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    Introduction 
 Eukaryotic cells are equipped with sophisticated mechanisms to de-

tect, signal the presence of, and repair DNA damage. Of particular 

importance are the pathways that deal with DNA double-strand 

breaks (DSBs): highly toxic lesions that, if unrepaired or repaired 

incorrectly, can cause cell death, mutations, and chromosomal trans-

locations and can lead to diseases such as cancer. Cells react to 

DSBs by rapidly deploying a host of proteins to the damaged chro-

matin regions. Some of these factors engage in DNA repair, whereas 

others trigger a signaling pathway (called the DNA damage check-

point) that provokes delays in cell cycle progression and coordinates 

the repair process; together, these events comprise the so-called 

DNA damage response (DDR;  Zhou and Elledge, 2000 ). 

 Among the fi rst proteins that accumulate at sites of DSBs 

in eukaryotic cells is the MRE11 – RAD50 – Nijmegen breakage 

syndrome 1 (NBS1 [MRN]) complex, a conserved and essential 

DDR factor that functions in a multitude of cellular processes in-

volving DSBs, including DSB repair, checkpoint signaling, DNA 

replication, meiotic recombination, and induction of apopto-

sis ( Stracker et al., 2004, 2007 ;  Difi lippantonio et al., 2007 ). 

The MRN complex consists of three subunits. The fi rst is the 

structure-specifi c nuclease MRE11, which is most likely involved 

in nucleolytic processing of DNA ends to allow homologous re-

combination repair ( Jazayeri et al., 2006 ), and the second is the 

ATPase and adenylate kinase subunit RAD50, which, together 

with MRE11, appears to facilitate tethering of DNA molecules 

to promote DSB repair ( Costanzo et al., 2004 ;  Bhaskara et al., 

2007 ). The third subunit of the MRN complex, NBS1, does not 

exhibit any catalytic activities. Instead, its domain composition 

suggests that it belongs to the family of adaptor/mediator pro-

teins of the DDR, a group of recently emerging factors that inte-

grate, coordinate, and enhance the various cellular responses 

to DNA damage by promoting protein – protein interactions 

( D ’ Amours and Jackson, 2002 ). Consistent with this notion, 

NBS1 features both forkhead-associated (FHA) and BRCA1 

C-terminal (BRCT) domains at its N terminus, which are protein 

interaction modules that specifi cally mediate the interaction with 

T
he MRE11 – RAD50 – Nijmegen breakage syndrome 1 

(NBS1 [MRN]) complex accumulates at sites of DNA 

double-strand breaks (DSBs) in microscopically dis-

cernible nuclear foci. Focus formation by the MRN com-

plex is dependent on MDC1, a large nuclear protein that 

directly interacts with phosphorylated H2AX. In this study, 

we identifi ed a region in MDC1 that is essential for the focal 

accumulation of the MRN complex at sites of DNA damage. 

This region contains multiple conserved acidic sequence 

motifs that are constitutively phosphorylated in vivo. 

We show that these motifs are effi ciently phosphorylated 

by caseine kinase 2 (CK2) in vitro and directly interact 

with the N-terminal forkhead-associated domain of NBS1 

in a phosphorylation-dependent manner. Mutation of these 

conserved motifs in MDC1 or depletion of CK2 by small 

interfering RNA disrupts the interaction between MDC1 

and NBS1 and abrogates accumulation of the MRN com-

plex at sites of DNA DSBs in vivo. Thus, our data reveal 

the mechanism by which MDC1 physically couples the 

MRN complex to damaged chromatin.
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acting BRCT tandem domain at the C terminus, MDC1 also fea-

tures a unique repeat region in the middle of the protein (Pro-Ser-Thr 

[PST] repeat) and contains several highly conserved putative PIKK 

target sites, some of which are phosphorylated in response to DNA 

damage in vivo ( Matsuoka et al., 2007 ). In addition, MDC1 is also 

phosphorylated in the absence of DNA damage: several recent 

large-scale phosphorylation site screens of the human and mouse 

proteome revealed that MDC1 is constitutively phosphorylated on 

a signifi cant number of Ser and Thr residues in vivo ( Beausoleil 

et al., 2004 ;  Olsen et al., 2006 ;  Villen et al., 2007 ). 

 Although it is well established that MDC1 mediates the ac-

cumulation of many DDR factors in damaged chromatin regions 

(including the MRN complex, 53BP1, BRCA1, and ATM;  Stucki 

and Jackson, 2006 ), it is still unclear how MDC1 mediates MRN 

recruitment. The observation that MDC1 exists in a complex with 

MRN in extracts from undamaged cells suggests that MDC1 may 

recruit MRN to  � -H2AX – containing chromatin in a simple  “ pig-

gyback ride ”  mechanism whereby the physical interface between 

the two factors is made up by the NBS1 N-terminal FHA/BRCT 

region and by one or several phosphoepitopes on MDC1. 

 To put such a mechanism to the test, we set up an in vivo 

complementation system for MDC1 to search for a region in 

MDC1 that is responsible to mediate MRN foci formation. 

Through this approach, we identifi ed a new region in MDC1 

that is composed of several acidic repeats featuring a unique se-

quence motif, the Ser-Asp-Thr (SDT) motif. Furthermore, we 

provide evidence that these SDT repeats are constitutively phos-

phorylated by caseine kinase 2 (CK2) and that the phosphory-

lated form of these motifs constitute the phosphoepitope that 

the NBS1 FHA domain is binding to. These fi ndings allow us to 

draw a model of the mechanism by which MDC1 physically 

links the MRN complex to damaged chromatin. 

 Results 
 An acidic region near the N terminus of 
MDC1 is essential for NBS1 foci formation 
 Effi cient accumulation of the MRN complex in foci at sites of 

DSBs is critically dependent on MDC1 ( Goldberg et al., 2003 ; 

 Lukas et al., 2004 ). To determine the region of MDC1 that medi-

ates MRN foci formation, we transfected MDC1  – / –   mouse em-

bryonic fi broblasts (MEFs;  Lou et al., 2006 ) with a series of 

N-terminal deletion mutants of mouse MDC1 and assessed MRN 

accumulation by indirect immunofl uorescence using an antibody 

specifi c for mouse NBS1 ( Celeste et al., 2003 ). Consistent with 

published data ( Lou et al., 2006 ), MDC1  – / –   MEFs were com-

pletely defective for NBS1 accumulation (unpublished data), but 

transient transfection of these cells with HA-tagged full-length 

mouse MDC1 readily restored NBS1 foci formation in response 

to 5 Gy of ionizing radiation (IR;  Fig. 1 B , WT). Deletion of 153 

and 295 N-terminal amino acids of MDC1 did not result in any 

detectable reduction of NBS1 foci ( Fig. 1 B ,  � N1 and  � N2), but 

deletion of 452 and 645 amino acids led to a complete loss of 

NBS1 accumulation ( Fig. 1 B ,  � N3 and  � N4). This indicated that 

the region in MDC1 essential for mediating NBS1 accumulation is 

located somewhere between amino acids 295 and 452. Indeed, inter-

nal deletion of this 157 – amino acid region completely abolished 

phosphorylated proteins ( Durocher and Jackson, 2002 ;  Glover 

et al., 2004 ). Moreover, several NBS1 interaction partners have 

been described; most prominent among these is the ataxia telan-

giectasia mutated (ATM) kinase, the key upstream component of 

DSB signaling ( Falck et al., 2005 ). Mutations in the  NBS1  gene 

leads to NBS in humans, and cells derived from NBS patients 

display a DSB repair and signaling defi ciency, including radio-

sensitivity, chromosomal instability, and checkpoint defects 

( D ’ Amours and Jackson, 2002 ). Mouse models in which the 

native mouse  NBS1  allele was exchanged with hypomorphic 

mutant alleles recapitulate many features of NBS in the mouse, 

including developmental defects, chromosomal instability, and 

checkpoint defi ciency ( Difi lippantonio et al., 2005 ,  2007 ). 

