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The acoustic phase resonances 
and surface waves supported by a 
compound rigid grating
Joseph G. Beadle   , Timothy Starkey, Joseph A. Dockrey, J. Roy Sambles & Alastair P. Hibbins   

We study the radiative and bound acoustic modes supported by a rigid grating formed of three same-
depth, narrow grooves per unit cell. One of the grooves is twice the width of the other two, forming a 
‘compound’ grating. The structure supports so-called ‘phase’ resonances where the phase difference of 
the pressure field between the grooves on resonance varies by multiples of π. We explore the dispersion 
of these modes experimentally by monitoring the specularly reflected signal as a function of the angle 
of incidence. In addition, by near-field excitation, the dispersion of the non-radiative surface modes has 
been characterised. Our results are compared with the predictions of a finite element method model.

Patterning of surfaces to control sound attenuation has been a topic of many studies. These include structur-
ing surfaces to manipulate acoustic surface waves (ASWs)1–3 leading to increased transmission4, scattering from 
arrays of elastic scatterers to create sonic crystals to attenuate transmission5–7, as well as controlling the propa-
gation of the wave using labyrinthine structures8,9. Recently, a number of works10–13 have shown that enhanced 
acoustic transmission of sound through sub-wavelength perforations (holes or grooves) can be achieved. These 
studies are somewhat analogous to the extraordinary optical transmission found in the electromagnetic domain 
explained by coupled surface wave and evanescent diffraction phenomena14. Work by Skigin and coworkers11,15 
has shown that transmission of electromagnetic radiation through a so-called ‘compound grating’, comprising 
of more than one groove per unit cell, is significantly different to that for a simple groove grating. The addi-
tional complexity of the unit cell typically broadens the exisiting resonant mode (due to increased radiaitive and 
non-radiaitive losses), while a new, narrow (i.e., high-Q-factor) ‘phase’ resonant mode is observed. These phase 
resonances are characterised by the resonant acoustic fields in adjacent grooves varying by mulitples of π with 
strong field enhancement on resonance15.

Analogous behaviour in the acoustic domain was predicted by Wang et al.13 and then experimentally verified 
by Ward et al.16 who demonstrated phase resonances in compound-groove-gratings with different structure fac-
tors. Narrow resonant dips within the band of the broad transmission maxima were observed and attributed to 
evanescent diffractive coupling between adjacent cavities modes. More recently, Zhang et al.17 investigated the 
acoustic transmission for compound gratings comprising different square and triangular shaped elements; they 
reported some degree of control of the resonance frequencies.

In addition to transmission-type gratings, similar phase-resonance effects in reflection compound gratings 
have also been studied in the electromagnetic domain18–20. In a study by Fantino et al.18, a number of different 
metallic compound gratings were numerically investigated. For a transverse-magnetic-polarised incident beam, 
phase resonances were observed as maxima in the reflectivity spectrum of the surface, with strongly enhanced 
fields within the grooves. A similar phenomenon for reflection gratings has yet to be recorded in the acoustic 
domain.

In this work, we explore fully the dispersion of the acoustic surface modes supported by a compound grating 
with three grooves per unit cell of two different widths (all of the same depth), see Fig. 1. This configuration was 
chosen as it allows for near critical coupling when there is perfect destructive interference between the reflected 
field and the internal field - the radiative and internal losses from the surface are balanced allowing for maximum 
absorption on resonance21,22. To determine the mode dispersion in the radiative region we record the reflectivity 
of the sample as a function of the polar angle of incidence, θ. In addition, in order to characterise the surface 
mode dispersion in the non-radiative region, we probe the propagation of trapped sound across the surface via 
near-field excitation and detection. Both the radiative and non-radiative features are attributed to Acoustic 
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Surface Waves (ASWs), which are strongly dispersive in frequency-wavevector space, particularly on approach to 
1st Brillouin zone boundary ,
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 is the grating vector. Further the addition of additional grooves to 

the unit cell allows for surface modes to be supported beyond the first Brillouin zone16, which are scattered by 
integer multiples of kg back into the first Brillouin zone to become features in the reflected signal.

