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Abstract

One of the most crucial elements for the long-term success of shared transportation sys-

tems (bikes, cars etc.) is their ubiquitous availability. To achieve this, and avoid having sta-

tions with no available vehicle, service operators rely on rebalancing. While different

operators have different approaches to this functionality, overall it requires a demand-supply

analysis of the various stations. While trip data can be used for this task, the existing meth-

ods in the literature only capture the observed demand and supply rates. However, the

excess demand rates (e.g., how many customers attempted to rent a bike from an empty

station) are not recorded in these data, but they are important for the in-depth understanding

of the systems’ demand patterns that ultimately can inform operations like rebalancing. In

this work we propose a method to estimate the excess demand and supply rates from trip

and station availability data. Key to our approach is identifying what we term as excess

demand pulse (EDP) in availability data as a signal for the existence of excess demand. We

then proceed to build a Skellam regression model that is able to predict the difference

between the total demand and supply at a given station during a specific time period. Our

experiments with real data further validate the accuracy of our proposed method.

Introduction

During the past few years, urban and transportation planners have come to realize that if we

want our cities to thrive and lead the way to a sustainable future, a turn to multimodal and

shared transportation is needed. This has led to the fast growth of shared transportation

options, with shared bike systems enjoying particularly wide adoption across the world [1].

The first generation of shared bike systems involves docks/stations where a commuter can rent

a bike from and return a bike to after a ride. The second wave of shared bike systems includes

dockless infrastructure that allows bikes to self-lock and hence, to be returned to (and picked

up from) any place in a city. However, despite the seemingly convenience dockless systems

offer, only 4% of all the trips in 2017 were made from dockless bikes [2]. While this number

might have increased during the last few years, cities are still reluctant for their wide adoption

due to a variety of reasons (e.g., littering of sidewalks, parks and other public spaces) [3].
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For docked shared bike systems, one of the largest operational expenses is associated with

rebalancing [4]. Rebalancing aims at redistributing bikes from stations with excess supply to sta-

tions with excess demand in order to assure (ubiquitous) availability for customers. The latter is

very important for customer satisfaction and retention, and of course, for the survival of the sys-

tems themselves and their associated societal and environmental benefits. Typically the operator

utilizes one or more trucks to transfer bicycles from stations with high supply and low demand

(e.g., full stations) to ones with low supply and high demand (e.g., empty stations). This happens

usually in a reactive fashion, i.e., availability levels are monitored across the stations and once it

drops below a threshold rebalancing is triggered. Nevertheless, there is a proactive element as

well, since operators analyze historical trip data to identify the demand and supply of each sta-

tion for different days and times. However, simply counting trips from and to a station paints

only part of the demand/supply rates, since zero trips from a station, do not necessarily mean

there is no demand for bikes. If there are no bikes available, any customer attempting to make a

trip will not be able to rent a bike, thus, contributing to the excess demand of the system. This

information is not captured when looking purely at the number of trips [5–10]. Similarly, when

it comes to supply of bikes, a full station will result in bikes not being able to be returned to this

station [11–14]. However, this does not mean that the supply rate is zero.

In this study we provide an empirical approach for estimating the excess demand and sup-
ply levels in a shared transportation system borrowing ideas from the parking literature—and

in particular research on estimating the percentage of traffic looking for a parking spot [15].

As we will elaborate in Section “Excess demand estimation”, this estimation requires addi-

tional data from trip-logs, namely, the number of bikes and docks available at the bike station.

At a high-level, for computing the excess demand (similarly for the excess supply, i.e., a station

is full so a customer cannot return her currently rented bike), we focus on periods with 0 avail-

able bikes (full stations respectively). Then if a bike is returned at time t1 and the first rental

happens at time t2, this time interval [t1, t2] is very important for estimating the bike excess

demand, which is part of the total bike demand (i.e., the trips observed from the data, and the

trips that were not possible to be completed due to lack of bikes). A similar approach can be

used for the supply side, i.e., for the cases where a user wants to return a bike but the station is

full and hence, she cannot store it at the dock.

Consequently, we show that even though the total demand (or total supply) can be pre-

dicted at an acceptable level through a Poisson regression, the correlations between the supply

and demand side—each of which modeled through an independent Poisson distribution—are

high enough that leads to biased results when using them for predicting the net total demand

(i.e., the difference between the total demand and supply). The net total demand is our target

of prediction since it provides direct insights for the bike operator to decide the number of

bikes to be rebalanced. To overcome this challenge we further develop a Skellam regression

model that directly models the net total demand in a station, and, thus, accounting for this

correlation.

In summary, the contributions of our study are twofold:

• We introduce an approach for estimating the excess demand of bike sharing systems using

high-level ideas from queuing theory. Key to our approach is identifying temporal

segments—which we term excess demand pulse (EDP)—in the bike availability data, that

include changes in the availability from zero (i.e., no bikes at the dock) to non-zero (i.e.,

someone returned a bike). After introducing the theoretical underpinnings of our method,

we verify through simulations its ability to estimate the excess demand present in the system.

We consequently apply our approach on data obtained from a real bike sharing system, Chi-

cago’s Divvy, to estimate the excess demand present in the system.
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• Using the estimated excess demand, we learn a Skellam regression model through maximum

likelihood estimation for predicting the net total demand, which shows advantages over

other alternative models, both in terms of predictive performance, as well as, interpretability.