 Accumulation of the MRN complex at sites of DSBs is mani-

fested by the formation of microscopically discernible subnuclear 

structures, so-called nuclear foci that represent large chromatin re-

gions containing one or several unrepaired DSBs ( Maser et al., 

1997 ). The key regulator of nuclear foci formation in higher eu-

karyotes is the histone variant H2AX, an integral component of the 

nucleosome core structure that comprises 10 – 15% of total cellular 

H2A in higher organisms ( Fernandez-Capetillo et al., 2004 ). H2AX 

is phosphorylated extensively on a conserved Ser residue at its 

C terminus in chromatin regions bearing DSBs, and this is mediated 

mainly by the ATM kinase, a member of the phosphoinositide-3-

kinase – related protein kinase (PIKK) family ( Burma et al., 2001 ). 

 Although it has been previously suggested that MRN accu-

mulation at sites of DSBs occurs through interaction between 

the FHA/BRCT region of NBS1 and phosphorylated H2AX 

( � -H2AX;  Kobayashi et al., 2002 ), recent evidence suggests that 

the interaction between NBS1 and  � -H2AX is not direct but is me-

diated by MDC1, a large nuclear factor that interacts with the MRN 

complex and also features the criteria of a DDR mediator/adaptor 

protein, including the presence of FHA and BRCT domains (for 

review see  Stucki and Jackson, 2004 ). First, it was shown that 

MDC1 exists in a complex with MRN in extracts of undamaged 

cells ( Goldberg et al., 2003 ). This complex dissociates upon modi-

fi cation of the N-terminal FHA domain of NBS1, suggesting that 

the NBS1 FHA domain may be participating in the interaction be-

tween the two factors ( Lukas et al., 2004 ). Second, MDC1 directly 

and specifi cally interacts with the phosphorylated H2AX C ter-

minus through its tandem BRCT domains ( Stucki et al., 2005 ). 

The x-ray structure of the MDC1 –  � -H2AX complex suggests that 

the MDC1 BRCT domains are uniquely tailored to interact with the 

 � -H2AX chromatin mark ( Stucki et al., 2005 ). Third, a phospho-

peptide derived from the H2AX C terminus interacted with the 

MRN complex only in the presence of MDC1 ( Lukas et al., 2004 ). 

Fourth, experimental disruption of the interaction between MDC1 

and  � -H2AX ( Stucki et al., 2005 ) or loss of MDC1 expression by 

genetic manipulation and/or siRNA-mediated depletion leads to a 

complete abrogation of MRN foci formation ( Goldberg et al., 

2003 ;  Stewart et al., 2003 ;  Lukas et al., 2004 ;  Lou et al., 2006 ). 

Finally, mutations in the N-terminal FHA/BRCT region of NBS1 

also interfere with MRN accumulation at sites of DSBs ( Kobayashi 

et al., 2002 ;  Zhao et al., 2002 ;  Cerosaletti and Concannon, 2003 ; 

 Lee et al., 2003 ;  Horejsi et al., 2004 ). 

 MDC1 is composed of several distinct sequence domains. 

Besides an FHA domain at its N terminus and the  � -H2AX – inter-
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A single amino acid (typically Asp) sits in between the highly 

conserved Ser and Thr residues. Thus, we hereafter refer to this 

motif as the SDT motif. The motif also contains two to three con-

secutive acidic amino acids (usually Glu) that are fi ve residues 

C terminal to the initial Ser. Mammalian MDC1 contains a total 

of six SDT motifs (Fig. S1, available at http://www.jcb.org/cgi/

content/full/jcb.200709008/DC1): fi ve are located within the re-

gion of MDC1, whose deletion abrogates MRN foci ( Fig. 2 A ), 

and one is located  � 80 amino acids N terminal to this region 

(not depicted). Zebrafi sh MDC1 features a total of eight SDT 

motifs, and even honey bee MDC1 (the only clear nonvertebrate 

MDC1 orthologue identifi ed to date) comprises a very similar 

motif (Fig. S1), indicating that the SDT motif is conserved in all 

known MDC1 orthologues. 

 In untreated mammalian cells, MDC1 is a phosphoprotein 

that becomes rapidly hyperphosphorylated in response to DNA 

damage in a PIKK-dependent manner ( Goldberg et al., 2003 ; 

 Stewart et al., 2003 ). A large number of constitutive and DNA 

damage – induced phosphorylation sites have recently been iden-

tifi ed in MDC1 by means of several large-scale mass spectrom-

etry screens of the human and mouse proteome ( Beausoleil 

et al., 2004 ;  Olsen et al., 2006 ;  Matsuoka et al., 2007; Villen et al., 

2007 ). Interestingly, many of the constitutive phosphorylation 

sites of MDC1 are located within the SDT motifs ( Fig. 2 A ). 

In summary, it appears that in human cells, a population of MDC1 

molecules is phosphorylated on any Ser and Thr residue in at 

least four of the six SDT motifs in vivo ( Beausoleil et al., 2004 ; 

 Olsen et al., 2006 ). In addition, mouse MDC1 appears to be 

phosphorylated in at least one SDT motif ( Villen et al., 2007 ). 

the ability of MDC1 to mediate NBS1 foci formation ( Fig. 1 B , 

 � I1). Preliminary sequence analysis of this region revealed a 

signifi cant abundance of acidic amino acids as compared with 

other regions of MDC1 ( Fig. 2  A). 

 Interestingly, deletion of a region between amino acids 

51 and 107 of mouse MDC1 (containing the FHA domain) 

did not have any effect on NBS1 accumulation ( Fig. 1 ,  � I2) 

even though overexpression of the FHA domain was reported 

to trigger a dominant-negative effect on NBS1 foci forma-

tion ( Goldberg et al., 2003 ). In summary, these results sug-

gest that an acidic region near the N terminus of MDC1 

mediates MRN accumulation at sites of DSBs. 

 Phosphorylation-dependent interaction 
between the MDC1 N terminus and the 
MRN complex 
 To understand how the region identifi ed by the systematic dele-

tion analysis mediates MRN foci formation, we carefully ana-

lyzed the sequence between amino acids 295 and 452 of mouse 

MDC1. As mentioned in the previous section, this region of MDC1 

is highly acidic with a calculated isoelectric point of 4.04. 

To detect conserved sequence motifs within this region, we com-

pared the mouse sequence to MDC1 sequences from other ver-

tebrate species (including human, dog, swine, and zebrafi sh). 

This analysis revealed several conserved patches of 8 – 10 amino 

acids interspersed with less conserved regions of variable length 

( Fig. 2 A ; patches are highlighted by horizontal bars). The con-

served patches feature a repeated sequence motif: Ser and 

Thr residues are embedded in an acidic sequence environment. 

 Figure 1.    An acidic domain near the N terminus of MDC1 is essential for NBS1 foci formation.  (A) Schematic representation of HA-tagged full-length mouse MDC1 
and various deletion mutants. (B) MDC1  – / –   MEFs were transiently transfected with wild-type (WT) MDC1 and the individual deletion constructs. 48 h later, cells were 
irradiated, fi xed with methanol, and stained with antibodies specifi c for HA and mouse NBS1. Nuclear foci were assessed by confocal microscopy. Bar, 10  μ m.   
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 Figure 2.    Phosphorylation-dependent interaction between the MDC1 N terminus and the MRN complex.  (A) Sequence alignment of the region in MDC1 
that is essential for MRN foci. The conserved acidic motifs are highlighted by horizontal bars. Phosphorylated residues identifi ed by in vivo phosphorylation 
site mapping are highlighted by arrowheads ( Beausoleil et al., 2004 ;  Olsen et al., 2006 ;  Villen et al., 2007 ). (B, top) Representation of human MDC1 and 
the overlapping GST fragments. (bottom) Two fragments at the N terminus of MDC1 are phosphorylated by CK2 in vitro. Purifi ed GST-MDC1 fragments 
were incubated with purifi ed recombinant CK2 in the presence of radioactive ATP. Proteins were separated by SDS-PAGE, and dried gels were subjected to 
autoradiography. A Coomassie blue – stained gel of the purifi ed GST fragments is shown on top of the autoradiograph. Note that fragment M-6 (PST repeat 
region) was not expressed in bacteria. (C) Purifi ed GST-MDC1 fragments (M-1 – 5) were preincubated with and without recombinant CK2 in the presence of 
ATP. (D) Purifi ed GST-MDC1 fragment M-3 was preincubated with CK2 either in the presence or absence of the CK2 inhibitor TBB. (C and D) The fragments 
were then used to pull down proteins from HeLa nuclear extract. Bound proteins were separated on SDS-polyacrylamide gels followed by immunoblotting. 
The blots were probed with antibodies against RAD50, NBS1, and MRE11.   
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 The acidic nature of the SDT motif suggests that it may be 

