search; (iii) analysis and (iv) download. In the ‘Browse’ page, the landscapes of mutational signatures can be inspected by
cancer project, primary site or country. Users can search the database using the names of cancer projects. Hierarchically-clustered heamap is used to reveal
dominant signatures in a cancer project according to the contribution of each signature. By displaying mutations according to substitution types and along
a reference genome, users can easily depict dominant mutation types and localized regions of mutation hotspots. The signature profiles and the clinical
associations can be downloaded through the ‘Download’ page. The web interfaces for two popular mutational signature analysis tools, the deconstructSigs
and the WTSI Mutational Signature Framework, are provided to facilitate custom data analyses.

as well as the custom data uploaded by users. The web in-
terface comprises four main pages (Figure 1): (i) browse, (ii)
search, (iii) analysis and (iv) download.

In the ‘Browse’ page, mSignatureDB integrated publicly
available R packages and in-house scripts to determine
the contributions of each published signature in 15 780
individual tumors across 73 ICGC cancer projects to
provide an intuitive and efficient way for inspecting
the signature landscape. Mutation signatures can be
inspected through dot matrix and rendered according
to their respective projects, primary sites and countries
(http://tardis.cgu.edu.tw/msignaturedb/msignaturedb help/
browse.html#in-depth-understanding-of-the-landscapes-
of-mutational-signatures-in-human-cancers). Detailed
information about the signature contributions and their
proposed etiologies can also be displayed through pop-up
widows alongside the figures, eliminating the need for
cross-referencing multiple websites. mSignatureDB can
provide the most comprehensive roadmap describing the
signatures of mutational processes operative in individual
TCGA/ICGC tumors, which may be beneficial to explore
different combinations of mutational signatures that are
representative and distinct in specific cancer types or

populations. We also provide a hyperlink to the COSMIC
database for the convenience of inspecting the mutation
pattern of each reference signature that is displayed as
contribution of 96 trinucleotide contexts, to obtain a better
understanding of a particular COSMIC signature.

In the ‘Search’ page, the somatic mutation frequency,
classification of SNV substitutions, mutation spectrum, and
landscape of mutational signatures of each TCGA/ICGA
project are searchable through a drop-down list with 73
cancer projects. The selected project will be highlighted in
a summary plot about the number of somatic mutations
across cancer projects worldwide along with its mutation
spectrum and composition of mutational signatures. User-
friendly control elements such as screen shot, zoom in/out,
box select, auto scale and reset are available for the cre-
ation and manipulation of landscape maps of mutational
signatures (Figure 2A). Users are able to select subsets of
patients and compute statistically significant differences in
signatures between clinical categories (e.g. sex, gender, vital
status and tumor stage) on the fly with the aid of canvasX-
press package. As shown in Figure 2B, the heatmap is used
to perform a hierarchical clustering of samples based on the
contribution of each mutational signature, which is help-

http://tardis.cgu.edu.tw/msignaturedb/msignaturedb_help/browse.html#in-depth-understanding-of-the-landscapes-of-mutational-signatures-in-human-cancers
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Figure 2. Output features of mSignatureDB. (A) Dot matrix is used to render the landscape of mutational signatures in each project. Explaining texts
such as associated etiology and contribution of individual signatures are integrated in the plot and shown as pop-up windows. Flexible control elements
are also available for the manipulation of the dot matrix. (B) Since the TCGA/ICGC mutation profiles and clinical information have been complied into
mSignatureDB, users are able to compare mutational signatures between subsets of patients through the filters and the iterative heatmap. (C) Mutation
hotspots are displayed as rainfall plot and box plots along a reference genome and according to substitution types, respectively. (D) Functional profiling
of the most frequently mutated genes can be performed according to each substitution type to facilitate the users to identify their target of interests or
potential therapeutic targets.

ful for depicting biomarkers for diagnostic, prognostic and
therapeutic purposes (12). The rainfall plot is provided for
facilitating detection of localized regions of hyper-mutation
and identification of dominant mutation types (Figure 2C).
Functional profiling of the most frequently mutated genes
can be performed according to each mutation type to facili-
tate the users to identify their target of interests or potential
therapeutic targets (Figure 2D).

Due to the ubiquitous nature of the many signatures
found across cancer types, researchers may be inter-
ested in knowing the presence and prevalence of these
mutational signatures in their tumor samples. To make
mutational signature analyses more accessible to general
researchers, mSignatureDB provides user-friendly web
interfaces for two popular mutational analysis tools,
the deconstructSigs and the WTSI Mutational Signa-
ture Framework, and accepts mutation profiles in three

different formats such as VCF, TSV (ICGC) and MAF
(TCGA) from 2 different genome versions, which can be
accessible through the ‘Analysis’ page of mSignatureDB
(http://tardis.cgu.edu.tw/msignaturedb/Analysis/). De-
tailed descriptions about the input formats can be found on
the tutorial page (http://tardis.cgu.edu.tw/msignaturedb/
msignaturedb help/analysis.html#mutational-signature-
analysis-for-user-uploaded-data). The deconstructSigs ap-
proach is suitable for analyzing the contribution of known
signatures in study cohorts with small number of samples,
which can directly use published signatures as a reference,
thus eliminating the need for large cohorts (3,7), and has
been proved to be able to consistently identify the same
signatures of mutational processes operative in a single
tumor sample compared with the analysis of an entire
sample set using the WTSI Mutational Signature Frame-
work. However, most of the published signatures were

http://tardis.cgu.edu.tw/msignaturedb/Analysis/
http://tardis.cgu.edu.tw/msignaturedb/msignaturedb_help/analysis.html#mutational-signature-analysis-for-user-uploaded-data
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Figure 3. Verification of Mutational Signature. The reference mutational
signatures categorized in the COSMIC database were identified by the
WTSI Mutational Signature Framework. Although the WTSI framework
can perform de novo signature analysis and decompose signatures from
mutation profiles, the signature assignment that can be achieved by cosine
similarity analysis is always neglected by exiting tools, making the assign-
ment of the decomposed signatures to published signatures very inconve-
nient. To address this issue and give more confidence in the similarity anal-
ysis, the bootstrapped cosine similarity method is used to calculate statis-
tical significance of similarity between mutational signatures. As shown in
this figure, a bootstrapped tree that summarizes the significance of cosine
similarity between mutational signatures is provided to facilitate known
signature assignment and novel signature identification while alleviate the
exhausting and error-prone activity of visual inspection.

