
cancers

Article

Preliminary Radiogenomic Evidence for the Prediction of
Metastasis and Chemotherapy Response in Pediatric Patients
with Osteosarcoma Using 18F-FDG PET/CT, EZRIN, and KI67

Byung-Chul Kim 1,†, Jingyu Kim 2,†, Kangsan Kim 3, Byung Hyun Byun 1, Ilhan Lim 1, Chang-Bae Kong 4,
Won Seok Song 4, Jae-Soo Koh 5 and Sang-Keun Woo 2,3,*

����������
�������

Citation: Kim, B.-C.; Kim, J.; Kim, K.;

Byun, B.H.; Lim, I.; Kong, C.-B.; Song,

W.S.; Koh, J.-S.; Woo, S.-K.

Preliminary Radiogenomic Evidence

for the Prediction of Metastasis and

Chemotherapy Response in Pediatric

Patients with Osteosarcoma Using
18F-FDG PET/CT, EZRIN, and KI67.

Cancers 2021, 13, 2671. https://

doi.org/10.3390/cancers13112671

Academic Editors: Saurabh Agarwal

and Yang Jianhua

Received: 7 May 2021

Accepted: 26 May 2021

Published: 28 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Nuclear Medicine, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea;
xikian@kirams.re.kr (B.-C.K.); nmbbh@kirams.re.kr (B.H.B.); ilhan@kirams.re.kr (I.L.)

2 Radiological & Medico-Oncological Sciences, University of Science & Technology, Seoul 34113, Korea;
jingyu8754@kirams.re.kr

3 Division of Applied RI, Korea Institute of Radiological and Medical Science, Seoul 01812, Korea;
krmount@kirams.re.kr

4 Department of Orthopaedic Surgery, Seoul National University Hospital, Seoul 03080, Korea;
cbkongmd@gmail.com (C.-B.K.); wssongmd@gmail.com (W.S.S.)

5 Department of Pathology, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea;
jskoh@kirams.re.kr

* Correspondence: skwoo@kirams.re.kr; Tel.: +82-2-970-1659
† These authors equally contributed to this work.

Simple Summary: Pediatric osteosarcoma is one of the most aggressive cancers, and predictions
of metastasis and chemotherapy response have a significant impact on pediatric patient survival.
Radiogenomics, as methods of analyzing gene expression or image texture features, have previously
been used for the diagnosis of chemotherapy responses and metastasis and can reveal the current
state of cancer. In this study, we aimed to generate a predictive model using gene expression and
18F-FDG PET/CT image texture features in pediatric osteosarcoma in relation to metastasis and
chemotherapy response. A predictive model using radiogenomics technology that incorporates both
imaging features and gene expression can accurately predict metastasis and chemotherapy responses
to improve patient outcomes.

Abstract: Chemotherapy response and metastasis prediction play important roles in the treatment
of pediatric osteosarcoma, which is prone to metastasis and has a high mortality rate. This study
aimed to estimate the prediction model using gene expression and image texture features. 18F-
fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) im-
ages of 52 pediatric osteosarcoma patients were used to estimate the machine learning algorithm. An
appropriate algorithm was selected by estimating the machine learning accuracy. 18F-FDG PET/CT
images of 21 patients were selected for prediction model development based on simultaneous KI67
and EZRIN expression. The prediction model for chemotherapy response and metastasis was esti-
mated using area under the curve (AUC) maximum image texture features (AUC_max) and gene
expression. The machine learning algorithm with the highest test accuracy in chemotherapy response
and metastasis was selected using the random forest algorithm. The chemotherapy response and
metastasis test accuracy with image texture features was 0.83 and 0.76, respectively. The highest test
accuracy and AUC of chemotherapy response with AUC_max, KI67, and EZRIN were estimated
to be 0.85 and 0.89, respectively. The highest test accuracy and AUC of metastasis with AUC_max,
KI67, and EZRIN were estimated to be 0.85 and 0.8, respectively. The metastasis prediction accuracy
increased by 10% using radiogenomics data.