targeted by acidophilic kinases such as CK1 and 2. Indeed, ana ly  -

sis of the MDC1 SDT domain by Scansite ( Yaffe et al., 2001 ) 

revealed that the sequence encompassing the Ser and Thr 

residues within the SDT motifs conform to consensus CK2 

phosphorylation sites. To test whether CK2 would specifi cally 

phosphorylate MDC1 in the SDT region, we generated eight 

overlapping random fragments of the human MDC1 cDNA and 

expressed them in  Escherichia coli  as GST fusion proteins. Seven 

fragments were expressed well and were purifi ed ( Fig. 2 B , top), 

whereas one fragment (M-6) comprising the MDC1 PST repeat 

region was not expressed in bacteria. The purifi ed fragments 

were subjected to an in vitro kinase assay using recombinant CK2. 

CK2 effi ciently phosphorylated fragment M-2 (amino acids 

109 – 330) and M-3 (amino acids 301 – 560) but none of the other 

fi ve fragments. Fragment M-2 contains two SDT motifs, and 

fragment M-3 contains the other four SDT motifs. 

 MDC1 exists in a complex with MRN in extracts derived 

from undamaged cells, indicating that these proteins interact con-

stitutively (Fig. S2, available at http://www.jcb.org/cgi/content/

full/jcb.200709008/DC1). However, the mechanism of this 

 interaction has not yet been elucidated. Signifi cantly, GST pull-

down analysis with our GST-MDC1 fragments revealed that 

fragment M-2 and M-3 only pulled down signifi cant quantities 

of the MRN complex from HeLa nuclear extract when pre-

incubated with recombinant CK2 and ATP ( Fig. 2 C , compare lanes 

 Figure 3.    Direct interaction between the 
phosphorylated MDC1 N terminus and the 
MRN complex is mediated by the NBS1 FHA 
domain.  (A) MRN proteins were purifi ed as 
described in Materials and methods. Proteins 
were separated on SDS-polyacrylamide gels 
and stained with silver. MR, MRE11 – RAD50 sub-
complex; N, partially purifi ed NBS1. (B and C) 
Purifi ed GST-MDC1 fragment M-3 comprising 
part of the SDT region was preincubated with 
CK2 and ATP. The fragment was incubated 
with purifi ed MRN complex (B), purifi ed MR 
subcomplex (C, top), and partially purifi ed 
NBS1 (C, bottom) followed by GST pull-down 
analysis. Bound proteins were separated on 
SDS-polyacrylamide gels followed by immuno-
blotting. The blots were probed with antibodies 
against RAD50, NBS1, and MRE11. (D, top) 
Schematic representation of NBS1 with its func-
tional domains. (bottom) Purifi ed GST-MDC1 
fragment M-3 was preincubated with CK2 and 
ATP. The fragment was incubated with purifi ed 
MRN complex where the NBS1 subunit was 
either wild type or contained a point mutation 
in the FHA domain (R28A). Bound proteins were 
separated on SDS-polyacrylamide gels followed 
by immunoblotting. The blots were probed with 
a polyclonal antibody against NBS1.   
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 Figure 4.    A repeated phosphorylated motif in MDC1 mediates the interaction between MDC1 and NBS1.  (A) In vitro mapping of the CK2 phosphorylation 
sites in MDC1. (top) Sequence of the human MDC1 fragment comprising the conserved CK2 consensus sites (highlighted in black). The CK2 consensus sites 
are numbered from 1 to 10. (bottom) All of the putative CK2 phosphoacceptor Ser and Thr residues in the above MDC1 fragment (amino acids 141 – 621) 
were mutated to Ala, and the mutants were expressed as GST fusion proteins in  E. coli . The GST fragments were incubated with purifi ed recombinant 
CK2 in the presence of radioactive ATP. Proteins were separated by SDS-PAGE, and dried gels were subjected to autoradiography. A, autoradiograph; 
C, Coomassie blue – stained gel. (B) The SDT repeats are essential for the interaction between MDC1 and NBS1 in vitro. Several SDT motifs in a frag-
ment derived from mouse MDC1 (amino acids 221 – 456) were mutated to SDA (3T > A: T362A, T387A, and T444A; 4T > A: T315A, T362A, T387A, 
and T444A; 5T > A: T300A, T315A, T362A, T387A, and T444A; 6T > A: T222A, T300A, T315A, T362A, T387A, and T444A) and were expressed as 
GST fusion proteins in  E. coli . The purifi ed fragments were preincubated with recombinant CK2 in the presence of ATP. The fragments were then used to 
pull down proteins from HeLa nuclear extract. Bound proteins were separated on SDS-polyacrylamide gels followed by immunoblotting. The blots were 
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with the phosphorylated M-3 fragment of MDC1 and mediates 

the interaction between MDC1 and the MRN complex. 

 NBS1 features two well-established phosphopeptide rec-

ognition modules at its N terminus: an FHA domain and a tan-

dem BRCT domain ( Fig. 3 D , top). It was previously shown that 

introduction of a point mutation in the FHA domain that changes 

a conserved Arg residue to Ala (R28A) disrupted the interaction 

between MDC1 and the MRN complex in vitro ( Lukas et al., 

2004 ) and abolished MRN accumulation at sites of DSBs in vivo 

( Cerosaletti and Concannon, 2003 ;  Lee et al., 2003 ;  Horejsi 

et al., 2004 ;  Lukas et al., 2004 ). Thus, we isolated the MRN 

complex harboring the same mutation in NBS1 from baculovirus-

infected Sf9 cells and compared its binding activity toward the 

phosphorylated M-3 fragment to the wild-type complex. Signifi -

cantly, although the wild-type NBS1 readily interacted with 

phosphorylated M-3, no interaction was detected with the R28A 

mutant ( Fig. 3 D ). This indicates that an intact NBS1 FHA do-

main is essential for the interaction between the phosphorylated 

N-terminal region of MDC1 and the MRN complex. 

 A repeated phosphorylated motif in MDC1 
mediates the interaction between MDC1 
and NBS1 
 To map the phosphorylation sites within fragments M-2 and M-3 

of MDC1, we isolated a new GST fragment comprising amino 

acids 141 – 621 of human MDC1 (M-SDT). The purifi ed frag-

ment was phosphorylated in vitro by recombinant CK2 followed 

by digestion with trypsin. The tryptic peptides were then ana-

lyzed by mass spectrometry. Thus, several phosphorylation sites 

were mapped ( Table I ), most notably all six of the conserved 

SDT motifs that were targeted by CK2 on both Ser and Thr resi-

dues. Next, all of the putative CK2 target Ser and Thr residues in 

the M-SDT fragment were mutated to Ala and expressed in  E. 
coli  ( Fig. 4 A , top; the SDT motifs and other putative CK2 target 

sites are highlighted in black and numbered from 1 – 10). The pu-

rifi ed mutants were subjected to in vitro phosphorylation by re-

3 and 4 with lanes 8 and 9; note that the bands in lanes 5 and 10 

in the top panel result from a cross-reactivity of the RAD50 an-

tibody with a contaminating bacterial protein in the GST – M-4 

fraction). In the absence of CK2, no interaction could be ob-

served under these conditions ( Fig. 2 C , lanes 2 – 6). In the pres-

ence of the specifi c CK2 inhibitor tetrabromo-2-azabenzimidazole 

(TBB), recombinant CK2 did not transform fragment M-3 into 

a form capable of pulling down the MRN complex from HeLa 

nuclear extract, indicating that CK2 activity is required for this 

process ( Fig. 2 D ). Together, these data suggest that the phos-

phorylated N-terminal region in MDC1 mediates the interaction 

with the MRN complex in vitro. 