Using the two experimental methods previously described we determine the dispersion of both the lowest 
order radiative branches and the non-radiative acoustic surface mode. The results are compared to the predictions 
of a finite element method (FEM) model. To the authors knowledge, this is the first observation of ASWs on a 
compound grating.

Results and Discussion
Sound incident onto a flat rigid surface (i.e., acoustically-rigid, so no penetration of sound into the material 
is allowed) will have a reflectivity of unity. This will still be true if the sample is periodically structured, in the 
absence of loss and for frequencies below the onset of diffraction. However, this is not realistic because losses 
occur at a fluid-solid boundary due to the presence of thermal and viscous boundary layers23. Thermal losses arise 
because temperature gradients in the fluid irreversibly transfer heat into the walls. Viscous losses arise both in the 
bulk of the air but primarily in a thin boundary layer due to the no-slip condition at the wall causing a velocity 
gradient and thereby viscous dissipation. Associated with these viscous and thermal boundary layer effects are 
two boundary layer thicknesses23.

The reflectivity as a function of frequency is shown in Fig. 2(a). The rather broad and shallow mode at 15.5 kHz 
(C) corresponds to a resonance where all the fields in the three grooves in a unit cell are in-phase. The fundamen-
tal mode of the grooves is the quarter-wavelength (λ/4) condition plus an end correction. The dependence of the 
modes’ resonant frequencies on the angle of incidence is shown in Fig. 2(b): off-normal excitation also reveals 
a third mode (B) that cannot be excited at normal incidence, to which there is increased coupling strength with 
increasing angle of incidence (θ). Also of interest is the angle dependence of the resonance frequency of mode (A) 
that shows a decrease in frequency as the angle of incidence is increased.

From such data one obtains a mapping of much of the dispersion curve in the radiative region (i.e., for 
in-plane wavevector kx < 2πf/v, where f is frequency and v is the speed of sound) for the plane containing the 
grating wavevector kg. Fig. 3(a) shows the experimental data obtained for the reflectivity measurements demon-
strating the dispersion of the three modes, compared to the predictions of the reflectivity from a Finite Element 
Method (FEM) model24.

We also explored the excitation of the bound surface modes supported by the sample, i.e., the dispersion of 
the modes kx > 2πf/v, i.e., beyond the sound line. Fig. 4 demonstrates that the surface mode dispersion is close to 
being isotropic at the lowest studied frequencies, but becomes highly anisotropic as the frequency rises and the 
mode approaches the Brillouin zone boundaries.

From a composite of each of the isofrequency maps such as shown in Fig. 4, Fourier-transformed field meas-
urement in any direction in k-space can be extracted to yield a representation of the mode’s dispersion. This is 
shown for the plane containing the grating vector in Fig. 3(b), where the experimental data is the colour scale and 
the points are the eigenvalues predicted by the FEM modelling. Note here the weak modulation of the intensity of 
the experimental signal along the dispersion curve: this arises from the finite size of the sample defining a limiting 
k-space resolution.

With three grooves per unit cell there are three degrees of freedom available. This leads to three different 
eigenmodes, i.e., three resonant features in reflection. The first is the broad and shallow branch (C) for which the 
field in each of the three grooves has the same phase in any given unit cell. Its frequency is approximately given 
by its wavelength being four times the groove depth, d - the fundamental resonance of the groove. When cavities 
are excited on resonance, evanescent end-effects occur at the opening of each cavity. These near-fields couple the 
groove resonances together over the surface in the form of a wave. For an ASW mode within the first Brillouin 
zone (BZ) only one pressure antinode per unit cell is allowed. This mode can be excited in the case of a monograt-
ing because the ASWs wavelength (λx) approaches that of twice the grating wavelength (λg): with one resonator 

Figure 1.  Schematic of a unit cell used in the experiment, comprised of three grooves per period (λg = 19 mm) 
where the central groove is twice the width of the adjacent two. Here, wA = 1 mm, wB = 2 mm, l = d = 5 mm, and 
θ is the polar angle of incidence.
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Figure 2.  (a) Experimental reflectivity data for near-normal incidence (blue crosses) compared with the FEM 
model (solid line), model parameters are found in the Supplementary Material. (b) FEM model predictions of 
the reflectivity showing the reflectivity spectrum for different angles of incidences. The sharp feature at ~12 kHz 
for θ  = 30° corresponds to the onset of diffraction where the in-plane component of the incident radiation λ0× 
is comparable to λg. As this condition is met, radiation is diffracted into unwanted loss channels rather than 
coupling to the surface mode.