Moreover, our Skellam regression model, as a generalized linear model, allows us to get a

better estimation of the uncertainty of our prediction, since we essentially obtain the whole

probability distribution of our dependent variable.

Related literature

There have been several studies on demand prediction in bike sharing systems, i.e., the

expected number of bikes to be rented and returned at each station. Most of them only con-

sider the observed demand, i.e., the demand reflected in the trip data logged by the system [5–

10]. However, the total demand includes also trips that were never realized due to empty

docks. To reiterate, we refer to this part of the total demand as excess demand. Failing to

involve the excess demand will essentially provide a model that only captures the observed

demand of the system, essentially treating any period with zero observed rentals (or returns

respectively) as periods of zero demand, which is not true in general.

In a slightly different, but relevant, problem formulation some studies focus on bike avail-

ability prediction, i.e, the expected number of bikes available for rental at a station [6, 7, 16–

19]. A variety of specifications have been used for the prediction models, including auto-

regressive moving average, K Nearest Neighbors, random forest, gradient boosted tree, and

neural networks. Hierarchical predictions [9, 20] have also been developed, where stations are

firstly clustered into relevant groups (e.g., geographically close) and then, predictions happen

at the cluster level.

Some of these studies, such as the one from Schlote et al. [16] point out that a popular sta-

tion may run out of bike quickly if the demand is so high, while others [8] identify “over-

demand” stations as those that are full or empty for more than 10 minutes. Then they propose

algorithms to classify a station as an “over-demand” one. However, none of these studies

attempts to estimate the volume of excess demand.

However, there are studies that attempt to estimate the volume of excess demand using a

simple method based on the duration for a station being empty [21–23]. These methods

assume that excess demand exists every time there are zero bikes available for rental. They fur-

ther consider this excess demand to be equal to the observed demand in adjacent time periods.

It should be evident that neither of these assumptions are very realistic. A station can be empty

and no user is interested in renting a bike from that station, while the excess demand does not

have to be equal to the observed demand in adjacent times.

While several distributions have been used to model the bike arrivals (and departures)

within a bike sharing, including negative binomial [24], Weibull [25–27] and Poisson [28–33],

the latter is the most common choice for this task. Gast et al. [19] show through a Kolmogo-

rov-Smirnov test [34] that the trips in the Paris bike sharing system follow a Poisson distribu-

tion. In the following Section we use a similar approach to show that the trips in our dataset fit

a Poisson distribution as well.

Materials and methods

Excess demand estimation

As aforementioned, excess demand is not captured in the recorded consumption of a product,

since it appears when there is zero supply. Hence, it is very challenging to estimate it. In this

section, borrowing ideas from queuing theory, we will introduce a way to estimate the excess
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demand. We further simulate the bike rental and return process to show the ability of the pro-

posed approach to estimate the excess demand in a bike sharing system. Then, we apply our

approach on data obtained from a real bike sharing system, Chicago’s Divvy, to estimate the

excess demand present in the system. Notations used in describing our approaches and models

through the paper are shown in Table 1.

At a bike station, we generally have two types of event flows occurring as illustrated in Fig

1. One flow represents the bike departure (rental) events, with the number of departures per

time unit following a Poisson distribution with intensity μ [19]. This also means that the inter-

departure time intervals follow exponential distribution with an average of 1

m
. The other flow

represents the bike arrival (return) events, with the number of arrivals per time unit following

Poisson distribution with intensity λ (and similarly the inter-arrival time intervals follow an

exponential distribution with average 1

l
). Under the assumption of the flows being indepen-

dent, we can consider their union as a single flow with mixed types of events [35]. In this

mixed flow, the number of events per time unit follows a Poisson distribution with intensity (λ
+ μ), while the inter-event time intervals follow an exponential distribution with average 1

lþm
.

Let us assume that the number of available bikes at a station is a. Fig 2 shows a segment of

the bike availability curve, where a changes from 0 to 1 after a bike arrival at t1, and goes back

to 0 after a rental at t2. This pattern is central to our estimation of bike excess demand rate

(denoted with μe), and we refer to this curve pattern as excess demand pulse (EDP). We also

define τf = t2 − t1 as EDP length. During the interval (0, t1), the bike availability is constantly 0,

Table 1. A list of notations used through the paper.

Symbol Description

μ actual bike departure rate by total demand

m̂ estimated bike departure rate by total demand

μe actual bike departure rate by excess demand

m̂e estimated bike departure rate by excess demand

λ actual bike arrival rate by total demand

l̂ estimated bike arrival rate by total demand

λe actual bike arrival rate by excess demand

l̂e
estimated bike arrival rate by excess demand

a number of available bikes

τf EDP length

τm the average of multiple τf
τs the average of inter-supply intervals

tend the end time stamp of the availability curve

ta, tb, tc, td, t1, t2, t3, t4 specific time stamps of the availability curve

Nμ total bike demand volume

Nλ total dock demand volume

Z net total demand volume

Nmo
observed bike demand volume

Nme
excess bike demand volume

Nlo
observed dock demand volume

Nle
excess dock demand volume

lme duration length for bike excess demand in a 30-minute interval

lle duration length for dock excess demand in a 30-minute interval

https://doi.org/10.1371/journal.pone.0252894.t001
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which can be interpreted by someone that there are no events (rentals or returns) happening