 Direct interaction between the 
phosphorylated MDC1 N terminus and 
the MRN complex is mediated by the 
NBS1 FHA domain 
 To determine whether the MRN complex interacts directly with 

the phosphorylated MDC1 N terminus, we coexpressed all three 

MRN subunits and a subcomplex consisting of MRE11 and 

RAD50 (MR) in Sf9 cells by means of recombinant baculovirus 

infection followed by purifi cation of the recombinant proteins to 

near homogeneity ( Fig. 3 A , MRN and MR). We also isolated 

partially purifi ed NBS1 alone ( Fig. 3 A , N). Interaction studies 

with purifi ed recombinant MRN, MR, and NBS1 were compli-

cated by the fact that these proteins exhibited a signifi cant un-

specifi c binding activity toward the glutathione – Sepharose beads 

used in this analysis ( Fig. 3 B , beads alone). Nevertheless, we 

consistently observed a signifi cant enrichment of purifi ed MRN 

and partially purifi ed NBS1 when we used CK2-phosphorylated 

fragment M-3 in the pull-down assay ( Fig. 3, B and C ; bottom). 

Untreated M-3 or GST alone did not result in such enrichment. 

Similarly, neither phosphorylated nor unphosphorylated M-3 

was capable of effi ciently binding to MRE11/RAD50 in the ab-

sence of NBS1 ( Fig. 3 C , top). In summary, these results indicate 

that the NBS1 subunit of the MRN complex directly associates 

probed with antibodies against RAD50, NBS1, and MRE11. (C) Mutation of a subset of the conserved SDT motifs abrogates NBS1 foci formation. (top) 
MDC1  – / –   MEFs were transiently transfected with various forms of HA-tagged full-length mouse MDC1, including wild-type (WT) and SDT-defi cient (3T > A: 
T362A, T387A, and T444A; 4T > A: T315A, T362A, T387A, and T444A; 5T > A: T300A, T315A, T362A, T387A, and T444A) variants. 48 h later, cells 
were irradiated, fi xed with methanol, and stained with antibodies against HA and mouse NBS1. (bottom) HA-positive cells were scored for NBS1 foci in 
wild-type and 5T > A-transfected populations (results were consistent in two independent datasets). (D) The SDT in MDC1 is phosphorylated in vivo. (top) A 
phosphospecifi c antibody raised against a doubly phosphorylated SDT peptide (pSDpT) was tested on CK2-phosphorylated GST-SDT. WT, mouse MDC1 
(amino acids 221 – 456); 6T > A, all six SDT motifs were mutated to SDA. (bottom) Immunoblot analysis of phosphorylated MDC1 isolated from HeLa nuclear 
extract by a H2AX phosphopeptide using the pSDpT phosphospecifi c antibody. (E) A synthetic biotinylated peptide comprised of the SDT sequence motif 
and phosphorylated on the Thr residue was either left untreated or was preincubated with  �  � PPase and CK2, respectively. (top) This leads to the three 
indicated products: unphosphorylated peptide, singly phosphorylated peptide (Thr), and doubly phosphorylated peptide (Ser and Thr). The peptides were 
then used to pull down proteins from HeLa nuclear extract. Proteins were detected as in B. Bar, 10  μ m.   

 

 Table I.    Tryptic MDC1 phosphopeptides  

 MDC1 tryptic peptide  CK2 phosphorylation site 

162-LLLAEDpSEEEVDFLSER-179 pS168

186-TTSSSVIVPESDEEGHSPVLGGLGPPFAFNLN(pSDpT)DVEEGQQPATEEASSAAR-238 +2PO 4 

247-QSEAEVVTEIQLEKDQPLVK-266 NA

292-SQPPGEDpSDpTDVDDDSRPPGRPAEVHLERAQPFGFIDpSDpTDAEEERIPATPVVIPMK-348 pS299, pT301, pS329, pT331

361-PGAPGLAHLQESQAGpSDpTDVEEGKAPQAVPLEKSQASMVINpSDpTDDEEEVSAALTLAHLK-420 pS376, pT378, pS402, pT404

445-SQTTTERDpSDpTDVEEEELPVENR-467 pS453, pT455

NA, not applicable.
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 Figure 5.    CK2 is essential for the interaction between MDC1 and NBS1 and for the accumulation of NBS1 at sites of DSBs in vivo.  (A) Down-regulation of 
CK2 �  and CK2 �  �  by siRNA triggers a prolonged DDR. 72 h after transfection with siRNA duplexes, cells were irradiated and harvested at the indicated 
time points. Extracts were prepared and resolved by SDS-PAGE followed by immunoblotting. The blots were probed with the indicated antibodies. 
(B) Down-regulation of CK2 �  and CK2 �  �  by siRNA abrogates NBS1 accumulation at sites of DSBs. 72 h after transfection with siRNA duplexes, cells were 
irradiated, fi xed with methanol, and stained with antibodies against  � -H2AX and NBS1. (C) Down-regulation of CK2 �  by siRNA disrupts the interaction 
between MDC1 and NBS1 in vivo. 72 h after transfection with siRNA duplexes, cells were lysed, and immunoprecipitation was performed using the 
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combinant CK2, and radioactive phosphate incorporation was 

measured by autoradiography ( Fig. 4 A ). This analysis revealed 

that all of the SDT motifs and other putative CK2 target sites 

were effi ciently phosphorylated in vitro .  
 To test whether the highly conserved SDT repeats were 

necessary for the interaction with the MRN complex, we changed 

the conserved Thr residues to Ala within several SDT motifs 

and phosphorylated the isolated GST fusion proteins by CK2 in 

vitro. Signifi cantly, GST pull-down analysis with the mutant 

fragments revealed that only the phosphorylated wild type was 

capable of pulling down signifi cant quantities of the MRN com-

plex from HeLa nuclear extract, whereas alteration of the three 

C-terminal SDT motifs ( Fig. 4 A,  4 – 6) already reduced the inter-

action to almost background level ( Fig. 4 B ). 

 To test whether the SDT repeats of MDC1 mediate NBS1 

accumulation at sites of DSBs in vivo, we introduced the same 

SDT mutations as before ( Fig. 4 B ) in the tagged full-length mouse 

MDC1 cDNA followed by transient transfection of MDC1  – / –   MEFs 

with those mutants and assessment of MDC1 and NBS1 foci 

formation by indirect immunofl uorescence. Surprisingly, alter ation 

of the last three C-terminal SDT motifs ( Fig. 4 A , 4 – 6) did not 

trigger any signifi cant reduction in NBS1 foci formation ( Fig. 4 C , 

3T > A) even though the corresponding GST fusion protein only 

weakly interacted with the MRN complex in vitro ( Fig. 4 B , 

3T > A). However, mutation of four SDT motifs ( Fig. 4 A,  3 – 6) led 

to a detectable reduction in NBS1 accumulation even though small 

NBS1 foci were still detectable in a subset of the transfected cells 

( Fig. 4 C,  4T > A). Altering fi ve of the six SDT motifs ( Fig. 4 A,  

2 – 6) completely abrogated NBS1 foci formation in all MDC1-

positive cells ( Fig. 4 C,  5T > A). Signifi cantly, although the 5T > A 

mutant was unable to mediate NBS1 focal accumulation in re-

sponse to IR, it still localizes to foci itself, indicating that an intact 

SDT region is not required for MDC1 –  � -H2AX interaction. 