Keywords: KI67; EZRIN; 18F-FDG PET/CT; random forest; radiogenomics; chemotherapy re-
sponse; metastasis
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1. Introduction

Pediatric osteosarcoma is well-known as one of the most aggressive cancers [1]. Pre-
dictions of metastasis and chemotherapy response have a significant impact on pediatric
patient survival because metastasis progresses rapidly, and treatment is difficult after the
progression of metastasis in pediatric osteosarcoma [2,3]. Chemotherapy responses and
cancer metastasis have a profound relationship with gene expression, and the current state
of cancer can be identified and predicted by analyzing changes in gene expression [4,5].
Methods of analyzing gene expression or image texture features have previously been used
for the diagnosis of chemotherapy responses and metastasis [6–8]. KI67 is a well-known
cancer metastasis marker [9]. It is mainly used to indicate cancer metastasis because it is
primarily involved in cell division, an important function of metastasis, and an increase
in expression was observed when metastasis was actively progressing and the number
of cancer cells increased. KI67 overexpression has been identified in pediatric osteosar-
coma [10]. It has also been used as a marker of chemotherapy response [11]. EZRIN is a
protein constituting the ERM (EZRIN-radixin-moesin) family that exists on the cell surface.
EZRIN plays many roles, including acting as a signaling tube between metastasis-related
cell surface molecules and signaling components. Similar to KI67, EZRIN has been used
as a marker for cancer metastasis and chemotherapy response [12,13]. EZRIN expression
provides an early survival advantage for cancer cells and plays an important role in the
invasion of other tissues in pediatric osteosarcoma [14].

Nuclear medicine images, such as positron emission tomography/computed tomogra-
phy (PET/CT), have also been used to analyze the results of metastasis and chemotherapy
responses [15]. The phenotype of cancerous tissues from images or text image features ob-
tained through image analysis can be used to analyze the results of chemotherapy response
or cancer metastasis. The combination of genetic expression analysis and nuclear imaging
texture features has been used to analyze pre-chemotherapy or chemotherapy responses
and metastasis [16,17]. This can be done by observing the phenotype and postponing the
change in a given gene because genetic changes in cells lead to changes in the phenotype.
A predictive model was estimated using image texture features obtained by analyzing
PET/CT images with machine and deep learning [18,19]. In a recent study, the associations
between image texture features from tumor 18F-FDG PET/CT image texture features and
genetic alterations in patients were identified as lung cancer [20]. The related factors were
investigated by analyzing the image texture characteristics of the 18F-FDG PET/CT image
of the gene phenotype.

Radiogenomics technology has also been used to determine whether cancer metasta-
sizes in liver cancer and to estimate a metastasis prediction model [21]. Radiogenomics
studies can reveal the current state of cancer by analyzing genetic expression and image
texture features. In addition, it is possible to estimate predictive models using machine
or deep learning because numerical analysis results, such as gene expression levels and
quantitative image texture features, can be derived. In one study, a prediction model was
estimated using the machine learning algorithm with a combination analysis of CT images
and genetic expression in breast cancer [22]. In another study, image texture features from
CT images and gene expression in pancreatic ductal adenocarcinoma were estimated using
a prediction model [23].

In this study, we aimed to estimate a predictive model using KI67, EZRIN, and 18F-FDG
PET/CT image texture features in pediatric osteosarcoma, which are expressed in relation
to metastasis and chemotherapy response. Machine and deep learning techniques were
used to construct various predictive models. The accuracy of each model was compared
to evaluate a predictive model suitable for metastasis and chemotherapy responses in
pediatric osteosarcoma.



Cancers 2021, 13, 2671 3 of 11

2. Materials and Methods
2.1. Pediatric Osteosarcoma Patient Data

Data from a total of 52 pediatric osteosarcoma patients consisted of 31 male and 21 fe-
male children aged <14 years. All of the patients with osteosarcoma received neoadjuvant
chemotherapy over four weeks, which involved a combination of methotrexate (a dose
of 8–12 g/m2), adriamycin (a dose of 60 mg/m2), and cisplatin (a dose of 100 mg/m2)
at intervals of three weeks. The surgery was performed three weeks after the end of the
second neoadjuvant chemotherapy. A total of 21 patients expressed both EZRIN and KI67
(Figure S1). KI67 expression > 15% was classified as KI67-positive and <15% was classified
as KI67-negative. EZRIN expression was classified as EZRIN-positive or -negative with
no EZRIN expression. Cancer tissues were collected from the femur, tibia, humerus, and
pelvis. All cancer tissues were classified into 2A, 2B, IIA, and unknown according to the
American Joint Committee on Cancer stage classification method. The pathologic subtypes
of each cancer tissue were identified as osteoblastic (OB), chondroblastic (CB), or others
(Table 1). necrosis of 90% or more tumor region indicated a good histological response, and
less than 90% tumor region necrosis indicated a poor histological response [24]. A total of
25 patients showed a good histological response to chemotherapy, whereas the remaining
27 patients had no response. In addition, 37 patients had no metastasis, whereas 15 patients
had metastasis. Overall, 18 patients had a good histological chemotherapy response and no
metastasis, 19 patients had a poor histological chemotherapy response and no metastasis,
seven patients had a good histological chemotherapy response and metastasis, and eight
patients had a poor histological chemotherapy response and metastasis.