during that time. However, this is not necessarily true. This constant 0 availability can indeed

be due to no events happening during this interval, or due to failed bike rentals, that is, a cus-

tomer tried to rent a bike but none was available. The pattern captured by the EDP serves as an

important signal for the possible presence of excess demand and its degree. Intuitively, the

presence of significant excess demand leads to situations where any supply that becomes avail-

able is consumed shortly thereafter. At the situation visualized in Fig 2 when the single bike

arrives at t1, it is quickly consumed (rented) at time t2. In contrast, if we consider the scenario

presented in Fig 3, a bike arrives at ta but it is not consumed quickly. Instead, another bike arri-

ves at tb before a rental. Therefore, any bike demand in this case can be captured well from

rental logs, and it is not excess. In other words, the pattern in Fig 3 does not provide evidence

for the existence of excess demand.

Using these observations let us see how we can estimate μe through the bike availability

curves. Fig 4 depicts a segment of the bike availability curve. Recall that the mixture of arrival

and departure flows follows a Poisson distribution with intensity (λ + μ). That is, the inter-

event intervals of this mixture follow exponential distribution with intensity 1

lþm
. If we observe

an arrival event followed by departure event, such observation is caused by mixing arrival and

departure flows. Thus, in such observation, the interval from the arrival to the departure event

Fig 1. Bike departure and arrival event flows at a bike station.

https://doi.org/10.1371/journal.pone.0252894.g001

Fig 2. This bike availability curve indicates possible excess demand for t 2 (0, t1).

https://doi.org/10.1371/journal.pone.0252894.g002
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follows an exponential distribution with intensity 1

lþm
. Thus, τf = t2 − t1 is a sample from an

exponential distribution with average 1

lþm
. During a large observation period we will observe τF

from multiple EDPs, denoting their average value as τm. By expectation, we should get

tm �
1

lþm
. That is, the estimated intensity of the mixed flow is l̂ þ m̂ ¼ 1

tm
.

We can also calculate the estimated arrival rate l̂ from the data. In this paper, we focus on

bike sharing systems with docks, so while there is a possibility for excess supply in a bike sta-

tion—e.g., a user tries to return a bike to a full dock—this is not an issue in the presence of

bike excess demand. In general, there cannot be bike excess demand and excess supply at the

same station during the same time. Therefore, each bike supply (i.e., bike arrival) event is suc-

cessfully reflected in the bike availability curve when there is bike excess demand present. To

reiterate, the inter-supply (i.e., inter-arrival) intervals themselves follow exponential distribu-

tion with intensity 1

l
. By obtaining all inter-arrival intervals from the data we can estimate their

average denoted as τs. For example, in the segment in Fig 4, we have arrivals at ta, tb, t1, result-

ing in ts ¼
ðtb � taÞþðt1 � tbÞ

2
. By expectation, we should get ts �

1

l
, i.e., the estimated arrival rate is

l̂ ¼ 1

ts
.

Combining the two results above, the excess demand rate μe can now be estimated as

m̂e ¼ ðl̂ þ m̂Þ � l̂ ¼
1

tm
� 1

ts
. However, it is possible that 1

tm
< 1

ts
. This happens when the inter-

arrival intervals are very short, i.e., departure rate is relatively low compared with arrival rate.

However, such low departure demand indicates there is not really any excess bike rental

demand, or in other words the total demand can be reflected by the rentals observed. Finally,

Fig 3. This bike availability curve indicates no excess demand for t 2 (0, ta).

https://doi.org/10.1371/journal.pone.0252894.g003

Fig 4. A segment of bike availability curve to illustrate the estimation of excess demand.

https://doi.org/10.1371/journal.pone.0252894.g004
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combining all of the above observations, the estimated excess demand rate is given by:

m̂e ¼ max
1

tm
�

1

ts
; 0

� �

ð1Þ

Evaluation on synthetic data. Since we do not have the ground truth for the excess

demand in real data (i.e., people that attempted to rent a bike but the station was empty), we

rely on simulations to evaluate whether Eq (1) is able to accurately estimate μe. Our simulator

begins with 0 available bikes at time t = 0 and ends at tend. The simulator operates as follows:

• Time to next event: We sample an exponential distribution with average 1

lþm
, to generate a

random interval τr that represents the time duration until the next event (either an arrival or

a departure).

• Event type: We next have to decide the type of event happening. For this we sample a num-

ber re from a uniform distribution between 0 and 1. If re < l

lþm
we label the next event as an

arrival, otherwise it is a departure. We also update the count of available bikes a.

• Excess demand: If a = 0, i.e., there are no available bikes, the next event cannot be a depar-

ture. Every time (when a = 0) the next event is simulated as a departure, we mark it as a failed

bike departure. This will allow us to simulate the ground truth for the excess demand.

We simulate 1,000 time points (i.e., tend = 1000 hours), while we use μ = 3 bikes/hour, λ = 1

bikes/hour. By setting μ> λ, we can create several situations where the bike rental demand

cannot be fulfilled hence generating excess demand. Finally, we repeat the simulation 400

times.

In each simulation we collect the following information:

• The average τs of all the inter-arrival intervals.

• The average τm of all EDP lengths (i.e., t2 − t1 in Fig 4).

