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SUMMARY

Protein degradation is known to be a key component of expression regulation for individual genes, 

but its global impact on gene expression has been difficult to determine. We analyzed a parallel 

gene expression dataset of yeast meiotic differentiation, identifying instances of coordinated 

protein-level decreases to identify new cases of regulated meiotic protein degradation, including of 

ribosomes and targets of the meiosis-specific anaphase-promoting complex adaptor Ama1. 

Comparison of protein and translation measurements over time also revealed that, although 

meiotic cells are capable of synthesizing protein complex members at precisely matched levels, 

they typically do not. Instead, the members of most protein complexes are synthesized 

imprecisely, but their protein levels are matched, indicating that wild-type eukaryotic cells 

routinely use post-translational adjustment of protein complex partner levels to achieve proper 

stoichiometry. Outlier cases, in which specific complex components show divergent protein-level 

trends, suggest timed regulation of these complexes.

In Brief

Eisenberg et al. leverage global translation and protein data to identify cases of regulated protein 

degradation in meiosis. Analyses of temporal trends reveal that members of protein complexes can 

be synthesized at ideal stoichiometry but that they are usually made imprecisely and their levels 

adjusted by degradation.
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Graphical Abstract

INTRODUCTION

The protein complement of a cell defines its structure and function and is determined by the 

relative rates of synthesis and degradation for each protein present. The mechanisms and 

specificity determinants of synthetic processes in gene expression, especially transcription, 

have been well studied. In addition, the basic classes of mechanisms by which proteins are 

degraded within cells, including through regulated ubiquitin-based protein turnover, have 

been defined. However, it remains difficult to systematically determine the impact of 

regulated protein degradation in an unperturbed system, even at steady state. 

Comprehensively assessing the timing and specificity of protein degradation mechanisms in 

the context of cellular differentiation is an even greater challenge, but also particularly 

critical, as the transitions between sequential cellular stages require waves of both synthesis 

of new proteins and removal of pre-existing proteins.

Early examples of regulated degradation were identified by single-gene analyses, such as the 

case of Cyclin during the cell cycle and meiosis (Evans et al., 1983). Cyclin protein 

synthesis was observed to be constitutive, but the protein level fluctuated, leaving regulated 

protein degradation as the remaining explanation for the protein expression pattern observed. 

These observations ultimately led to the discovery of the conserved anaphase-promoting 

complex/cyclosome (APC/C)-based specificity mechanism, which is responsible for a key 

event in cell division (Irniger et al., 1995; King et al., 1995; Sudakin et al., 1995). Here we 

apply a similar approach, based on examining genome-wide protein patterns during a natural 

process to identify cases of protein degradation more globally. We recently generated a 

complex dataset that enabled these analyses, and that includes deep and matched mRNA-, 

translation-, and protein-level measurements during the natural process of meiotic 

differentiation in budding yeast (Cheng et al., 2018). These analyses allowed the 
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identification of genes that we propose to be targets of the Ama1-APC/C and revealed 

degradation and re-synthesis of ribosomal proteins following meiosis in maturing gametes.

We also found strong and widespread evidence for post-translational adjustment of the 

relative levels of protein complex components over the natural process of meiotic 

differentiation. While such regulation has been shown to occur in mutant conditions that 

create an imbalance among macromolecular complex components (Abovich et al., 1985; 

Dephoure et al., 2014; Gorenstein and Warner, 1977; Ishikawa et al., 2017; Lam et al., 2007; 

Papp et al., 2003; Sung et al., 2016a; Torres et al., 2010; Warner, 1977; Warner et al., 1985), 

the effect that we observe is widespread in wild-type cells subjected to no external 

perturbations. Our analyses show that although eukaryotic cells are capable of synthesizing 

binding partners with effectively perfectly matched levels, they typically synthesize them at 

only roughly similar levels and fine-tune their stoichiometry through protein degradation. 

Finally, we find that divergence of protein-level trends of specific protein complex members 

from their partners is suggestive of functional differences for these members, including 

regulatory roles.

RESULTS

Protein Degradation Inferred from Comparison of Protein and Translation Data

Although our comprehensive dataset of gene expression through meiotic differentiation 

(Figure 1A) was previously analyzed only for transcriptional and translational regulation 

(Cheng et al., 2018), we found that comparison of translation and protein patterns could also 

be used to infer post-translational regulation of gene expression that accurately captures 

expected regulation. For example, the protein for cyclin-dependent kinase (CDK) Cdc28 is 

required through much of meiosis and was present for a period of at least 3 hr after 

translation ceased, suggesting protein stability during this time frame (Figure 1B). In 

contrast, protein levels of the synaptonemal complex (SC) component Zip1 declined in 

concert with a decrease in translation, which is consistent with the known active degradation 

of this protein in late prophase (Figure 1C; Sourirajan and Lichten, 2008). In an extreme 

case of such regulation, the CDK inhibitor Sic1 showed decreased protein levels, despite 

high ongoing translation during meiotic S phase and prophase, which is consistent with the 

critical known regulation of this protein (Figure 1D; Dirick et al.,1998).