identified by the WTSI Mutational Signature Framework,
which is recommended for identifying novel mutational
signatures when large samples are available. As suggested
by previous study (3), at least 200 cancer genome catalogs
are required for accurately decomposing signatures of
20 mutational processes. The original WTSI Mutational
Signature Framework is developed on MATLAB, which
requires a commercial license and basic knowledge on
MALAB to perform de novo signature analysis. Accord-
ingly, we incorporated the R-based implementation of the
WTSI Mutational Signature Framework and provided
a web interface for mSignatureDB users to simplify the
analytical procedures. Signature assignment is the last
step of de novo signature analysis, which can be achieved
by cosine similarity analysis but always neglected by
existing analysis packages. To facilitate known signature
assignment, novel signature identification and give more
confidence in the similarity analysis, the bootstrapped
cosine similarity method is used to calculate statistical
significance of similarity between mutational signatures.
Furthermore, a bootstrapped tree (Figure 3) that sum-
marizes the significance of similarity between mutational
signatures is also provided to alleviate the exhausting and
error-prone activity of visual inspection.

To obtain a better understanding of a particular COS-
MIC signature, detailed information about the composi-
tion of the 96 trinucleotide contexts and proposed etiol-
ogy associated with each signature is provided as text files,
which can be downloaded through the ‘Download’ page
(http://tardis.cgu.edu.tw/msignaturedb/Download/).

Example of use

To illustrate and show an example of mSignatureDB
functionalities, we have applied our application to
analyze two public datasets reporting somatic mu-
tation catalogs on 106 cases of oral squamous cell
carcinomas (OSCC) from India (https://dcc.icgc.org/
api/v1/download?fn=/release 23/Projects/ORCA-IN/
simple somatic mutation.open.ORCA-IN.tsv.gz) and 510
cases of head and neck squamous cell cancer (HNSC)
from America (https://dcc.icgc.org/api/v1/download?fn=
/release 23/Projects/HNSC-US/sample.HNSC-US.tsv.gz),
respectively. Because mSignatureDB can determine the
composition of COSMIC reference signatures in individual
tumor specimens, the signature landscapes can be easily
compared at sample resolution within or across projects.
Because the etiology of cancer is linked to several risk
factors such as age, smoking, tobacco chewing, alcohol
consumption, ultraviolet radiation and mutagen exposure,
the samples can be further clustered into different subsets
according to the contributions of mutational signatures
and displayed as a hierarchically clustered heatmap. As
shown in Figure 4, common signatures arise from aging
(COSMIC signature 1), and the over-activity of APOBEC
cytidine deaminases (COSMIC signature 2 and 13) can
be identified through the heatmap. Furthermore, users
can observe that smoking-related signature (COSMIC
signature 4) plays key roles in the American population,
whereas the tobacco chewing-related signature (COSMIC
signature 29) is dominant in the Indian population. The
result also demonstrates that risk factors can vary between
countries and populations in head and neck cancer owing
to different life habits or mutagen exposures. In addition
to COSMIC signature 29, we noticed the prevalence of
signature 24 in the Indian population, which is known to be
correlated with aflatoxin exposure but was not emphasized
by a previous publication (13). Detailed instructions on
how to manipulate mSignatureDB to produce comparison
heatmaps can refer to this link http://tardis.cgu.edu.tw/
msignaturedb/msignaturedb help/example-of-use.html.

CONCLUSIONS

Here, we present a database for deciphering mutational sig-
natures in human cancers, mSignatureDB, which provides a
portal for exploring the full landscape of mutational signa-
tures present in 73 TCGA/ICGC cancer projects. As the se-
quencing of individual tumors becomes increasingly widely
acceptable in a clinical setting, mSignatureDB also pro-
vides the ability to determine the composition of each COS-
MIC signature in individual samples from user-uploaded
mutation profiles, thus making signature analysis more ac-
cessible to general users. mSignatureDB comprehensively
gathers the mutational signature profiles of individual can-
cers alongside their corresponding clinical features from
TCGA/ICGC cancer projects and has the potential ben-
efits to identify early diagnosis markers, depict potential
therapeutic targets and reveal new connections between
mutational processes and clinical features. To the best of
our knowledge, mSignatureDB is the only web application
available as the most comprehensive source for categorizing

http://tardis.cgu.edu.tw/msignaturedb/Download/
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Figure 4. Example of Use. We have applied our application to analyze two public datasets reporting somatic mutation catalogs on 106 cases of OSCC
from India and 510 cases of HNSC from America. Because mSignatureDB can determine the composition of COSMIC reference signatures in individual
tumor specimens, signature landscapes can be compared at the sample resolution. As shown in this figure, signatures of active mutational processes such as
aging (COSMIC signature 1) and over-activity of APOBEC enzymes (COSMIC signature 2 and 13) can be easily identified through the clustered heatmaps.
Signatures originated from external mutagen exposures and habits (e.g. smoking and tobacco chewing) between different populations can also be identified
using the visual analytic method.

known mutational signatures in cancer projects worldwide
at a resolution of an individual sample.
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