Figure 3.  (a) Radiative domain in blue - frequency of reflectivity minima from experimental measurements 
(symbols) compared with predictions of the reflected intensity from the FEM model (colour-scale). The 
broad and shallow mode C has also been labelled for completeness. (b) Non-radiative region in blue - Fourier 
transform of the spatial near-field maps (colour-scale) compared with the predictions of the surface wave 
eigenmodes from the FEM model (symbols). Inset: Predictions of the dispersion obtained from the FEM model 
across a broader range of frequencies. The surface eigenmodes are shown in red, the solid black lines represent 
the sound line and onset of diffraction, and the shaded area represents frequency below our measured range 
(i.e., only the unshaded region of wavevector-frequency space is depicted in the main part of this figure).
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per unit cell as the condition of one antinode per unit cell is satisfied. In the case of shorter ASW wavelengths (in 
the second BZ) two antinodes are required per unit cell with one being required over the rigid surface, this cannot 
occur. With the addition of an additional degree of freedom, i.e. a second groove per unit cell, the condition of 
two antinodes per unit cell may now be met. Then, by the process of first order diffraction this mode is observed 
in the radiative region of the first BZ. Extending the discussion to the case of the sample measured, with three res-
onators per unit cell a third mode existing within the third BZ can be excited. Hence, with the extra degree of free-
dom, ASWs with smaller wavelengths than λx = λg can now be excited as an eigenmode with three antinodes per 
unit cell is now available. Similar to the second mode, this mode is also scattered by diffraction into the radiative 
region of the first BZ. These modes can be seen in the inset of Fig. 3(b) as the two red lines in the radiative region.

The acoustic field configurations for modes A, B and C are represented in Fig. 5. As evidence of the previ-
ous discussions, notice that the ASW wavelength λx, matches the associated wavevector of the Brillouin zone 
boundary from which it was scattered; and note that mode C is a purely radiative mode and not confined to the 
surface. The relative pressure field in comparison to the nonresonant case, for modes A, B and C are 32.4, 21.7 
and 3.5 respectively. When a comparison is made between the absorption and the relative pressure field strength, 
it becomes apparent that as the pressure field within the grooves increases the amount of absorption, seen as a 
reduction in reflectivity in Fig. 2, also increases.

The increased field on resonance is similar to the case of transverse-magnetic light incident on a metallic 
compound grating, however, the difference is that in the electromagnetic case the feature of the phase resonance 
gives a maximum in the reflectivity while in the acoustic case a minimum is observed. This is due to the relative 
backgrounds in the two cases: for p-polarised light, the phase resonance features as a sharp maximum in a low 
background, because of 18. For acoustic waves, the resonance is a sharp minimum in a high background.

Figure 4.  Experimental equifrequency contours within the first Brillouin zone (in kx) for 12, 13, 14 and 15 kHz. 
There is no periodicity in y, but the ky axis is plotted on the same scale as kx.

Figure 5.  Pressure fields for phase resonances A (the central cavity fields being in antiphase with the outer two), 
B (fields in the outer two grooves being in antiphase, with the central one having zero amplitude), and C, the 
normal in-phase resonance. The scaling factors of the colour scale are 32.4, 21.7, and 3.5 respectively.
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From Fig. 3(a) it is apparent that mode B is not excited at normal incidence. This arises simply because the 
fields in the outer two cavities have to be in antiphase for this mode with the central cavity fields having zero 
amplitude at normal incidence. It is thus impossible to excite with a plane, normal incidence wave. Away from 
normal incidence there is a phase difference across a unit cell and this mode may now be excited. These phase 
resonances allow the possibility for developing narrow-band acoustic filters.