Protein-level Co-clustering Identifies Additional Candidate Targets of Ama1

We reasoned that we should be able to identify cases of coordinated degradation by simply 

looking for groups of proteins that show similar timing and degree of protein-level decrease 

between sequential meiotic time points. To this end, we calculated the ratio of the protein 

level at each time point to that of the previous time point for every protein quantified and 

performed hierarchical clustering (Figure 1E). This analysis revealed a variety of discrete 

patterns of protein-level change over meiosis. Most prominent in the degree of change 

observed was a group of genes for which protein abundance increased prior to and early in 

the meiotic divisions and then rapidly decreased. This cluster included the Polo kinase Cdc5, 

the mid-meiotic master transcription factor Ndt80, and the prospore membrane leading edge 

component Ssp1, which are known targets of the meiotic APC/C activator Ama1 (Figure 1E; 
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Diamond et al., 2009; Okaz et al., 2012). The cluster contained 42 genes overall, including 

several with well-defined roles during the first meiotic division, but no characterized 

mechanism of protein degradation.

Ama1 activates APC/C-mediated degradation during multiple periods in meiosis, including 

late in the first meiotic division (Diamond et al., 2009; Okaz et al., 2012; Tan et al., 2011). 

Thus far, Ama1 targets have been identified on a gene-by-gene basis. We sought to 

determine whether temporal protein expression patterns similar to Cdc5, Ndt80, and Ssp1 

could indicate Ama1-dependent degradation. We focused on two genes in the Cdc5/Ndt80/

Ssp1 cluster (Figure 1E), RNA-binding proteins Pes4 and Mip6, based on their known 

meiotic function and our ability to construct C-terminally tagged versions of their encoded 

proteins that could be visualized by western blot. Because clustering was based on similar 

overall protein-level changes over time, gene groupings were likely to share both synthesis 

and degradation mechanisms. The former was already clear, as all genes in this group are 

predicted targets of Ndt80, which activates its own transcription along with a large set of 

other targets in late prophase to enable the meiotic divisions (Chu and Herskowitz, 1998). 

Matched mRNA sequencing (mRNA-seq) data were consistent with this regulation, showing 

overlapping patterns of mRNA accumulation for all five genes (Figure 2A). Translation 

patterns were also generally similar for these genes, which is consistent with no reported 

strong translational regulation for their mRNAs (Figure 2B). Protein accumulation patterns 

were similarly comparable for these genes, as expected, but the later decrease in protein 

levels was even more similar, with nearly identical downward slopes in late meiosis I (MI) 

(Figure 2C). The degree of similarity of these protein down-slopes mirrored that of their 

highly coordinated mRNA up-slopes and suggested that the degradation of these proteins 

may be mediated by the same temporally restricted mechanism (Figures 2A and 2C).

We observed the expected wild-type pattern of protein accumulation for Ndt80 and Ssp1, 

and the relative persistence of epitope-tagged protein in cells deleted for AMA1 (Figures 

2D, 2E, S1A, S1B, S1F, S1G, S1K, and S1L). We found that Pes4 and Mip6 also showed the 

persistence of high protein levels past the normal stage of degradation in ama1Δ cells, 

suggesting that their degradation is at least partially dependent on Ama1-APC/C in mid-

meiosis, as predicted by cluster analysis (Figures 1E, 2F, 2G, S1H, and S1I). We confirmed 

that this effect could not be explained by generally delayed meiotic progression in ama1Δ 
cells (Figures S1C, S1D, S1M, S1N) and further compared to a protein, Stu2, which has a 

similar overall protein pattern to the other candidates but was not in the same discrete 

subcluster as Cdc5, Ssp1, Ndt80, Pes4, and Mip6 (Figure 1E). We found no change in Stu2 

protein persistence in ama1Δ cells compared to wild-type, suggesting that the effect that we 

observe is specific (Figures 2H, S1E, S1J, and S1O). While Pes4 and Mip6 were not 

previously identified as targets of regulated degradation, these proteins have a temporally 

restricted role, mediating the translational repression of several Ndt80 targets prior to late 

meiosis II (MII; Jin et al., 2017). We conclude that the Ama1-APC/C has targets beyond 

those previously characterized and that its activity during the meiotic divisions may 

coordinate the destruction of diverse proteins that are important for MI but unneeded during 

MII.
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Substructure in Protein Clustering of Genes Co-regulated for Protein Synthesis Suggests 
Post-translational Adjustment Based on Physical Interactions

As the comparison of protein-level changes among genes that were co-regulated for 

synthesis was informative for identifying Ama1-dependent proteins, we wondered whether 

such analyses could more generally elucidate cases of regulated protein degradation. We 

turned to a group of genes that we previously identified as showing highly similar protein 

synthesis patterns (Brar et al., 2012) and that are enriched for roles in recombination and SC 

formation, two processes involved in the physical linkage of “mom” and “dad” 

chromosomes before MI segregation (Figure S2, left). For the complex components that we 

were able to quantify by mass spectrometry, protein abundance patterns showed greater 

diversity than translation level patterns. In addition, functional subgroups emerged from the 

protein measurements that had more similar patterns than the group as a whole (Figure S2, 

right), and protein abundance-level clusters correlate with known physical interactions. For 

example, recombination and SC factors, which interact directly or indirectly with chromatin, 

clustered separately from the genes that are not thought to be involved in these processes 