Table 1. Patient information.

Characteristic Value

Sex, n (%) 21 (40.38%)
Female 31 (59.61%)
Male

Age, n (%) 52 (100%)
Years ≤ 14

Location of primary tumor, n (%) 33 (63.46%)
Femur 16 (30.76%)
Tibia 2 (3.84%)

Humerus 1 (1.92%)
Pelvis

AJCC stage, n (%) 13 (25%)
2A 16 (30.76%)
2B 4 (7.69%)
IIA 19 (36.53%)

Unknown
Pathologic subtype, n (%) 39 (75%)

OB (Osteoblastic) 10 (19.23%)
CB (Chondroblastic) 3 (5.76%)

Others

2.2. 18F-FDG PET/CT Image Texture Features

A total of 52 patient 18F-FDG PET/CT images were used for analysis. The 18F-
FDG PET/CT images were acquired before chemotherapy to confirm the prediction of
chemotherapy treatment response in pediatric osteosarcoma patients. Radiomic features
were extracted by texture analysis of the acquired 18F-FDG PET/CT images. LiFEx (ver-
sion 4.0) was used for radiomics feature extraction of the 18F-FDG PET/CT images. Over-
all, 47 image texture features were classified as first-order, second-order, and high-order.
Figure 1 shows a flow diagram of prediction model generation using image texture features
and gene expression.
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Figure 1. Diagram of the process for generation of the prediction model with image texture features
and gene expression.

2.3. Feature Selection for the Prediction Model

Among the 47 imaging features, the area under the curve (AUC) values of 0.6 or
higher were identified to improve the accuracy of chemotherapy treatment response and
metastasis prediction in pediatric osteosarcoma patients. The AUC values of the imaging
features were evaluated by analyzing the 18F-FDG PET/CT images based on EZRIN and
KI67 expression levels. The image texture features for radiogenomics were selected by
maximizing the AUC value (AUC_max). Medcalc (version 19.4.1) was used to determine
the AUC value of each image feature obtained by extracting the features of the 18F-FDG
PET/CT images.

2.4. Prediction Model Development Using Machine and Deep Learning

Random forest and gradient boosting algorithms were used to predict the treatment
response of pediatric osteosarcoma patients. To achieve this goal, the ratio of machine
learning training data to test data was set to 7:3. However, owing to the lack of patient
datasets, it is difficult to consider any input pre-processing involving the deletion of some
data. Cross-validation was performed 10 times to increase the statistical reliability of the
performance measurements. A convolutional neural network (CNN; Keras 2.3.1) was used
to calculate the accuracy of the prediction model. The CNN consisted of an input layer, an
output layer, two convolution layers, two pooling layers, and three fully connected layers.
Maximum pooling was used to conserve each layer’s properties. A fully connected layer
was used to flatten the two-dimensional layer to a one-dimensional layer. A feature map
was extracted from the output layer of the deep learning results. The feature map data
were classified as 0 or 1 for the t-distributed stochastic neighbor embedding (t-SNE) plot.

2.5. Radiogenomics Data Analysis

Machine learning was performed to evaluate the predictive model for chemotherapy
response and metastasis. For the chemotherapy response prediction model, EZRIN, KI67, im-
age texture features (AUC > 0.6, 7 features) + EZRIN + KI67, and AUC_max + EZRIN + KI67
were used as inputs. For the metastasis prediction model, EZRIN, KI67, image texture
features (AUC > 0.6, 17 features) + EZRIN + KI67, and AUC_max + EZRIN + KI67 were
used as inputs.