• We estimate the excess demand rate m̂e using Eq (1).

In our setting, since we assume that the demand is constant at 3 bikes/hour, the excess

demand is also 3 bikes/hour. Simply put, even if we do not observe any departure for a pro-

longed period of time in our simulation when a = 0, there will be a constant demand of 3

bikes/hour during these intervals. Fig 5 depicts the distribution of m̂e from each of our simula-

tions. As we can see the distribution is centered around 3 bikes/hour, with an average of 3.014

bikes/hour (95% CI [2.66, 3.37]). Simply put, the proposed approach is able to estimate the

true excess demand in our simulations, showcasing its appropriateness for the task at hand.

Excess demand in real data. Next we are interested in applying the aforementioned

approach of excess demand estimation to data from a bike sharing operator. We use data from

Divvy, the bike sharing system in Chicago, and in particular we collect:

• Historical bike trip records recorded on the system [36]. A bike trip record is a tuple includ-

ing the following information: <start station ID, start station name,
end station ID, end station name, start time stamp, end time
stamp>.

• Historical bike station status data using the Chicago Data Portal API [37]. A record of station

status is a tuple of the following form: <time stamp, station ID, station
name, station coordinate, number of available bikes, number of
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free docks, number of docks occupied by bikes>. The status of each sta-

tion is recorded every 10 minutes.

• Weather data from Openweathermap [38]. Each record is a tuple including the following

information: <time stamp, temperature, humidity, pressure,
descriptive weather conditions>.

Distribution of trips in Chicago’s Divvy. Through our analysis above we have assumed

that the trips’ departures and arrivals follow a Poisson distribution. We now statistically exam-

ine the validity of this assumption. More specifically, for a given station j and a given time

period t (e.g., 9–9:30am), we first focus on the number of departure trips nj,t. By daily collect-

ing observations for nj,t during a given quarter (in order to avoid seasonality), we obtain a

sequence {nj,t}. We calculate the average n̂ of this sequence. We consequently repeatedly sam-

ple a Poisson distribution with mean n̂ to generate B = 500 sequences of the same length as the

observed one denoted as {rj,t}. We then compare the distribution of the observed departures

{nj,t} and the Poisson sampled ones {rj,t} using two-sample K-S test [34]. Repeating this process

for every station j we obtain the average p-value p̂j for the null hypothesis that the observed

sequence follows a Poisson distribution. Fig 6 (left) visualizes the distribution of these p-values

for all the stations in the Divvy system. As we can see they are all larger than 0.2, which means

that the test cannot reject the hypothesis that the observed data follow a Poisson distribution.

We repeat the same process for the arrival events and Fig 6 (right) presents the results, where

Fig 5. Histogram of estimated excess demand rate.

https://doi.org/10.1371/journal.pone.0252894.g005
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we can see that again we cannot reject the null hypothesis of the arrival data following a Pois-

son distribution.

These results verify that we cannot reject the hypothesis that the observed bike demand and

supply in the Divvy system follow a Poisson distribution. However, we also make the assump-

tion that the excess demands follow a Poisson distribution (possibly with a different rate).

Given the sparsity of the excess demand data for each station and time period, the K-S test

potentially fails to reject the null hypothesis due to reduced statistical power. However, it is a

very reasonable assumption that the excess demand/supply will also be following the same dis-

tribution (albeit with different parameters) as the observed demand/supply.

Estimating excess demand of bikes in Chicago’s Divvy. Following the aforementioned

approach of excess demand estimation, we can calculate the excess demand observed on the

system. While the bike availability curves are just like the ones we simulated, there is one

important difference. The excess demand rate in the real environment is not constant over

time but it rather changes. For example, we expect the excess demand rate in the morning

(rush hour) is higher than that in the late night. There are several factors that can lead to this

temporal variation, ranging from people’s schedule (e.g., during rush hours the excess demand

is expected to be higher) to weather conditions that change during the day. This temporal

dependency does not allow us to use all τf intervals in the data to estimate a single, constant,

excess demand. We will need to only use limited information, localized in time, to estimate the

excess demand rate during a specific time interval.

In particular, we adjust the aforementioned approach in this section as follows. Here we

still use Fig 4 to describe the adjusted approach. The EDP in the interval (t1, t2) is able to

inform us about the excess demand occurring in the immediately preceding interval (td, t1).

We can use Eq (1) to calculate excess demand rate in this interval. However, τf = t2 − t1 is the

only EDP length that we can use to calculate τm given the time-varying nature. Furthermore,

we need to calculate the average inter-supply interval τs, which again needs to be temporally

localized due to its time varying nature. For the setting in Fig 4 we have arrival events at ta, tb
and t1. Thus, we use inter-arrival intervals, i.e., (ta, tb) and (tb, t1), to obtain ts ¼

ðtb � taÞþðt1 � tbÞ
2

.

Finally, we calculate m̂e of interval (td, t1) using Eq (1).