(Figure S2, bold versus plain text). Furthermore, proteins that are known structural 

components of the SC, which associate with chromatin (and each other) during meiosis, 

formed a subcluster in the protein abundance data that is distinct from more direct regulators 

of recombination (Figure S2, orange versus purple; reviewed in Cahoon and Hawley, 2016; 

Zickler and Kleckner, 2015). Finally, this grouping included three characterized 

heterodimers, and each pair clustered together in the protein but not the translation data 

(Figure S2, green; Humphryes et al., 2013; Pochart et al., 1997; Shinohara et al., 2008). 

Since protein abundance measurements integrate translation and protein degradation, we 

propose that the more precise matching of protein levels for interaction partners results from 

the degradation of uncomplexed subunits.

This conclusion is consistent with a predominant model for protein complex assembly and 

homeostasis that is based on mutant analyses. It has been widely reported that members of 

stable protein complexes are present with equivalent steady-state protein levels and that this 

balanced stoichiometry is important for cellular fitness (Burke et al., 1989; reviewed in 

Harper and Bennett, 2016; Veitia and Potier, 2015). Experiments in which one protein 

complex component was decreased in expression, for example, revealed resultant decreases 

in other complex components (Abovich et al., 1985; Stevens and Davis, 1998). 

Overexpression of a single protein complex component can result in decreased protein 

stability for this component, resulting from its proteasome-mediated degradation (Abovich 

et al., 1985; Ishikawa et al., 2017; Stevens and Davis, 1998; Sung et al., 2016a; Warner et 

al., 1985). Aneuploid cells carrying an extra chromosome showed expression from this 

chromosome that was proportionally increased at the protein level for most genes, with the 

exception of protein complex members, which were dampened at the protein level relative to 

expectations based on mRNA and translation measurements (Dephoure et al., 2014). In 

addition, a pulsed mass spectrometry study in mammalian cell lines revealed an initial rapid 

proteasome-dependent phase of degradation of a subset of proteins, which were enriched for 

protein complex membership, suggesting that the oversynthesis of some complex members 

leaves a subset of newly synthesized proteins uncomplexed and thus unstable (McShane et 

al., 2016).
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While it is established that protein-level adjustment through degradation can occur in diverse 

mutant and perturbed conditions, its prevalence in wild-type cells under natural conditions 

has been difficult to assess. It is known that members of most protein complexes do not 

show highly correlated mRNA levels (Gandhi et al., 2011; Liu et al., 2009), and in isolated 

natural cases, it has been shown that protein complex components are synthesized out of 

stoichiometry and adjusted to similar levels by protein degradation (Blikstad et al., 1983; 

Lehnert and Lodish, 1988; Mueller et al., 2015). It has also been reported, however, that 

wild-type cells tend to synthesize protein complex components in proportion to the 

stoichiometry seen in final complexes, perhaps precluding the need for regulation at the level 

of degradation (Li et al., 2014; Taggart and Li, 2018). Coherently reconciling results from 

individual gene studies and large-scale studies, as well as between regulation in wild-type 

and perturbed cellular conditions, has been challenging. Quantitatively comparing the levels 

of mRNA, translation, and protein in parallel for complex partners in wild-type cells should 

address this problem, but this requires comparing sequencing- and mass spectrometry-based 

measurements. These two fundamentally different types of measurements show different 

dynamic ranges of detection, and by traditional mass spectrometry, precise direct 

comparison of measurements between proteins with different physical properties is difficult.

Precisely Matched Complex Component Synthesis Is Possible but Not Pervasive during 
Meiotic Differentiation

We reasoned that our dataset provided a unique opportunity to assess the degree of post-

translational adjustment of levels of stable protein complex members in wild-type cells 

because of several advantageous properties of the data. First, we measured mRNA, 

translation, and protein from matched extracts, allowing their direct comparison. Second, we 

measured nearly 80% of the annotated yeast proteome. Third, we made measurements for 

several sequential time points, which allowed analysis of trends and correction for 

differences in dynamic ranges of detection for mass spectrometry and sequencing data. As a 

simple first test, we examined the patterns of mRNA, translation, and protein for several 

heterodimer pairs. We found that in the case of TUB1/TUB2—the primary tubulin 

heterodimer genes—levels of mRNA, translation, and protein over time were remarkably 

well matched for both components (Figure 3A). The degree of similarity was striking given 

that these genes are encoded on separate chromosomes and show disparate promoter, 5′ 
UTR, and open reading frame (ORF) sequences. Furthermore, TUB1 mRNA is subject to 

splicing, while TUB2 is not. This suggests that eukaryotic cells are capable of synthesizing 

complex components in surprisingly precise stoichiometry, even when the genes encoding 

them have different cis-regulatory regions and sequences. However, in the cases of three 

other heterodimer pairs initially investigated in detail—Rbg1/Tma46, Pob3/Spt16, and Gtr1/

Gtr2—we observed some similarity between mRNA and translation for the two genes, but 

much higher similarity at the protein level, suggesting that meiotic cells synthesize these 

protein partners somewhat imprecisely and that their levels are adjusted post-translationally 

to achieve 1:1 stoichiometry (Figures 3B–3D).