3. Results

3.1. Image Texture Feature Extraction from 18F-FDG PET/CT Images

A total of 47 imaging features (Table S1) were acquired by drawing the region of
interest of the tumor site on each 18F-FDG PET/CT image from responders/non-responders
to chemotherapy and metastasis (Figure 2). Seven of the 47 imaging features had an AUC
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value of 0.6 or higher for evaluating the chemotherapy response (Table S2). 17 of the 47
imaging features had an AUC value of 0.6 or higher for evaluating the metastasis (Table
S3). The image feature with the highest AUC was Neighborhood Gray-Level Different
Matrix (NGLDM)_Contrast, for which the value was 0.652 (Table S2). After dimension
reduction with t-SNE, the texture features of 47 images from the chemotherapy response
and metastasis prediction models did not allow a clear separation of each image (Figure 3).

Figure 2. Transverse, coronal, and sagittal sections from osteosarcoma 18F-FDG PET/CT images.
(a) Images from a chemotherapy responder; (b) images from a chemotherapy non-responder.

Figure 3. t-Distributed stochastic neighbor embedding (t-SNE) of texture features from 47 images.
The 0/1 values represent non-responders and respondents, respectively. (a) Chemotherapy response
t-SNE; (b) metastasis t-SNE.

3.2. Machine and Deep Learning Algorithms Using 18F-FDG PET/CT Images

The sensitivity, specificity, AUC, train accuracy, and test accuracy of the prediction
models for chemotherapy response and metastasis were calculated using the random forest
algorithm, gradient boosting algorithm, and deep learning. The random forest algorithm
prediction model test accuracy using total text features (47) and text features (AUC > 0.6)
was 0.71 and 0.83 for chemotherapy response, respectively. In the gradient boosting
prediction model, the test accuracy using total text features (47) and text features (AUC
> 0.6) were 0.81 and 0.81, respectively (Table 2). In the deep learning prediction model,
the test accuracy was 0.975 (Figure 4). The accuracy and loss function of chemotherapy
response and metastasis were represented in Figure S2. The random forest algorithm
prediction model test accuracy using total text features (47) and text features (AUC > 0.6)
was 0.72 and 0.76 for metastasis, respectively. In the gradient boosting prediction model, the
test accuracy using total text features (47) and text features (AUC > 0.6) was 0.61 and 0.76,
respectively. In the deep learning prediction model, the test accuracy was 0.983 (Figure 4).
Thus, the prediction models using the random forest algorithm and deep learning showed
the highest accuracy for chemotherapy response and metastasis (Table 2).
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Table 2. Chemotherapy response and metastasis prediction model with various machine learning algorithms and deep learning.

Chemotherapy
Response

Random Forest Gradient Boosting Deep Learning

Text Feature (47) AUC > 0.6 (7) Text Feature (47) AUC > 0.6 (7) Train (37): Test (15)

Sensitivity 0.76 0.79 0.85 0.84 0.956
Specificity 0.74 0.82 0.94 0.88 0.964

AUC 0.76 0.80 0.88 0.86 0.917
Train accuracy 0.71 0.83 0.77 0.83 0.978
Test accuracy 0.71 0.83 0.81 0.81 0.975

Metastasis
Random Forest Gradient Boosting Deep Learning

Text Feature (47) AUC > 0.6 (17) Text Feature (47) AUC > 0.6 (17) Train (37): Test (15)

Sensitivity 0.77 0.80 0.76 0.85 0.958
Specificity 0.74 0.66 0.76 0.73 0.990

AUC 0.73 0.85 0.74 0.72 0.970
Train accuracy 0.72 0.76 0.77 0.67 0.986
Test accuracy 0.72 0.76 0.61 0.76 0.983

Figure 4. Deep learning t-distributed stochastic neighbor embedding (t-SNE) results. The 0/1
values represent non-responders and respondents, respectively. (a) Chemotherapy response t-SNE;
(b) metastasis t-SNE.

3.3. Deep Learning Interpretation: t-SNE Plots

As shown in Figure 4, after dimension reduction with t-SNE, image texture features
from the chemotherapy response and metastasis prediction models were separated into
two classes. In the two cases, the classes were clearly separated. We obtained a relatively
high precision rate for the chemotherapy response and metastasis prediction model class
because the chemotherapy response and metastasis clusters were pure.