 Collectively, these results show that the SDT motifs are es-

sential for the interaction between MDC1 and the MRN com-

plex in vitro and for NBS1 accumulation at sites of DSBs in 

vivo, suggesting that the SDT motif may defi ne a novel phospho-

specifi c MRN-interacting element within MDC1. To test this di-

rectly, we fi rst sought to ascertain that the SDT motifs of MDC1 

are constitutively phosphorylated in vivo. To this end, we gener-

ated two phosphospecifi c antibodies against doubly phosphory-

lated SDT peptides (pSDpTs) derived from the human SDT 

repeat region (see Materials and methods for details). These 

antibodies were affi nity purifi ed and tested against the purifi ed 

CK2-phosphorylated GST-SDT fragment and its 6T > A mutated 

derivative. Although one of the two antibodies did not recognize 

the CK2-phosphorylated GST-SDT fragment (not depicted), the 

other antibody specifi cally recognized GST-SDT only when it 

was preincubated with CK2 and ATP ( Fig. 4 D , top). Signifi -

cantly, the 6T > A mutant was not recognized at all by this anti-

body, indicating that it is specifi c for doubly phosphorylated 

SDT repeats. We next used this antibody to detect MDC1 in extracts 

from undamaged and irradiated mammalian cells. Unfortunately, 

the pSDpT antibody unspecifi cally cross-reacted with many pro-

teins in whole cell and nuclear extracts, and, thus, we were un-

able to assess the MDC1 phosphorylation status in crude cell 

extracts ( Fig. 4 D , bottom; fi rst lane). However, MDC1 can be 

isolated along with the MRN complex from HeLa nuclear ex-

tract to near homogeneity by a phosphopeptide pull-down strat-

egy using a phosphopeptide derived from the H2AX C terminus 

(Fig. S2;  Stucki et al., 2005 ). When we probed the isolated 

MDC1 – MRN complex with the pSDpT antibody, we observed 

two bands at the position where MDC1 runs on SDS gels, indi-

cating that it is indeed phosphorylated on at least a subset of the 

SDT motifs in vivo ( Fig. 4 D , bottom; second lane). 

 To clarify whether the MRN complex interacts with a sin-

gle doubly phosphorylated SDT motif, we designed a biotinyl-

ated synthetic phosphopeptide comprising the sequence of one 

of the SDT motifs ( Fig. 4 A , 3), which was phosphorylated on 

the Thr residue. This peptide was either left untreated or was 

treated with  �  phosphatase and CK2. Mass spectrometry and in 

vitro CK2 assays revealed that such treatment resulted in singly  

phosphorylated SDpT peptide, unphosphorylated SDT peptide, 

and doubly phosphorylated pSDpT peptide ( Fig. 4 E , top; and 

not depicted). Signifi cantly, only the doubly phosphorylated 

peptide, in which both Ser and Thr residues are being phosphor-

ylated, retrieved the MRN complex from HeLa nuclear extract 

( Fig. 4 E ). Collectively, these results suggest that doubly phos-

phorylated SDT motifs interact with MRN and determine MRN 

accumulation in vivo. 

 CK2 is essential for the interaction 
between MDC1 and NBS1 and for the 
accumulation of NBS1 at sites of DSBs 
in vivo 
 Because the SDT repeats are effi ciently targeted by CK2 in vitro 

( Fig. 4 ), we next sought to investigate whether CK2 activity 

was required for NBS1 accumulation at sites of DSBs in vivo. 

Several commercial small-molecule CK2 inhibitors are available, 

and two of them were tested on human and mouse cells (TBB 

and DMAT). Surprisingly, neither of the two inhibitors triggered 

a detectable reduction in NBS1 foci formation in cultured hu-

man and mouse cells (unpublished data). Thus, we speculated 

that there may either exist additional acidophilic kinases that are 

capable of effi ciently phosphorylating the SDT repeats in MDC1 

or that the inhibitors are not potent enough to completely elimi-

nate SDT phosphorylation in our experimental settings. 

 To test the latter possibility, we took an siRNA approach 

to down-regulate the two catalytic subunits of CK2 (CK2 �  and 

CK2 �  � ) in U2OS cells. 72 h after siRNA transfection, CK2 �  

and CK2 �  �  expression reached background levels ( Fig. 5 A ). 

At the same time, we observed massive cell death and severe 

mitotic defects, corroborating the essential role of CK2 in 

the cellular metabolism and life cycle. Interestingly, we also 

indicated antibodies. Proteins were separated by SDS-PAGE followed by immunoblotting. The blots were probed with antibodies against MDC1, NBS1, 
and CK2 � . Black lines indicate that intervening lanes have been spliced out. (D) MDC1 is associated with CK2 in vivo. HeLa cell extracts were used to 
immunoprecipitate proteins with the indicated antibodies. The immunocomplexes were separated by SDS-PAGE followed by immunoblotting. The blot was 
probed with antibodies against CK2 �  and CK2 �  � . Bar, 10  μ m.   
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 Figure 6.    Disruption of the MDC1 – NBS1 interaction triggers a partial 
G2/M checkpoint defect.  (A) NBS-iLB1 fi broblasts and NBS-iLB1 fi broblasts 
stably transduced with wild-type NBS1 and R28A mutant NBS1 were ir-
radiated, fi xed with methanol, and stained with antibodies against MDC1 
and NBS1. (B) Whole cell extracts of NBS-iLB1 fi broblasts and NBS-iLB1 
fi broblasts stably transduced with wild-type (WT) NBS1 and R28A mutant 
NBS1 were resolved by SDS-PAGE followed by immunoblotting. The blot 
was probed with antibodies against NBS1 and tubulin. (C) NBS-iLB1 fi -
broblasts and NBS-iLB1 fi broblasts stably transduced with wild-type NBS1 
and R28A mutant NBS1 were left untreated or irradiated with 1 Gy and 
3 Gy, respectively. Cells were harvested 1 h after irradiation, fi xed with 
methanol, and stained with an antibody against phosphorylated H3 
(P-H3) and propidium iodine. The percentage of phosphorylated H3 –
 positive cells was determined by FACS analysis. Error bars represent SD. 
Bar, 10  μ m.   

 observed a prolonged phosphorylation of ATM substrates in re-

sponse to IR ( Fig. 5 A ), suggesting that down-regulation of CK2 

by siRNA may cause a repair defect. 

 Signifi cantly, down-regulation of either CK2 �  or CK2 �  �  

led to a marked defect in NBS1 foci formation in response to 

IR ( Fig. 5 B , left). At the same time, MDC1 accumulation at 

sites of DSBs was not signifi cantly reduced ( Fig. 5 B , right) even 

though the foci appeared smaller as compared with the foci in 

control siRNA-treated cells. This indicates that CK2 is essential 

for the accumulation of NBS1 at sites of DSBs, whereas it is 

dispensable for the interaction between MDC1 and  � -H2AX. 

 Next, we tested whether CK2 was required for the consti-

tutive interaction between MDC1 and NBS1. To this end, MDC1 

antibodies were used to coimmunoprecipitate NBS1 from ex-

tracts derived from siRNA-treated human cells. No NBS1 co-

immunoprecipitated with MDC1 from cells that were transfected 

with CK2 �  siRNA, whereas a small but signifi cant amount of 

NBS1 coimmunoprecipitated with MDC1 from cell extracts that 

were prepared from control siRNA-transfected cells ( Fig. 5 C ). 

The membrane was also probed with an antibody against CK2 �  

to monitor the effi ciency of CK2 �  depletion ( Fig. 5 C , bottom; 

note that CK2 �  corresponds to the faster migrating band). Inter-

estingly, we noticed that CK2 �  also coimmunoprecipitated with 

MDC1 ( Fig. 5 C , bottom; third and fi fth lanes), indicating that 

CK2 may exist in a complex with MDC1 in vivo. Indeed, anti-

bodies raised against MDC1 effi ciently coimmunoprecipitated 

both CK2 �  and CK2 �  �  from HeLa cell extracts ( Fig. 5 D ). 

Notably, the interaction does not change upon the introduction of 

DNA damage by IR ( Fig. 5 D , compare the last two lanes), indi-

cating that it is constitutive and not induced by DNA damage. 