To determine the degree to which these examples reflect general trends, we isolated data for 

all of the genes noted as members of heterodimeric complexes in the Saccharomyces 
genome database (https://www.yeastgenome.org). We restricted our analysis to cases in 
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which we were able to quantify both heterodimer members at all levels (mRNA, translation, 

and protein) for every time point and for which the heterodimer did not clearly involve 

prevalent partner substitution by either entirely different proteins or their paralogous partner. 

This last filter was a necessary simplification for some heterodimers, but the determination 

of “prevalence” was sometimes nuanced. For example, TUB3 was not included in our 

heterodimer analysis of TUB1/TUB2 because—although it is known that Tub3 can 

substitute for Tub1 in interacting with Tub2—Tub3 was synthesized at very low levels 

during meiosis, ranging from only 7% to 17% of those of Tub2. Our approach resulted in a 

list of 37 high-confidence heterodimer pairs (Figure 3G, left). The two heterodimers that 

make up the annotated tetramer for the Ndc80 kinetochore complex were also included 

(Spc24/Spc25 and Ndc80/Nuf2), because the temporal meiotic regulation of this complex 

(discussed below) has been studied in detail (Chen et al., 2017; Chia et al., 2017; Miller et 

al., 2012). Among these 39 cases, we found that 9 showed a pattern similar to that seen for 

Tub1/Tub2, with correlation coefficients for both translation and protein for the 2 genes that 

were higher than 0.95. Of the remaining 30 cases, 26 (87%) showed patterns suggestive of 

post-translational adjustment of protein levels, with protein-level correlations for the two 

genes exceeding translation-level correlations, by a large margin in some cases (Figures 3G, 

left, 3H, and S3C). This result suggests a model by which heterodimer partners are usually 

synthesized imprecisely and adjusted by degradation of unbound partners in unperturbed 

wild-type cells.

We considered the possibility that the higher protein compared to translation or mRNA 

correlations could simply reflect the differences in sequencing and mass spectrometry 

measurements, or the instantaneous nature of translation versus steady-state nature of protein 

abundance measurements. To determine whether protein measurements simply tended to 

correlate better than translation measurements for technical reasons, we examined gene pairs 

that should have similar expression patterns, but not because of stable physical association. 

We reasoned that sequential enzymes in linear biosynthetic pathways represent such a class 

of gene pairs and would be expected to show correlated expression, but not necessarily 

physical protein association. We again excluded cases in which paralogs serve major 

redundant roles and were again restricted to cases in which both sequential pathway 

components were quantified in our dataset at all levels. We included 21 protein pairs that fit 

these criteria without repetition of either protein in the pair in the analysis (Figure 3G, right). 

This set of pathway partners showed a starkly different pattern of translation- and protein-

level correlation than was seen for heterodimers (examples in Figures 3E and 3F, right side 

of 3G and 3H, and S3A–S3C). In two cases, Trp3/Trp5 and Lys4/Lys12, expression 

correlation at both translation and protein levels was high and roughly equivalent. Only 7 of 

the remaining 19 (37%) cases showed a higher protein correlation than translation 

correlation for the pairs. Subsequent analysis of these cases revealed that at least two of 

these sets (Erg25/Erg26 and Erg6/Erg2), although not annotated as heterodimers in the 

Saccharomyces genome database, are in fact reported to associate physically in a complex 

(Baudry et al., 2001; Mo and Bard, 2005). The remaining 12 gene pairs (57%) showed a 

poorer correlation between protein levels compared to translation levels (Figures 3G, right, 

3H, S3A, and S3B). Only the difference between protein correlations for the two types of 

gene pairs is significant (p < 0.001), suggesting that the high protein-level correlation 
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observed for complex components is not simply an artifact of our measurements (Figure 

3H). We further confirmed that differences in fold changes, absolute changes, or average 

gene expression levels for gene pairs measured did not skew protein and translation 

correlation coefficients in our data (Figures S3D–S3G and S4A–S4F).

Poorly Matched Protein Complex Component Levels Suggest Regulatory Roles

Of the 39 heterodimers that we examined in the full dataset, only 4 (13.3%) showed protein 

levels that were more poorly correlated over meiosis than translation levels (Figure 3G). 

This set of genes are candidates for future study of potentially interesting biological 

regulation in meiosis, as this is the pattern seen for the Ndc80/Nuf2 heterodimer (Figure 

3G), which reflects the recent finding that Ndc80 complex activity is silenced early in 

meiosis by specific downregulation of Ndc80 protein levels (Chen et al., 2017; Chia et al., 

2017; Miller et al., 2012). The downregulation of Ndc80 results in an inactive outer 

kinetochore during meiotic prophase because Ndc80 acts as a linchpin component. When it 

is present, the complex is active; when it is not present, the complex is not (Chen et al., 

2017; Chia et al., 2017; Miller et al., 2012). When we analyzed their protein levels side by 

side, as determined by mass spectrometry, all four Ndc80 complex components showed 

patterns that are consistent with this reported regulation (Figure S5A). Spc24, Spc25, and 

Nuf2 showed similar protein-level trends to one another over meiosis, but Ndc80 alone 

showed low levels early in meiosis that rose before the first meiotic division. At the 

translation level, there was poorer correlation among Spc24, Spc25, and Nuf2 than was seen 

at the protein level, while Ndc80 was similarly poorly correlated with all three at both the 

protein and translation levels (Figure S5A).