3.4. Radiogenomics Machine Learning Model

The random forest algorithm was confirmed to be used as a prediction model for the
chemotherapy response and metastasis of pediatric osteosarcoma with a combination of
gene expression data and image features. The sensitivity, specificity, AUC, train accuracy,
and test accuracy of the prediction model were calculated.

The chemotherapy response prediction model AUCs using EZRIN, KI67, image texture
features (7, AUC > 0.6) + EZRIN + KI67, and NGLDM_Contrast (AUC_max) + EZRIN
+ KI67 were 0.58, 0.57, 0.77, and 0.89, respectively. The accuracy of the chemother-
apy response prediction model using EZRIN, KI67, image texture features + EZRIN
+ KI67, and NGLDM_Contrast (AUC_max) + EZRIN + KI67 was 0.53, 0.52, 0.73, and
0.85, respectively. The metastasis prediction model AUCs using EZRIN, KI67, image
texture features (17, AUC > 0.6) + EZRIN + KI67, and Gray-Level Co-occurrence Matrix
(GLCM)_Correlation (AUC_max) + EZRIN + KI67 were 0.56, 0.57, 0.76, and 0.80, respec-
tively. The metastasis prediction model test accuracy using EZRIN, KI67, image texture
features + EZRIN + KI67, and GLCM_Correlation (AUC_max) + EZRIN + KI67 was 0.54,
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0.52, 0.74, and 0.85, respectively. The prediction model using AUC_max, EZRIN, and KI67
with the random forest algorithm showed the highest accuracy (Table 3).

Table 3. Chemotherapy Response and metastasis prediction model with gene expressions, combination of gene expression
image texture features and gene expression and combination of area under curve max (AUC_max) image texture and
gene expressions.

Chemotherapy Response EZRIN KI67 Image Texture Feature +
EZRIN + KI67

NGLDM_Contrast +
EZRIN+ KI67

Sensitivity 0.59 0.57 0.84 0.87
Specificity 0.44 0.68 0.75 0.85

AUC 0.58 0.57 0.77 0.89
Train accuracy 0.53 0.52 0.73 0.85
Test accuracy 0.53 0.52 0.73 0.85

Metastasis EZRIN KI67 Image Texture Feature+
EZRIN + KI67

GLCM_Correlation +
EZRIN+ KI67

Sensitivity 0.61 0.54 0.77 0.91
Specificity 0.42 0.65 0.55 0.6

AUC 0.56 0.57 0.76 0.8
Train accuracy 0.54 0.52 0.74 0.85
Test accuracy 0.54 0.52 0.74 0.85

3.5. Machine Learning Prediction Model with the Random Forest Algorithm

The receiver operating characteristic curves of the chemotherapy response and metas-
tasis prediction models are shown in Figure 4. The AUCs for chemotherapy prediction
using KI67, EZRIN, image texture features + EZRIN + KI67, and NGLDM_Contrast +
EZRIN + KI67 were 0.58, 0.57, 0.77, and 0.89, respectively. The AUCs for metastasis predic-
tion using KI67, EZRIN, image texture features + EZRIN + KI67, and GLCM_Correlation +
EZRIN + KI67 were 0.56, 0.57, 0.76, and 0.8, respectively (Figure 5).

Figure 5. Receiver operating characteristic curves of the prediction features for patient outcomes.
(a) Chemotherapy response. (b) Metastasis.

4. Discussion

In this study, we evaluated a predictive model that can predict the chemotherapy
response and metastasis of pediatric osteosarcoma by analyzing gene expression and 18F-
FDG PET/CT image texture features. Several appropriate algorithms were selected from
machine learning algorithms that have shown good predictive performance. Imaging
features that are associated with metastasis and chemotherapy response were extracted. A
predictive model showing high accuracy was estimated using the extracted image features,
gene expression, and the previously selected algorithm.
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KI67 and EZRIN are clinically used as biomarkers to determine metastasis or chemother-
apy responses [25–28]. Rejniak et al. reported that KI67 expression is associated with
pediatric osteosarcoma metastasis and chemotherapy response [29], and Bacci et al. re-
ported that EZRIN expression is associated with pediatric osteosarcoma metastasis and
chemotherapy response [30]. In other studies, it is well-known that the expression levels of
KI67 and EZRIN are associated with metastasis and chemotherapy responses in pediatric
osteosarcoma [31–36]. As described previously, these two genes were previously used
as biomarkers for pediatric osteosarcoma, but the prediction model test accuracy was
low in our study (test accuracy ~ 0.53). Low accuracy was estimated despite the use of
well-known biomarkers for chemotherapy response and metastasis. The predictive model
of chemotherapy response and metastasis suggests that accurate prediction is difficult
using the expression of a single gene.