Note from Fig. 4 how the surface wave propagation becomes progressively more anisotropic as the frequency 
is increased. The equi-energy circle distorts first into an ellipse and then at frequencies above the first resonance 
of the system (at normal incidence) a band gap occurs where no mode is excitable in the x-direction and the 
equi-energy contour splits into curved lines. (The weaker features shown towards the centre of each image are 
modes scattered into the first BZ by first order diffraction, there are also reflections present due to the finite sam-
ple size). From these isofrequency contours the direction of the group velocity (vg) (determined by vg = ∇kω, ω 
being angular frequency) is obtained and if it has a region which has constant gradient, acoustic beaming occurs 
where a range of wavevectors have the same vg. An example of this effect in the frequency domain is shown in 
Fig. 6. Interestingly, for different frequencies the acoustic power is directed in different directions allowing for a 
frequency dependent directivity of acoustic power on the surface.

Figure 6.  Experimental data for the instantaneous pressure fields at 13 kHz, showing that the power flow is 
strongly confined in four directions.

Figure 7.  Schematic (not to scale) of the sample for the non-radiative experiment. The sample consists of 23 
units where the cavities extend the whole y-length of the sample. Here, an acoustic pulse is emited through a 
hole in the centre of the sample (black dot) and the wave diffracts and couples to a surface wave. A microphone 
is then raster-scanned near the surface within the red dashed square recording the evolution of the wave as a 
function of time for every position.
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Conclusions
In this study, a compound groove grating having three grooves per period which supports acoustic phase reso-
nances and acoustic surface modes has been modelled and the results verified experimentally, showing a sharp 
minimum in the reflectivity spectrum, giving the possibility of a frequency specific acoustic filter. The surface 
was also found to support acoustic surface modes whose dispersion has been obtained and which, for a range of 
frequencies, exhibit frequency dependent directional acoustic power beaming.

Method
Non-radiative experiment.  In order to measure experimentally the non-radiative regime of the dispersion 
diagram, we position a loudspeaker behind the grating with the tip of an attached hollow cone positioned with its 
narrow tip inside a small hole of radius 1 mm drilled through the centre of the sample, a simple diagram can be 
seen in Fig. 7. The diffracted sound couples via high wave-vector components to the surface mode on the struc-
tured side. A microphone with a needle probe with its tip about 0.5 mm from the grating is then raster-scanned 
over the structured face of the sample. For every microphone position, a pulse is emitted from the loundspeaker 
and subsequently detected by the microphone. By performing a temporal Fourier transform on the detected sig-
nal, the amplitude and phase is determined, hence obtaining a spatial field-map for each frequency component. A 
2D Fast Fourier Transform is then performed on each of the spatial field maps to create an iso-frequency k-space 
plot of the modes supported. A 400 mm by 400 mm scan area was chosen as this allows for sufficient resolution 
in k-space.

Radiative experiment.  In order to obtain the reflectivity from the grating in the radiative regime, a 
pulse-measurement technique in free space was used. A speaker is placed at the focus of a collimating mirror 
to provide a near-plane wave incident on the 450 mm–square sample, with a second collimating mirror used 
to re-focus the reflected signal onto the detecting microphone (Fig. 8). A Gaussian electrical pulse centred at 
12 kHz was fed into the loudspeaker to provide a broad range of frequencies. A number of repeat measurements 
are recorded in the time-domain, and subsequently averaged. The time domain signals are then Fast Fourier 
Transformed (FFT) and the resulting frequency domain response is normalised to that of an unpatterned, rigid 
plate. In order to avoid this direct transmission between source and receiver three separate methods were used. 
Firstly, for near normal incidence (θ = 0°), the direct signal was removed simply by time-gating as the time 
between the two signals (directed and reflected) was large enough that there was no overlap. Secondly, for small 
angles (θ < 50°) a metal plate was inserted vertically between the source and receiver which proved to be sufficient 
to remove the direct signal. Finally, for the largest angles (θ > 50°), no plate was required since the placement of 
the speaker and the receiver meant that extremely little/no direct signal was measured. By moving the source, 
detector, and mirrors, the reflectance for incident angles (with the incident wavevector lying in the x-z plane) 
from near normal incidence (θ = 0°) to approximately 60° was measured.

A typical set of data recorded for near-normal incidence (θ < . ° 0 1 ) is shown in Fig. 2(a): the strong minimum 
in reflectivity (A) is associated with the ‘phase-resonance’ mode25.
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