 Collectively, these data reveal that CK2 is essential for NBS1 

foci formation and for the interaction between MDC1 and NBS1. 

In addition, CK2 exists in a complex with MDC1 and, thus, may 

be the primary kinase to target the SDT repeats in vivo. 

 Disruption of the MDC1 – NBS1 interaction 
triggers a partial G2/M checkpoint defect 
 As shown in Fig. 3 D, the R28A mutation in the NBS1 FHA do-

main triggers a severe defect in the association of NBS1 with 

the CK2-phosphorylated MDC1 SDT region in vitro ( Fig. 3 D ). 

Consistent with previous studies ( Cerosaletti and Concannon, 

2003 ;  Lee et al., 2003 ;  Horejsi et al., 2004 ), we also observed 

that this mutant is unable to accumulate in foci in stably trans-

duced NBS fi broblasts, whereas MDC1 accumulation is not af-

fected ( Fig. 6 A ). It was previously shown that the R28A mutant 

was not capable of rescuing the radiation sensitivity phenotype 

of NBS cells, whereas it did fully rescue the intra – S-phase 

checkpoint defect, at least at higher doses of irradiation ( Lee 

et al., 2003 ). In contrast, primary B cells derived from a human-

ized mouse model in which another key amino acid at the phos-

phopeptide recognition interface of the NBS1 FHA domain had 

been mutated to Ala (H45A) showed partial G2/M and intra – S-

phase checkpoint defects specifi cally at lower doses of irradiation 

( Difi lippantonio et al., 2007 ). To test whether the R28A muta-

tion causes a similar checkpoint defect, we measured alterations 

in the mitotic index in response to low (sublethal) doses of ir-

radiation (1 – 3 Gy) in NBS fi broblasts stably transduced with 

full-length wild-type and R28A NBS1. Consistent with previous 

fi ndings ( Falck et al., 2005 ), NBS-iLB1 fi broblasts displayed 

a clear G2/M checkpoint defect in this dose range ( Fig. 6 C ). 

Stable transduction with wild-type NBS1 fully rescued the G2/M 

checkpoint arrest in response to 1 – 3 Gy of IR. However, stable 
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 Figure 7.    Model of the mechanism of the MDC1 – MRN interaction before 
and after DNA damage.  See Discussion for details.   

transduction with R28A mutant NBS1 only partially restored the 

G2/M checkpoint, which is similar to the situation in the mouse 

B cells expressing the H45A mutant ( Fig. 6 C ;  Difi lippantonio 

et al., 2007 ). Notably, this checkpoint defect was not caused by 

lower expression levels of the mutant transgene as compared 

with the wild type ( Fig. 6 B ). Collectively, these results suggest 

that the constitutive CK2-dependent association of the MRN 

complex with MDC1 plays an important role in eliciting a full 

cell cycle checkpoint arrest. 

 Discussion 
 Previously, we and others have shown that MDC1 mediates accu-

mulation of the MRN complex at sites of DSBs ( Goldberg et al., 

2003 ;  Stewart et al., 2003 ;  Lukas et al., 2004 ;  Stucki et al., 2005 ). 

We also presented evidence that MDC1 exists in a complex with 

MRN in extracts from undamaged cells and that an intact NBS1 

FHA domain is essential for the stability of this interaction and 

for effi cient retention of the MRN complex in  � -H2AX – containing 

damaged chromatin regions ( Goldberg et al., 2003 ;  Lukas et al., 

2004 ;  Stucki et al., 2005 ). However, the precise mechanism by 

which MDC1 regulates the MRN complex remained unknown. 

 In this study, we identify a region in MDC1 that is essential 

for effi cient accumulation of the MRN complex at sites of DSBs. 

This region of MDC1 features a repeated acidic sequence motif 

(the SDT motif), and our data, in combination with the accom-

panying study by Melander et al. (see p.  213  of this issue) and 

several recently published large-scale phosphorylation site screens 

of the human and mouse proteome ( Beausoleil et al., 2004 ; 

 Olsen et al., 2006 ;  Villen et al., 2007 ), suggest that at least a sub-

set of the SDT motifs in MDC1 are constitutively phosphory-

lated by the acidophilic kinase CK2 on highly conserved Ser and 

Thr residues. Furthermore, we present unexpected evidence that 

the doubly phosphorylated SDT motifs regulate accumulation 

and retention of the MRN complex in the DSB-fl anking chroma-

tin compartment via a mechanism that involves direct interaction 

with the NBS1 N-terminal FHA domain. Finally, we show that 

CK2 is essential for NBS1 accumulation in damaged chromatin 

and that depletion of CK2 disrupts the MDC1 – MRN complex in 

vivo. Thus, our data successfully integrate and explain two 

observations whose interrelation has previously not been appre-

ciated: fi rst, we provide a mechanistic explanation as to why 

MDC1 and the MRN complex exist in a complex even before 

DNA damage; and second, our fi ndings also put into perspective 

the previous observation that an intact FHA domain of NBS1 is 

critical for effi cient accumulation of the MRN complex at sites 

of DSBs ( Kobayashi et al., 2002 ;  Zhao et al., 2002 ;  Cerosaletti 

and Concannon, 2003 ;  Lee et al., 2003 ;  Horejsi et al., 2004 ; 

 Lukas et al., 2004 ) and for an intact DDR in living organisms 

( Difi lippantonio et al., 2005, 2007 ). 

 However, it is essential to appreciate that not all MRN 

functions seem to require MDC1. For instance, DNA end pro-

cessing activities of MRN do not appear to be dependent on 

MDC1 ( Jazayeri et al., 2006 ). Furthermore, there are no indica-

tions that MRN ’ s role in mediating ATM activation would re-

quire MDC1 ( Lee and Paull, 2005 ). Finally, MRN seems to 

occupy two distinct compartments at sites of DSBs: it accumu-

lates on single-stranded DNA regions generated by enzymatic 

resection of DSBs ( Jazayeri et al., 2006 ) as well as in large chro-

matin domains fl anking DSBs that often span several thousand 

base pairs ( Bekker-Jensen et al., 2006 ). Although the accumula-

tion of MRN on single-stranded DNA does not require MDC1 

( Bekker-Jensen et al., 2006 ), accumulation and retention of MRN 

in  � -H2AX – containing chromatin are critically dependent on 

MDC1 ( Goldberg et al., 2003 ;  Stewart et al., 2003 ;  Lukas et al., 

2004 ;  Stucki et al., 2005 ) and on CK2-dependent phosphorylation 

of its SDT repeats ( Melander et al., 2008 ; this study). 

 Based on these novel fi ndings and on previously published 

observations, we propose the following model of the events that 

occur before and after a cell has suffered genotoxic stress that 

generates DSBs ( Fig. 7 ): in the absence of DNA damage, MDC1 

is phosphorylated on multiple sites by CK2 and perhaps other 

constitutively active kinases. The MRN complex associates with 

MDC1 through direct interaction between the N-terminal FHA 

domain of the NBS1 subunit and the CK2-phosphorylated SDT 

repeat region of MDC1. Upon induction of DSBs in the genome, 

a fraction of MRN (that is probably not associated with MDC1) 

is rapidly deployed to the free DNA ends. Once bound to the 
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 � -H2AX – containing damaged chromatin regions, an important 

step in the hierarchy of events that lead to the formation of nu-

clear foci at sites of DSBs has been resolved. Although we do 

not yet understand the function of MRN in the DSB-fl anking 

chromatin compartment, one intriguing possibility is that MDC1-

bound MRN may act as a mediator of downstream phosphory-

lation events of the DDR. In this case, the MDC1 – MRN complex 

may enhance the DSB-induced signal by means of a positive 

feedback loop: MDC1 – MRN accumulates as the  � -H2AX mark 

spreads into more distal chromatin regions, thus helping to trig-

ger a global DDR even in the presence of very low numbers of 

DSBs. Consistent with such a scenario is the observation that 

cells expressing NBS1 with a mutated FHA domain display 

a partial G2/M checkpoint defect at low doses of irradiation 

( Difi lippantonio et al., 2007;  this study), whereas the check-

point seems to be normal at higher doses ( Difi lippantonio et al., 

2007 ). This suggests that the prevalent role of the MDC1 – MRN 

complex in checkpoint activation may not constitute the initia-

tion of the signal but rather its amplifi cation. The discovery of 

the SDT region of MDC1 and its specifi c role in MRN localiza-

tion in response to DNA damage will greatly facilitate the in-

vestigation of functional aspects of MRN in the DSB-fl anking 

chromatin compartment. 