A total of 47 image features were extracted from the 18F-FDG PET/CT images. Imaging
features related to chemotherapy response and metastasis were classified by the AUC value.
The image texture feature that was most closely related to chemotherapy response was
NGLDM_Contrast, and related to metastasis was GLCM_Correlation. The prediction
model with AUC_max showed low accuracy in chemotherapy response and metastasis.
The chemotherapy results showed a high predictive accuracy than metastasis from the
prediction models estimated using image texture features.

The predictive model using imaging texture features showed an accuracy of 83% for
chemotherapy response and 76% for metastasis. For clinical applications, it is necessary
to generate a predictive model with higher accuracy. We used a radiogenomics technique
that evaluates both gene expression and imaging factors to improve the accuracy of the
predictive model for both conditions. The predictive model using the radiogenomic
technique showed high predictive ability in both chemotherapy response and metastasis
(Figure 4). The accuracy was improved by about 10% or more when the AUC_max value
was used in both conditions.

The predictive model using images to predict chemotherapy responses showed good
results. In metastasis, the predictive model that used images and genetic information
displayed improved performance. Deep learning has shown high predictive performance
with image texture features, but it is difficult to apply genetic information with image
texture features to improve accuracy. Machine learning predictive models can be applied
to data with a variety of properties, such as gene expression and image texture features, as
in this study. Additionally, factors other than gene expression and image factors can be
used when conducting research on machine learning predictive models with digitalization
of data.

The predictive model of chemotherapy using machine learning showed a high accu-
racy of 83% when estimated by 18F-FDG PET/CT imaging alone and 85% when analyzed
after adding gene expression. The chemotherapy response reaction process is related to
the heterogeneity of cancer cells, and since this can be confirmed by imaging, it is possible
to obtain higher accuracy with the analysis results of the image. It is difficult to obtain
high accuracy through image analysis alone because of the challenge in determining the
metastasis process through simple image analysis. The accuracy of the metastasis process
was 76%, and when the genetic analysis results were added, it increased to 85%. A more
accurate predictive model was estimated by adding the gene expression results to the
image analysis of the metastasis process.

A limitation of this study is that owing to the rarity of pediatric osteosarcoma, a patient
set for extra validation could not be obtained. The predictive model was generated using
the radiogenomics technique, but the accuracy of the predictive model was not high even
in other patient groups through additional verification. A larger population of pediatric
osteosarcoma patients is needed to evaluate the accuracy of the predictive model. The data
in this study may not be reliable because of the small sample size. However, it can be used
as preliminary evidence to estimate the probability of the predictive model. Even though
the number of patient groups is small, the analysis method using image texture features and
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gene expression data have been shown to be applicable to chemotherapy and metastasis
prediction models. Additional data from other pediatric patients with osteosarcoma could
improve the accuracy of the model for predicting chemotherapy response and metastasis.

5. Conclusions

Predictive models using the random forest algorithm showed the best accuracy for
predicting metastasis and chemotherapy responses in our pediatric osteosarcoma dataset.
The predictive model that combined KI67, EZRIN, and image texture features was estimated
to have a higher accuracy than the predictive models using each factor separately. The
accuracy of metastasis prediction increased by 10% using radiogenomics data. High
accuracy was estimated using a radiogenomics technique that uses both gene expression
and imaging texture features for metastasis prediction. Thus, a predictive model using
radiogenomics technology that incorporates both imaging features and gene expression can
accurately predict metastasis and chemotherapy responses to improve patient outcomes.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/cancers13112671/s1, Figure S1. Immunohistochemical staining of KI67 (a) and EZRIN
(b). Figure S2. 18F-FDG PET/CT image deep learning accuracy and loss value, (a) Chemotherapy
response prediction, (b) Metastasis prediction. Table S1. The AUC values of image texture features
for chemotherapy response from 52 pediatric osteosarcoma. Table S2. The AUC values of image
texture features for metastasis from 52 pediatric osteosarcoma. Table S3. 47 image texture features
from 18F-FDG PET/CT.
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