The single EDP length aforementioned may cause the calculated excess demand rate to be

extreme. For instance, if the bike was rented almost immediately after it was returned, then the

excess demand rate would be calculated practically as infinite. While we could eliminate such

observations—since most probably correspond to users that return the bike and re-rent it

Fig 6. Average p-values from the K-S test for all stations for departures (left) and arrivals (right). The K-S test cannot reject the hypothesis

that the observed data follow a Poisson distribution.

https://doi.org/10.1371/journal.pone.0252894.g006
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immediately just for time-limit purposes imposed by the operator—it is not clear what is the

time threshold as a good standard to eliminate such observations (i.e., such extremely short

EDP lengths). To avoid having to choose an arbitrary cutoff, we make use of the Bayesian aver-

age [39]. The Bayesian average is a weighted average between (i) the estimate obtained from

the sample we have for the quantity of interest, and (ii) a prior belief for this estimate. The

weights are the sizes of the samples respectively (for the prior it can be a sample size that is

considered stable). As with any Bayesian analysis, the prior can be purely subjective, or unin-

formative etc., but it can also be calculated by data. In our case, we can focus on a period of

time around the time interval of interest and estimate the excess demand for the same periods

over a week. If our measurement of the interval of interest was an extreme outlier, then the

prior will shrink the final estimate. For example, let us assume that we want to calculate the

excess demand rate at 9:30–10:00am on a given day, which is referred to as μ930. First, using Eq

(1) we calculate the excess demand rates of 9:30–10:00am (interval of interest), and 9:00–

9:30am, 10:00–10:30am (periods near interval of interest) of the given day. This will give us 3

observations and an observed average μobs. Then using Eq (1) we calculate the excess demand

rates of 9:00–9:30am, 9:30–10:00am, and 10:00–10:30am every day since 6 days before the

given day. This will essentially give us 18 observations and an estimated prior average μprior.
Combining these with the Bayesian average we will get our final estimate for μ930 as:

m̂930 ¼
3 � mobs þ 18 � mprior

21
ð2Þ

Of course, the choice of prior can be different, but the idea is that using this approach we

can smooth extreme cases in a principled way. In the “S1 Text”, we further discuss how we pro-

cessed instances that do not follow exactly the shape of EDP discussed here but appear infre-

quently in the data (e.g., when multiple bikes simultaneously arrive at a station as a result of

rebalancing from the operator).

Estimating excess demand of docks in Divvy. Chicago bike sharing system does not

allow for self-docking [11, 12]. Thus, if a bike is returned and the dock is full, there is no way

to return it, leading to excess demand for the dock. To calculate the excess demand of docks,

we can still use the method used to estimate the excess demand for bikes, but we need to make

the following adjustments:

• The availability curve now represents dock availability (i.e., how many racks at the station

are free), rather than bike availability (i.e., how many bikes are available at the station for

renting).

• 0 dock availability means that each rack at the station is occupied by a bike.

• The EDP starts with a bike departure (from a full station) and quickly ends with a bike

arrival. This allows us to capture how quickly the rack is being utilized again, thus, capturing,

the excess demand for docks (which again is time-varying).

• τf still denotes EDP length (based on the definitions above), while τm still denotes average

value of τf.

• τs still denotes the average value of inter-supply intervals, but to reiterate, based on the defi-

nitions above, in this case a supply is a bike departure. So specifically, τs means the average

value of inter-departure intervals.
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• We use λe to denote excess demand rate of docks, which is formally defined in Eq (3):

l̂e ¼ max
1

tm
�

1

ts
; 0

� �

ð3Þ

Excess demand in different stations. As one might expect, the excess demand rates differ

among different stations. The maps in Figs 7 and 8 illustrate the sum of the excess demand for

each station for bikes and docks respectively. As we can see, stations closer to the downtown

area have higher excess demand rate. We further illustrate in the inset figures the weekly pat-

terns of the excess demand in 30-minute periods for two representative stations. As we can see

these stations exhibit very different patterns in terms of levels of excess demands (both for

bikes and docks). However, the relative spikes in each station appear to be similar to an extent.

Furthermore, when focusing on a specific station, there seems to be a temporal shift between

the excess demand for bikes and docks.

Excess demand and sporting events. In order to provide some context for the excess

demand observed at the system, we examined the estimated excess demand near the Wrigley

Field during game days. For example, at 1:20pm on July 8, 2018, there was a baseball game in

Wrigley Field between the Cubs and the Reds [41]. There is a Divvy station only 130 meters

away from Wrigley Field, which we have also marked in Fig 7. Based on our calculations, this

station exhibited excess demand during particular time periods on that day. In particular,

between 12:30pm and 2pm there was an average excess dock demand of more than 3 docks/30

minutes. This is possibly due to fans riding bikes to Wrigley Field, leading to non-empty

docks. Furthermore, between 4pm and 5pm there was an average bike excess demand of 2.36

Fig 7. Cumulative bike excess demand rate for different stations. Reprinted from [40] under a CC BY license, with

permission from OpenStreetMap, original copyright 2021.

https://doi.org/10.1371/journal.pone.0252894.g007
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bikes/30 minutes, which is possibly due to several fans making their way out of the stadium as

the game was coming to an end.

Demand prediction models

The data processing described until now can facilitate a post-hoc, descriptive, analysis of the

historical excess demand rates in a shared bike system. However, it is also important to explore

the ability to perform predictions for the excess demand conditioned on various external vari-

ables. This can facilitate logistics operations, such as, rebalancing, fleet updates, etc. We define

the following:

• Total bike demand volume Nμ: Number of rented bikes in a 30-minute time interval of inter-

est. This includes both bikes actually rented and bikes attempted to be rented but there was

no availability.