 Materials and methods 
 Cell culture and gene transfer 
 MDC1  – / –   and MDC1 +/+  MEFs were gifts from J. Chen (Yale University, 
New Haven, CT). NBS-iLB1 cells stably transduced with wild-type NBS1 
and R28A mutant NBS1 were gifts from S. Jackson (University of Cam-
bridge, Cambridge, UK) and K. Cerosaletti (University of Washington, Se-
attle, WA), respectively. MEFs, HeLa, U2OS, and NBS-iLB1 cells were 
cultured in DME (Invitrogen) supplemented with 10% FCS. Transfection of 
plasmids was performed using either Lipofectamine 2000 (Invitrogen) or 
calcium phosphate. Sf9 cells were cultured in Grace ’ s insect medium (Invit-
rogen) supplemented with 10% FCS. Recombinant MRE11, RAD50, and 
NBS1 baculoviruses were gifts from V. Bohr (National Institute on Aging, 
Baltimore, MD). The Bac-To-Bac Baculovirus Expression System (Invitrogen) 
was used to generate and amplify recombinant baculoviruses. All steps 
were performed according to the manufacturer ’ s protocols. CK2 inhibitors 
TBB and DMAT were purchased from EMD. Irradiation of MEFs was per-
formed in an x-ray cabinet (Faxitron) at 5 – 10 Gy/min. 

 Plasmids 
 The full-length mouse MDC1 cDNA was a gift from A. Nussenzweig 
(National Institutes of Health, Bethesda, MD) and was HA tagged at the 
C terminus by PCR and cloned into pcDNA3.1(+) mammalian expression 
vector (Invitrogen). Human MDC1-GST constructs were generated by PCR 
amplifi cation of the human MDC1 cDNA followed by cloning into pGEX4T3 
bacterial expression vector (GE Healthcare). Myc-NBS1 ( Falck et al., 2005 ) 
was subcloned into pFastBac transfer vector (Invitrogen) to generate recom-
binant NBS1 baculoviruses. Deletion mutants were generated by a stan-
dard PCR-based method, and point mutations were introduced using the 
QuikChange Site-Directed Mutagenesis kit (Stratagene). 

 siRNA and transfections 
 The siRNA duplexes were 21 bp with a two-base deoxynucleotide over-
hang (Dharmacon Research). The sequences of the CK2 �  and CK2 �  �  
siRNA oligonucleotides used were GAUGACUACCAGCUGGUUCdTdT 
and CAGUCUGAGGAGCCGCGAGdTdT, respectively. The control siRNA 
used was CGUACGCGGAAUACUUCGAdTdT. Cells were transfected 
with siRNA duplexes by using Oligofectamine (Invitrogen) according to 
the manufacturer ’ s instructions. Cells were routinely harvested 72 h after 
siRNA transfection. 

 Cell extraction and protein purifi cation 
 HeLa nuclear extract was purchased from Cilbiotech. Cell extraction for 
immunoblot analysis was described previously ( Stewart et al., 2003 ). 

DNA, MRN participates in a multitude of events that include 

DNA end processing and tethering of DNA molecules that may 

facilitate accurate repair as well as activation of the ATM signal-

ing cascade (for review see  Williams et al., 2007 ). Although the 

precise mechanisms of these processes are still not understood 

in detail, there is no experimental indication that the MRN com-

plex would require MDC1 for these functions. However, in a 

second step, after the ATM signaling cascade has been initiated, 

the MDC1-bound fraction of MRN enters the stage; once acti-

vated, ATM phosphorylates a vast variety of targets. Among 

these targets are H2AX molecules in nucleosomes that are lo-

cated close to the break site. Phosphorylated H2AX is recog-

nized by MDC1 through its C-terminal BRCT domains ( Stucki 

et al., 2005 ). MDC1, along with the MDC1-bound fraction of 

MRN, forms a tight complex with phosphorylated H2AX, thus 

recruiting more MRN to the chromatin compartments fl anking 

DSBs ( Stucki et al., 2005; Lou et al., 2006 ). This process is 

manifested by the formation of microscopically discernible nu-

clear foci containing both MDC1 and the MRN complex. 

 Although such a model of MDC1 – MRN interplay is in-

triguing, there are several outstanding issues that need to be dis-

cussed. It is clear that the interaction between MDC1 and the 

MRN complex is constitutive, but it is still dependent on the 

phosphorylation of MDC1 by CK2. A very similar mechanism 

has recently been described in two different aspects of the mam-

malian DDR, namely single-strand DNA break repair and DSB 

repair by nonhomologous end joining ( Koch et al., 2004 ;  Loizou 

et al., 2004 ). CK2 phosphorylates XRCC1, an adaptor protein 

that recruits several repair factors to single-stranded break sites 

( Loizou et al., 2004 ). In this case, the CK2 phosphorylation 

mark creates a binding site for the FHA domain – containing 

proteins polynucleotide kinase (PNK), aparataxin, and Xip1 

( Loizou et al., 2004 ;  Luo et al., 2004 ;  Bekker-Jensen et al., 

2007 ). In addition, PNK recruitment to sites of DSBs by XRCC4 

is also mediated by the CK2-dependent phosphorylation of 

XRCC4 ( Koch et al., 2004 ). Thus, the mechanisms of PNK, 

aparataxin, and Xip1 recruitment by XRCC1 and PNK recruit-

ment by XRCC4 closely resemble MRN chromatin retention by 

MDC1. However, although the recruitment of PNK by XRCC1 

was abolished by the CK2 inhibitor TBB ( Loizou et al., 2004 ), 

we were unable to abolish NBS1 recruitment to damaged chro-

matin by using the same inhibitor and other (even more potent) 

small-molecule CK2 inhibitors. One possible explanation for 

this discrepancy may lie in the existence of one or more CK2-

related acidophilic kinases that are capable of targeting the MDC1 

SDT repeats. However, the fact that down-regulation of CK2 

by siRNA completely abolishes NBS1 recruitment to damaged 

chromatin argues against this possibility but rather suggests 

that the CK2 inhibitors were not potent enough to reduce CK2 

activity suffi ciently to produce an effectual reduction in MDC1 

phosphorylation. Indeed, in vivo phosphorylation analysis of 

MDC1 by  Melander et al. (2008)  reveals that treatment of cells 

with CK2 inhibitors maximally reduced SDT phosphorylation 

levels to 50%. This may not be enough for a visually discernible 

defect in NBS1 foci formation. 

 With the discovery of the mechanism by which MDC1 

mediates accumulation and retention of the MRN complex in 
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mass spectrometric phospho – amino acid analysis ( Jowsey et al., 2007 ). 
Mutation of putative CK2 phosphorylation sites in the GST-MDC1 fragment 
was performed using site-directed mutagenesis (Stratagene). 

 Checkpoint analysis 
 G2/M checkpoint analysis was performed as described previously ( Falck 
et al., 2005 ). In brief, cells were irradiated with the indicated doses during 
the exponential growth phase. 1 h later, cells were harvested, fi xed with 
70% ethanol/PBS, and incubated overnight at  � 20 ° C. Fixed cells were 
washed with PBS and permeabilized with 0.25% Triton X-100/PBS on ice 
for 10 min. Cells were stained with an antiphosphohistone H3 antibody 
(Millipore) and propidium iodide. Data were acquired with a fl ow cytome-
ter (FC500; Becton Dickinson). 