Trends in Regulation of Heterodimers Also Apply to Multiprotein Complexes

Analysis of stable multisubunit protein complexes for which we were able to quantify most 

or all of the components also revealed evidence of degradation of free monomers (Figures 

4A–4E, 4I, 4J, S5B, and S5C). Comparison of translation and protein patterns over meiosis 

for the oligosaccharyltransferase (OST), chaperonin containing TCP-1 (CCT), F1F0 

ATPase, histone deacetylase (HDA), endoplasmic reticulum membrane protein complex 

(EMC), Ccr4-Not, exosome, translocon, and prefoldin complexes revealed a trend similar to 

that observed for heterodimers (Figures 4A–4E, 4I, 4J, S5B, and S5C). Although in some 

cases expression was already well correlated at the translation level, in all of the cases 

analyzed, the correlation was even higher at the protein level. A control comparison of linear 

biosynthetic pathway members did not show a similar trend, as exemplified by the heme, 

pyrimidine, ergosterol, histidine, and nucleotide biosynthesis pathways (Figure 4F–4H, S5D, 

and S5E). Interestingly, although most complex members showed better matching of protein 

than translation level patterns, outlier components were also observed in two cases analyzed 

(the exosome and the Ccr4-Not complex), as seen for the Ndc80 complex (Figures 4I, 4J, 

and S5A). This suggests a mechanism for meiotic regulation of complex activity through 

regulation of the levels of one or more key members, as discussed above for the Ndc80 

complex.

A more detailed investigation of the exosome components revealed that the three protein 

components (Mpp6, Rrp6, and Lrp1) that did not show high protein level correlation with 
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the others are known to be non-constitutive complex members (Figures 4J and 5A). Mpp6 is 

an accessory component of the nuclear exosome, and Rrp6/Lrp1 associate tightly as a 

subcomplex that also associates specifically with the nuclear exosome (Feigenbutz et al., 

2013; Synowsky et al., 2009). These three genes clustered tightly with the core exosome 

components at the mRNA and translation levels, but they are clearly distinct from core 

exosome components in protein-level clustering, with the closely physically associated 

Rrp6/Lrp1 showing much tighter protein-level correlation with each other than at either 

other level of expression measurement (Figure 5A). These patterns support specific post-

translational adjustment of protein levels based on physical association of protein complex 

components.

Analysis of proteasome components similarly revealed a specific protein-level discordance 

between core and regulatory subunits. We were able to quantify all 33 26S proteasome 

subunits at every level in our gene expression dataset, as well as 4 associated factors. All 

26S proteasome subunits showed highly similar patterns of mRNA accumulation and 

translation, which is consistent with their transcriptional co-regulation (Figures 5B and 5C) 

(Mannhaupt et al., 1999; Sato et al., 2009). It was not possible, based on clustering of 

mRNA or translation measurements, to distinguish between subcomplexes (Figures 5B and 

5C). In contrast, the protein-level patterns for this set of 33 26S genes showed 2 major 

groupings, which corresponded almost perfectly with the 19S regulatory particle and the 20S 

proteasome core (Figures 5B and 5C). The 19S components showed a decrease in protein 

levels that precedes the decrease seen for 20S subunits by ~3 hr during the meiotic program 

(Figures 5B and 5C). The core proteasome can be activated independent of the 19S 

regulatory particle (Schmidt et al., 2005), and the regulation observed late in the meiotic 

program suggests a natural context for this role. The sole exception to the distinct patterns of 

protein expression for the core and regulatory subunits was Pre9, which clustered with the 

regulatory particle subunits rather than the proteasome core, of which it is a reported 

member (Figure 5B). Pre9 has been reported to be unlike other 20S components in multiple 

studies. It is known that Pre9 directly interacts with the tails of Rpt2 and Rpt6 (the 2 proteins 

that it clusters between in Figure 5B) to mediate 19S and 20S association, and the 

interaction with Rpt6 is the basis for specificity of the 19S/20S register (Park et al., 2013). 

Pre9 is also the only non-essential 20S member (Kusmierczyk et al., 2008; Velichutina et al., 

2004), suggesting a role that differs from the other core members. It is unclear what this role 

is, but it is worth noting that cells deleted for PRE9 have been shown to have specific 

meiotic defects, attributed to the proteasome’s association with meiotic chromosomes during 

recombination (Ahuja et al., 2017).