• Total dock demand volume Nλ: Number of returned bikes in a 30-minute time interval of

interest. Again this includes both bikes actually returned, as well as, bikes attempted to be

returned to a full station.

• Net total demand volume Z = Nμ − Nλ: Difference between total bike demand volume and

total dock demand volume in the same 30-minute time interval of interest.

In this section, we develop a predictive model for the net total demand volume at a station

during a 30-minutes interval; i.e., build a predictive model for Z during a specific time interval.

We choose Z as our dependent variable since it provides direct insights for the bike operator to

decide the number of bikes to be rebalanced. Therefore, we need to estimate the bike and dock

Fig 8. Cumulative dock excess demand rate for different stations. Reprinted from [40] under a CC BY license, with

permission from OpenStreetMap, original copyright 2021.

https://doi.org/10.1371/journal.pone.0252894.g008
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demand volumes during each 30-minute period in our data. However, it is important to note

that these total demand volumes, include both the observed from the trip logs demand, as well

as the excess demand that is not directly captured in these data. In particular, we perform the

following steps for each 30-minute interval in our data:

• Calculate observed demand volumes: We obtain the number of observed departures, which

is equal to the observed bike demand volume Nmo
during the interval of interest, as well as,

the number of observed arrivals, which is equal to the observed dock demand volume Nlo

for the same interval.

• Calculate the excess demand rate: As per the discussion in the previous section, we also

identify EDPs from bike and dock availability to calculate bike and dock excess demand

rates μe and λe respectively.

• Convert rate to volume: If a time duration with the existence of excess demand (i.e., a dura-

tion with 0 availability) is located inside our 30-minute interval of interest, we denote the

length of that duration for bike, dock excess demand as lme , lle , respectively. Then, we convert

bike and dock excess demand rate to bike (Nme
) and dock (Nle

) excess demand volume by

multiplying with lme , lle :

Nme
¼ me � lme

Nle
¼ le � lle

ð4Þ

Using the above, we finally calculate Nμ, Nλ, Z as:

Nm ¼ Nmo
þ Nme

Nl ¼ Nlo
þ Nle

Z ¼ Nm � Nl

ð5Þ

Following the above process, we are able to obtain the net total demand volumes in the

Divvy system for each 30-minute interval during the 2018 year.

To build our prediction model for the net total demand volume, we consider a set of vari-

ables that are expected to be correlated with the demand for bikes and docks. More specifically,

we use the independent variables listed in Table 2.

Each data record used to build our model describes a 30-minute interval of observations.

Given that the weather data are only available on the top of the hour, we interpolate them for

the half hour interval. Having identified the covariates to use in our model, we start by explor-

ing two generalized linear models, namely, Poisson regression and Skellam regression. With

the first approach, we model the total demand volumes for the bike and dock demand inde-

pendently, while with the second approach we model directly their difference, i.e., the net total

demand Z. We also explore and evaluate the predictive performance of a feed forward neural

network and XGBoost on the same set of features.

Poisson regression. To estimate Z, an intuitive approach would be to predict the total

bike departures Nμ and bike arrivals Nλ, and then calculate Z = Nμ − Nλ. Bike departures and

arrivals have been widely modeled as Poisson flows [19, 28–33], so a Poisson regression is an

intuitive candidate model. A Poisson regression essentially models the expected value of the
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dependent variable through a linear combination of a set of independent variables X as:

lY ¼ eaþðb�XÞ ð6Þ

The parameters α and b are obtained through maximum likelihood estimation. We can

also estimate the distribution for the dependent variable Y as:

pðY ¼ kjX; b; aÞ ¼
ek�ðaþðb�XÞÞ

k!
� e� eaþðb�XÞ ð7Þ

In our case, we have two processes that we need to model, namely the bike demand and the

dock demand. Therefore, we learn two separate regression models using the covariates

described above. For the rest of the paper, we will refer to this model as the “Two-Poisson

regression” model.

Skellam regression. The Two-Poisson regression model assumes that the two processes—

rentals and returns—are independent and hence, we can model them separately. However,

this is not necessarily the case (The correlation between total bike demand volume Nμ and

total dock demand volume Nλ of a station can be up to 0.885), and in these situations the esti-

mations will be biased [42, 43]. However, we can directly model variable Z through a Skellam

distribution since it represents the difference between two Poisson distributions [44]. In fact, if

(X, Y) * BP(λ1, λ2, λ3), where λ3 captures the covariance between X and Y, then their differ-

ence Z = X − Y follows the Skellam distribution:

PðzÞ ¼ e� ðl1þl2Þ �
l1

l2

� �z=2

� Izð2
ffiffiffiffiffiffiffiffiffi
l1l2

p
Þ ð8Þ

where Iz(x) is the modified Bessel function. What we can observe is that the distribution does

not depend on the covariance (λ3) of the two Poisson distributions [44].

Therefore we can model the net total demand Z through a Skellam regression. In particular:

Z � SkellamðNm;NlÞ

ln ðNmÞ ¼ b1 � X

ln ðNlÞ ¼ b2 � X

ð9Þ

where X denotes independent variables. b1 and b2 denote the coefficients to be learnt. We fit

Table 2. Independent variable list. The first three variables are numerical, and the remaining are categorical.