 Phosphorylation site analysis by mass spectrometry 
 MDC1 samples that had been incubated with CK2 with or without ATP 
were subjected to electrophoresis on a 4 – 12% polyacrylamide gel that 
was stained with colloidal Coomassie blue. MDC1 bands were excised 
from the gel, washed with 0.1% NH 4 HCO 3  and 50% acetonitrile/50 mM 
NH 4 HCO 3 , reduced with 10 mM DTT in 0.1 M NH 4 HCO 3  for 45 min at 
65 ° C, and alkylated by the addition of 50 mM iodoacetamide for 30 min 
at room temperature. Gel pieces were then washed in 0.1% NH 4 HCO 3  
and 50% acetonitrile/50 mM NH 4 HCO 3 , dried, and incubated with 25 mM 
triethylammonium bicarbonate with 5  μ g/ml trypsin for 16 h at 30 ° C. 
For identifi cation of phosphorylation sites, the extracted tryptic peptides 
were analyzed by liquid chromatography mass spectrometry on a spec-
trometer (4000 Q-TRAP; Applied Biosystems) with precursor ion scanning 
as described previously ( Williamson et al., 2006 ). The tandem mass spec-
trometry spectra were searched against a local database containing the 
GST-MDC1 sequence using the Mascot search algorithm (www.matrix-
science.com) run on a local server. Sites of phosphorylation were validated 
by manual inspection of the mass spectrometry spectra using Analyst 1.4.1 
software (MDS Sciex). 

 Online supplemental material 
 Fig. S1 shows a sequence alignement of the SDT repeats in human, mouse, 
zebrafi sh, and honey bee MDC1. Fig. S2 shows the purifi ed MDC1 – MRN 
complex isolated from HeLa nuclear extract. Online supplemental material is 
available at http://www.jcb.org/cgi/content/full/jcb.200709008/DC1. 
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MDC1-GST fragments were affi nity purifi ed on glutathione – Sepharose 
beads (GE Healthcare). Sf9 cells expressing recombinant MRN, MR, and 
N were lysed by sonication in buffer A (50 mM sodium phosphate, pH 7.0, 
0.3 M NaCl, 10% glycerol, and 0.5 mM PMSF) containing 20 mM 
imidazol followed by centrifugation. The supernatants were loaded on Hi-
Trap chelating (Ni 2+ ) columns (GE Healthcare) equilibrated with buffer A. 
The columns were washed with 50 ml buffer A/20 mM imidazol and with 
50 ml buffer A/50 mM imidazol. Proteins were eluted with a 50-ml linear 
concentration gradient of 50 – 350 mM imidazole in buffer A. MRN-
 containing fractions were pooled and either used directly for analysis after 
dialysis against buffer B (20 mM Tris-HCl, pH 8.0, 150 mM NaCl, 10% 
glycerol, and 1 mM DTT) or loaded on 1-ml HiTrapQ columns (GE Health-
care) for further purifi cation. The HiTrapQ columns were eluted with a 10-ml 
linear concentration gradient of 50 – 500 mM NaCl. 

 Antibodies and immunological techniques 
 Mouse monoclonal HA antibodies were purchased from Covance Research 
Products. The anti – mouse NBS1 antibody was a gift from A. Nussenzweig. 
The antibodies used against human Nbs1 were obtained from Genetex, 
Novus, and Millipore. Antibodies against phospho-Nbs1 Ser-343 and anti-
phospho-H2AX were obtained from Genetex and Millipore, respectively. 
Anti-SMC1, phospho-SMC1 Ser-966, and H2AX antibodies were pur-
chased from Bethyl, and the antiphospho-53BP1 and anti-53BP1 anti-
bodies were obtained from Cell Signaling Technology. Sheep polyclonal 
antibodies against human MDC1, MRE11, and RAD50 have been de-
scribed previously ( Goldberg et al., 2003 ). Rabbit polyclonal antibodies to 
MDC1 have been described previously ( Stewart et al., 2003 ). The anti-
CK2 �  and -CK2 �  �  antibodies were purchased from Santa Cruz Biotechnol-
ogy, Inc. Phosphospecifi c MDC1 antibodies were raised in rabbits to 
the MDC1 phosphopeptides GFIDS(P)DT(P)DA and TERDS(P)DT(P)DV and 
were affi nity purifi ed using the phosphorylated and nonphosphorylated 
peptides (Eurogentec). 

 For immunoprecipitation, HeLa cells were lysed for 30 min in NETN 
lysis buffer (50 mM Tris-HCl, pH 7.5, 150 mM NaCl, 1 mM EDTA, 2 mM 
MgCl 2 , 1% NP-40 supplemented with protease inhibitors [Roche], and ben-
zonase [EMD]). The clarifi ed extract was precleared with the appropriate 
IgG (Dako) and protein A or G beads (GE Healthcare) for 1 h at 4 ° C. 5  μ g 
of immunoprecipitating antibody was added with protein A or G beads to 
the precleared supernatant and incubated for 3 h at 4 ° C. The immuno-
complexes were washed four times in NETN lysis buffer (containing 0.5% 
NP-40), boiled in SDS sample buffer, and loaded on an SDS-polyacrylamide 
gel. Proteins were analyzed by immunoblotting using standard methods. 

 For immunofl uorescence staining, cells were grown on glass cover-
slips, fi xed in ice-cold methanol, and stained with the indicated antibodies 
for 1 h at room temperature. Secondary antibodies were purchased from 
Jackson ImmunoResearch Laboratories (FITC and rhodamine) and Invitro-
gen (AlexaFluor488 and -596). Images were captured at room tempera-
ture on a confocal microscope (SP2; Leica) with a 40 ×  NA 1.25 oil 
immersion objective (Leica;  Figs. 1, 4, and 6 ) and on a microscope (Eclipse 
E600; Nikon) with a 60 ×  oil immersion objective (Nikon;  Fig. 5 ). 

 Biochemical analysis 
 For GST pull-down assays, purifi ed 5  μ g GST fusion proteins were mixed 
with 200  μ g HeLa nuclear extract or with 5  μ g of purifi ed MRN. Where 
indicated, GST fusion proteins were pretreated with 100 U CK2 (New 
England BioLabs, Inc.). The mixture was incubated at 4 ° C for 30 min to allow 
binding. Glutathione – Sepharose beads were then added, and the suspen-
sion was incubated at 4 ° C for a further 60 min. The beads were washed 
three times with wash buffer (50 mM Tris, pH 7.5, 120 mM NaCl, 1 mM 
DTT, and 0.2% NP-40), resuspended in SDS loading buffer, and analyzed 
by SDS-PAGE and immunoblotting. For peptide pull-down analysis, the 
biotinylated synthetic peptide Btn-NH-SGSFIDSD[pT]DAEEERI-COOH (Euro-
gentec) was used. Where indicated, 25 nmol of the peptide was incubated 
with 500 U of recombinant CK2 (New England Biolabs, Inc.) at 30 ° C for 
45 min and with 100 U  �  phosphatase (New England Biolabs, Inc.) at 
30 ° C for 20 min. Peptide pull-down analysis was performed as described 
previously ( Stucki et al., 2005 ). 

 CK2 in vitro kinase assays for phosphorylation site mapping was 
performed by adding 100 ng of recombinant CK2 �  (Millipore) to 1  μ g 
GST-MDC1 (amino acids 141 – 621) in CK2 kinase buffer (20 mM MOPS, 
pH 7.2, 25 mM  � -glycerophosphate, 5 mM EGTA, 1 mM sodium orthovan-
adate, 37.5 mM MgCl 2 , 1 mM DTT, 100  μ M ATP, and 10  μ Ci  � -[ 32 P]ATP) 
and incubating for 10 min at 30 ° C. Kinase reactions were inactivated by 
boiling in SDS sample buffer and were run on an SDS-polyacrylamide gel. 
Gels were stained with Coomassie blue and either dried and subjected to 
autoradiography, or the GST-MDC1 band was excised and processed for 
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