All of the proteasome-associated proteins analyzed that did not fit into one of the two major 

clusters are known to have additional roles (Figure 5B). The 19S regulatory particle 

component Sem1 is known to be part of other, non-proteasome complexes (Kragelund et al., 

2016), and neither Cic1 or Blm10/PA200 are thought to constitutively or exclusively 

associate with the proteasome. Cic1 associates with the proteasome but also with 

preribosomal particles (Harnpicharnchai et al., 2001; Jäger et al., 2001), and Blm10/PA200 

is involved in both core particle assembly and mature particle activation (Fehlker et al., 

2003). The protein-level distinctions among proteasomal genes are interesting in light of 

their high degree of known transcriptional co-regulation, and this suggests robust post-

Eisenberg et al. Page 9

Cell Rep. Author manuscript; available in PMC 2019 January 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



translational adjustment of protein levels; but it also demonstrates that protein measurements 

taken over time can be surprisingly sensitive in identifying functional distinctions among 

groups of proteins with identical control of synthesis.

Ribosomal Proteins Are Highly Co-regulated at All Levels, Degraded Late in the Meiotic 
Program

The ribosome is another large multiprotein complex with known co-regulation of component 

synthesis. In contrast to the proteasome, clustering of ribosomal protein (RP) levels did not 

reveal subclustering based on any reported physical feature of the ribosome or large versus 

small subunit identity (Figure 6A). Rather, 72 of the 98 RP-encoding genes that we 

quantified at the protein level showed extremely similar patterns over the meiotic program at 

every level of gene expression measured. The other 26 showed slightly different protein-

level patterns, the basis of which we do not yet understand (Figure 6A). We also noted that 

protein-level patterns for all RP genes examined indicated protein degradation late in MII 

and re-synthesis in spores (Figure 6A). Comparison of the mRNA, translation, and protein 

abundance measurements for this group of genes revealed a signature of protein degradation 

similar to what we observed for the known degradation target Sic1 (Figure 1D), with 

translation actually increased in late meiosis while protein levels decrease (Figure 6B). In 

spores, subsequently, protein levels increased to a level similar to early meiotic cells, while 

translation (and mRNA levels) remained high (Figure 6B). While the transcriptional uptick 

in RP genes had previously been seen during sporulation (Chu et al., 1998), its association 

with protein degradation was not evident.

To confirm this regulation independently, we GFP-tagged the RP gene RPL26B in a strain 

carrying mCherry-tagged histone H2B (encoded by HTB1). Both tags were heterozygous in 

diploid cells. Thus, during meiotic stages in which the cytosol was continuous, before spore 

packaging, we expect to see homogeneous green cytosolic and red nuclear signals. 

Following spore individualization, we would expect to see red signal remaining in all four 

spore nuclei if histones are stable, suggesting that they were synthesized before spore 

packaging (Figure 6C). In contrast, if RPs were degraded and re-synthesized in spores, then 

only the two spores carrying the RPL26B-GFP allele should be green and the other two 

spores should lose GFP signal relative to earlier stages (Figure 6C). Indeed, this was what 

we observed. We saw evidence that Htb1 continues to be synthesized in spores, resulting in 

an increase in signal in the two spores that presumably carry the HTB-mCherry allele, but in 

the case of RPL26B, we observed an increase in signal in two spores and a decrease in the 

other two (Figures 6C and 6D). This was observed and quantified for individual cases and 

was a general trend among cells of this genotype (Figures 6D and 6E). The loss of GFP 

signal in two spores was not due to photobleaching resulting from time-lapse imaging, as 

cells on the same microfluidic plate that were not previously imaged showed similar relative 

levels of GFP in a 2:2 bright:dim ratio as those that were imaged over a period of time 

(Figure S6). A similar effect could be seen in cells carrying a heterozygous RPL29-GFP 
allele (Figures 6E and S6). We concluded that ribosomes are actively degraded and re-

synthesized at the end of the yeast meiotic program.
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DISCUSSION

Important individual examples of regulated protein degradation during meiotic 

differentiation are well characterized, but it has been challenging to determine the 

pervasiveness of this mode of regulation in meiosis. We report signatures in matched global 

quantitative mass spectrometry and ribosome profiling data that allowed us to identify 

specific, natural, and previously unidentified cases of regulated protein degradation during 

the yeast meiotic program. These signatures include periods of stable or even increased 

translation of a given gene, while protein abundance decreases, as well as periods of 

particularly rapid decline in protein levels for groups of genes in concert. These trends are 

sensitively detected in our dataset because cells undergoing meiotic differentiation do not 

display the type of dilution due to cell growth and division that is a major contributor to 

protein-level decline during mitotic growth (Christiano et al., 2014).

Ama1, a meiosis-specific APC/C subunit, is important for meiotic progression (Cooper et 

al., 2000). We observed that all three previously identified Ama1 targets that we were able to 

quantify in our mass spectrometry dataset showed patterns of protein-level change during 

meiosis that were strikingly similar to one another as well as to a small group of other 

proteins (Figure 1E). We hypothesized that this group included new Ama1 targets and 

confirmed that Pes4 and Mip6, two members of this cluster with meiotic roles during a 

precise window, are degraded in an Ama1-dependent manner (Figure 2). This is an 

unorthodox approach for the identification of potential E3 targets, but at least in this case, it 

seems to allow specific and sensitive detection based on the ability to follow natural protein 

patterns over time in an unperturbed system.