Name Description

temperature temperature (unit: Kelvins)

cloud percentage percentage of clouds in the sky

wind speed wind speed (unit: meter/sec)

day of a week day index of a week: Mon—Sun

interval index 30-minute interval index of a day (e.g., 6:00—6:30, 6:30—7:00 etc.)

holiday indicator binary indicator of whether the record falls in weekend or federal holidays (1) or not (0)

cloud indicator binary indicator of the weather being “cloud” (1) or not (0)

rain indicator binary indicator of the weather being “rain” (1) or not (0)

mist indicator binary indicator of the weather being “mist” (1) or not (0)

snow indicator binary indicator of the weather being “snow” (1) or not (0)

thunderstorm indicator binary indicator of the weather being “thunderstorm” (1) or not (0)

https://doi.org/10.1371/journal.pone.0252894.t002
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the model using Maximum Likelihood Estimation. Implementation source code can be found

at https://github.com/xinliupitt/skellam_regression.

Results

In this section we will present our evaluation results for predicting the net total demand. We

will evaluate the predictive performance across two dimensions:

• Peak—vs—non-peak hour predictions

• Training based on observed—vs—total demand

Specifically, for the latter, we are interested in quantifying the predictive gains achieved by

considering the excess bike and dock demand, and not only using recorded bike rentals and

returns.

Peak and non-peak hours

Typically “peak-hours” for a transportation system include weekdays morning (7am-9:30am)

and evening commute (4pm-6:30pm). However, for a bike sharing system there is also season-

ality, especially during the summer months [45]. Our data also support this seasonality. In par-

ticular, the net total demand during peak hours in the summer months is approximately 6

times higher as compared to that during non-peak hours of the year. For this reason, our

results for peak hours below will be focused on the summer months. Different peak hours also

have different patterns across seasons. Given the imbalance between the records for the peak

hours per season and non-peak hours (peak hours per season cover a little less than 15% of the

observations), a single model would be overwhelmed by the latter and will not able to identify

the peak hour patterns in different seasons. Hence, we build separate models for different time

periods. In particular, we learn a single model for non-peak hours, while we build two separate

peak hour models (one for the morning and one for the evening peak hours). Predicting the

net total demand for (particularly) the peak-hour periods is very important for the bike share

system operator for various management operations, such as conduct an effective rebalancing.

For learning each model, we split the data from all 300 stations and use 80% of the them to

train the model, 10% as the validation set to optimize the regularization shrinking parameter,

and the remaining 10% for out-of-sample evaluation. All models use L1 regularization, while

we use the mean squared error (MSE) as our loss. The Skellam model training process follows

the regression training setup in “S2 Text”.

Baseline models. We compare our proposed modeling (Skellam regression) with the fol-

lowing four baselines: (i) two independent Poisson models (Section “Poisson regression”), (ii)

a feed forward neural network, (iii) XGBoost, (iv) constant prediction. They are referred to as

“Two-Poisson”, “Neural”, “XGBoost”, “Constant”, respectively in Table 3. For the models

Table 3. MSE of different time periods.

Model type Excess All records Excess All records Excess All records

(7–9:30) (7–9:30) (16–18:30) (16–18:30) (non-peak) (non-peak)

Skellam 36.2 6.4 36.4 10.3 42.6 2.7

Two-Poisson 37.6 6.7 37.2 10.6 45.3 2.8

Neural 40.1 6.8 39.6 10.8 43.1 2.8

XGBoost 36.3 9.3 43.1 16.2 40.2 3.4

Constant 44.6 8.8 68.2 16.7 67.0 3.1

https://doi.org/10.1371/journal.pone.0252894.t003
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except constant prediction, we apply L1 regularization and use the validation set to optimize

the shrinking parameter. In particular, the “Two-Poisson” model follows the regression train-

ing setup in “S2 Text”. For the neural network we use 5 hidden layers, 32 units per layer and a

batch size of 32 for training. For XGBoost, we set the number of estimators to 10,000. For the

constant prediction, we use the average net total demand existing in the training set as our pre-

diction for each out-of-sample record.

Table 3 presents the MSE on the test set for two peak hours periods (in the columns marked

with “7-9:30”, “16-18:30”) as well as the non-peak hours (in the columns marked with “non-

peak”). For each period, we present the MSE over all the records in the test set (in Table 3 col-

umns marked with “All Records”). In the test set, there are some records with non-zero excess

demand; that is, when calculating the ground truth Z of those records, either Nme
or Nle

is

non-zero. To understand better any gains existing in predictions, we also specifically present

the MSE of those records (in Table 3 this corresponds to the columns marked with “Excess”).

As aforementioned these instances are very important for the bike sharing system operator,

since these are the situations where operations such as rebalancing are crucial. Note that the

records with non-zero excess demand occupies 10% of the dataset for peak hours, and 2% for

non-peak hours. For two peak-hour periods, as we can observe, the Skellam regression exhibits

the lowest error among all the models examined. The benefits are even larger, in situations

where the excess demand is non-zero. For non-peak hours, as we can see, Skellam exhibits

only slight benefits over the two-Poisson model and the neural network. This could be attrib-

uted to the fact that during non-peak hours, there is an overall low demand for the bike sharing

system, and hence, the two-Poisson and neural network models can capture this signal. Finally,

XGBoost seems to perform slightly better than Skellam regression for records with non-zero

excess demand. However, these records only occupy 2% of the dataset for non-peak hours

(these could represent situations where there are special events—e.g., summer street fairs—

that boost demand during non-peak hours).