Analyses of protein data also revealed previously unrecognized, coordinated degradation and 

re-synthesis of RP subunits following gamete (spore) formation (Figure 6). Why would cells 

expend energy to degrade RPs and concomitantly re-synthesize them? We propose two 

explanations. First, this could be a mechanism of cellular quality control. It has been shown 

that the abnormal nucleolar morphology observed in aged yeast cells is reset in all four 

gametes by the process of meiotic differentiation (Unal et al., 2011). It is possible that this 

nucleolar morphology reflects defective rRNA synthesis or processing, and thus resultant 

ribosomes may be of poor quality. Because gamete quality is important for an organism’s 

genome stability on an evolutionary scale and the proteins synthesized in a gamete provide 

critical functions, including mediating gene expression, the destruction and re-synthesis of a 

gamete’s ribosomes may be a mechanism of ensuring gamete integrity. Second, it is possible 

that ribosome composition or modification is altered in meiosis relative to mitotic growth 

and that these alterations must be reset after meiosis. The translation of upstream ORFs 

(uORFs) within 5′ leaders of thousands of mRNAs is dramatically upregulated during 

meiosis, even in cases in which an apparently identical transcript is present under mitotic 

and meiotic conditions (Brar et al., 2012). If meiotic modification to the core translation 

machinery contributes to this effect, then destruction of this machinery could enable cells to 

return to mitotic translation patterns.

The most surprising finding from our analyses was that members of stable protein 

complexes are typically synthesized with imprecise stoichiometry that is adjusted post-
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translationally (Figures 3, 4, and 5). Effectively perfect translation matching is occasionally 

seen in our dataset, including for the Tub1/Tub2 heterodimer, demonstrating that cells are 

capable of very precisely matched synthesis levels, even for proteins encoded from 

genomically distant genes with dissimilar regulatory regions (Figures 3A and 3G), yet this is 

not the norm (Figures 3, 4, and 5). This conclusion differs from that of recent studies that 

reported matched synthesis as the rule among protein complex components (Li et al., 2014; 

Taggart and Li, 2018). There are significant biological and analytical differences between 

our study and theirs. The conclusion that synthesis rates were matched for protein partners 

was determined using estimation of absolute translation levels from ribosome profiling data 

of cells in rich, steady-state growth conditions (Li et al., 2014; Taggart and Li, 2018). Our 

study, in contrast, was of cells undergoing meiotic differentiation. Natural developmental 

processes, including meiosis, involve proteome remodeling over time, and this may 

influence cellular strategies for protein complex regulation. Furthermore, our study used 

analyses of trends in matched series of protein and translation measurements to enable the 

quantitative comparison of these two different types of data. Despite these key differences, 

we argue that the data in all of these studies are actually consistent with our conclusions; we 

find that some heterodimers do show “perfect” synthesis matching and most show a positive 

correlation between translation patterns over time. It is not that we observe decoupled 

synthesis rates for complex components, but simply that protein-level patterns match better 

than translation patterns for most cases analyzed here, suggesting an important role for both 

levels of regulation in eukaryotes.

Post-translational adjustment of levels of protein complex partners has been previously 

observed in a variety of experimental systems by perturbation of normal cellular 

homeostasis through gene (or chromosome) overexpression (Abovich et al., 1985; Dephoure 

et al., 2014; Gorenstein and Warner, 1977; Ishikawa et al., 2017; Lam et al., 2007; Papp et 

al., 2003; Sung et al., 2016a; Torres et al., 2010; Warner, 1977; Warner et al., 1985). 

Unincorporated complex components have been shown to be unstable in several contexts as 

a result of proteasome-dependent degradation. For example, if a single RP is overexpressed 

relative to others, then excess subunits are degraded by a mechanism that depends on the E3 

ligase Tom1 (_Sung et al., 2016b). It has previously been challenging to determine, however, 

whether the post-translational adjustment of levels of protein complex components occurs 

naturally in wild-type, unperturbed cells, or simply occurs as a fail-safe for mutant 

conditions. Our study argues that the former is the case.

The extremely high degree of protein-level correlation for most protein complex components 

also enables the sensitive detection of outlier components, which may be involved in 

regulatory roles. For example, the Ndc80 kinetochore complex components are well 

matched at the protein level, with the exception of the namesake component Ndc80, which is 

low early in meiosis and increases before the first meiotic division (Figure S5A). The 

mechanism and importance of this regulation during meiosis have been shown (Chen et al., 