Apart from its performance in terms of MSE, Skellam regression has two additional advan-

tages over the alternative models considered. First, the Skellam regression as a generalized lin-

ear model is interpretable. This is particularly important from an operator’s perspective, since

it can lead to actionable insights. For example, in a model built for a station during non-peak

hours, for the independent variable “temperature” we obtain two coefficients: b1,temp = 6.57 for

bike demand and b2,temp = 6.90 for dock demand (Eq (9)). These coefficients indicate that

higher temperature is correlated with more people renting bikes for biking, i.e., higher bike

demand. Since these riders need to return the bikes, the dock demand is also positively corre-

lated with the temperature. Secondly, and most importantly, the Skellam regression model

allows us to get a better estimation of the uncertainty of our prediction. In particular, we do

not only get a single point estimate for the expected value of the net total demand, but rather

its whole probability distribution. For example, let us assume that our predictions are N̂ m ¼

12:67 and N̂ l ¼ 10:29. This means that the net total demand is Ẑ ¼ 2:38. Recall, that N̂ m and

N̂ l are the two parameters of the Skellam distribution, and hence, we can plot the probability

mass function for Z as presented in Fig 9. This distribution allows us to answer questions, such

as “what is the probability that there will be excess demand during a specific time period?”. Ques-

tions are important for the system operators, providing them with a more holistic view of the

system.

Total and observed demand in training

For the results we presented above, we use the total demand Nμ and Nλ to calculate the depen-

dent variable Z = Nμ − Nλ. One of the motivations for our study is the fact that excess demand
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is not directly available in the trip/dock availability logs obtained from the bike system opera-

tor. Therefore, a lot of existing literature simply uses the observed demand for building predic-

tive models. For these models, 0 trips from a station during a period is an indicator of 0

demand, even though as we have seen this may very well be an instance of actually high

(excess) demand. However, what if even by simply using the observed demand to train our

models, we can still get a good prediction for the net total demand. To examine this we build

our model using only the observed demand when we train the model. We then evaluate the

predictions on the test set and the results are presented in Table 4.

As we can see, when training our models using the total demand (“Observed+Excess” in

Table 4), the predictions have obvious performance gain (as expected). These gains are of

course higher when making predictions for periods with excess demand, as one might have

expected as well.

Fig 9. Skellam probability distribution with parameters N̂ m ¼ 12:67, N̂ l ¼ 10:29. Ẑ ¼ 2:38.

https://doi.org/10.1371/journal.pone.0252894.g009

Table 4. MSE of different time periods under Skellam model.

Model type Excess All records Excess All records Excess All records

(7–9:30) (7–9:30) (16–18:30) (16–18:30) (non-peak) (non-peak)

Observed+Excess 36.2 6.4 36.4 10.3 42.6 2.7

Observed 47.5 10.0 52.2 11.9 45.8 2.9

https://doi.org/10.1371/journal.pone.0252894.t004
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Discussion and conclusions

In this paper, we introduce “excess demand” in bike sharing systems (e.g., how many custom-

ers attempted to rent a bike from an empty station). This type of demand is not directly

recorded in bike trip logs. Key to our approach for estimating excess demand is identifying

temporal segments in the bike availability data, that include changes in the availability from

zero to non-zero. Through simulations, we verify the ability of our approach to estimate the

excess demand present in the system. Consequently we apply our approach on data obtained

from Chicago’s Divvy bike sharing system to estimate the excess demand present in Divvy sys-

tem. To predict the net total demand (which includes the observed and excess demand), we

learn a Skellam regression model through maximum likelihood estimation, which shows

advantages over other alternative models, both in terms of predictive performance and

interpretability. Moreover, our Skellam regression model, as a generalized linear model, allows

us to get a better estimation of the uncertainty of our prediction, since we essentially obtain

the whole probability distribution of our dependent variable.

Although we mainly use bike availability records to estimate the excess demand, additional

data sources can potentially improve the excess demand estimation. For example, a customer

of the bike sharing system may use the corresponding mobile application to explore the bike

availability of stations near her location. This search itself is a signal of bike demand, and in

the case where there are no available bikes nearby we can consider this to be part of the excess

demand. Of course, a good understanding of the way the corresponding app operates is

required, since for example if a local search is performed every time the app is turned on this is

not necessarily an indicator of demand in the area. However, similar data are hard to be

obtained as they are only available to the bike sharing operator. Furthermore, as implied from

the results in our analysis of a specific baseball game at Wigley field, excess demand on one sta-

tion might lead to spillover demand on nearby stations. When focusing on the whole bike

sharing system this might lead to double counting—once as the excess demand of a station

and once as the observed demand of another station. Our framework can be further improved

by extending it so one can avoid this potential double counting of (total) demand.

Finally, while in this paper we focus on excess demand in docked bike sharing systems,

excess demand also exists in dockless systems. In this setting we only need to consider the

excess demand of renting bikes since bikes can be returned anywhere. However, this also

means that there are no predefined stations. The lack of well-defined locations of bike demand

provides additional challenges in analyzing these situations. The analysis should most probably

focus on pre-defined areas within the city. However, identifying the spatial granularity needed

is not a trivial task.
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