2017; Chia et al., 2017; Miller et al., 2012). In such cases, a single outlier component can act 

as a linchpin for complex activity, an efficient mechanism for rapid complex activation or 

inactivation. Analysis of similar outlier cases for other complexes seems promising for 

uncovering other similar types of regulation (Figures 4I, 4J, 5, and S5B) (de Lichtenberg et 

al., 2005).
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The findings reported here regarding protein complex component regulation are informative 

in considering the cellular balance between perfection and efficiency. Yeast cells undergo 

meiosis in the absence of glucose or amino acids, and this is therefore a context in which 

cellular economy of resources is extremely important. The prevalence of imprecise synthesis 

of protein complex partners and subsequent degradation of unpartnered subunits even in 

these conditions implies a general advantage to this strategy, relative to perfect synthesis 

matching. Cases such as the tubulin heterodimer reveal that eukaryotic cells are capable of 

nearly perfect co-synthesis of partner proteins, and the rarity of this regulation suggests 

something interesting about the cases in which it does occur. In the case of Tub1/Tub2, for 

which it is known that stoichiometric imbalance leads to toxicity (Burke et al., 1989), the 

disadvantage of post-translational buffering seems clear. Investigation of the few other cases 

that we identified as showing extremely well-matched synthesis may yield new insights into 

the features and cellular roles of these components, as well as broader principles of cellular 

resource management in gene expression regulation.

STAR+METHODS

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Gloria Brar (gabrar@berkeley.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Yeast growth and sporulation—All yeast strains used were diploid Saccharomyces 
cerevisiae of the SK1 background. Strains used in this study are listed in the key resources 

table. For meiotic time courses, yeast were inoculated into YEPD overnight, then diluted to 

OD600 0.2 into buffered YTA and grown for 12 hours. Cells were washed in water and 

resuspended in sporulation media supplemented with 0.02% raffinose. Time points were 

taken at indicated times.

METHOD DETAILS

Western blotting—Western blotting was performed using a standard TCA-based protocol. 

Briefly, 2.5 OD units of culture were treated with 5% TCA at 4C for at least 10 min. 

Samples were then washed with 1 mL acetone. Acetone was aspirated and pellets were dried 

overnight at RT. Lysates were made by adding 100 mL protein lysis buffer [50 mM TE, 3 

mM DTT, 1.1 mM PMSF (Sigma), 1 μM pepstatin A, 1X protease inhibitor cocktail 

(Roche)] and 1 volume acid-washed glass beads (Sigma), and bead-beating for 5 min at RT. 

3X SDS loading buffer was added and samples were boiled for 5 min. Beads were pelleted 

by centrifugation and 5 mL supernatant was loaded onto 4–12% Bis-Tris polyacrylamide 

gels. Following electrophoresis, proteins were transferred using a semi-dry transfer 

apparatus (Trans-Blot Turbo, BioRad). The following antibodies were used: mouse anti-V5 

(Invitrogen, 1:2,000), rabbit anti-hexokinase (Stratech, 1:10,000), anti-mouse and anti-rabbit 

secondaries (Li-Cor, 1:15,000). Primary antibody incubation was overnight, secondary for 

1–2 hr. Blots were visualized and quantified using a Li-Cor system.
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Meiotic cell staging—The meiotic stage of a cell was determined based on its DAPI 

morphology by fluorescent microscopy. 200 cells were counted per strain per time point.

Heterodimer analyses—Heterodimers were defined as annotated in the Saccharomyces 
Genome Database (SGD; https://www.yeastgenome.org). Only cases in which both partners 

were quantified for mRNA, translation, and protein were analyzed and cases were excluded 

in which there was a reported major alternative interactor (typically a paralog). Three 

additional cases were excluded for which one partner appeared to be especially lowly 

expressed (a mean translation RPKM < 20). Z-scores were calculated and the correlation 

over all 10 samples for the pair of genes was determined.

Linear pathway analyses—Linear biosynthetic pathways were identified based on 

literature searching and SGD confirmation. Only cases in which both partners were 

quantified for mRNA, translation, and protein were analyzed and cases were excluded in 

which there was a reported major alternative interactor (typically a paralog). Also, each gene 

was only analyzed in one pairing (either with its upstream or downstream partner, decisions 

about which to use were based on maximization of possible partners to analyze). Unlike the 

heterodimer analyses, no cases needed to be excluded based on especially low expression of 

either gene (a mean translation RPKM < 20). Z-scores were calculated and the correlation 

over all 10 samples for the pair of genes was determined.

Heterozygous RP-GFP imaging—After two hours in SPO media, 100 uL of cells were 

placed in a CellASIC ONIX Microfluidic Plate (Y04D) and maintained with fresh SPO 

media at 2psi using the CellASIC ONIX Microfluidic Perfusion System (CellASIC Corp., 

Hayward, CA, USA). The cells were held at 30 C using a thermostatic system for the 

microscope stage.

Cells were imaged using a DeltaVision microscope with a 60x/1.42 oil-immersion objective 

(DeltaVision, GE Healthcare, Sunnyvale, CA) and filters: FITC (EX475/28, EM525/48) and 

mCherry (EX575/25, EM625/45). Images were acquired using the softWoRx software 

(softWoRx, GE Healthcare) with z stacks of 8 slices with 0.5 mm spacing. For time lapse 

imaging, images were taken every 20 minutes for 12 hours. After 24 hours, images were 

taken from the same points that had been imaged during the time-lapse portion, as well as 

points from the same wells that had not been imaged previously.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistics—A Kolomogorov-Smirnov (K-S) test was used to determine significance for the 

differences between cumulative distribution plots shown in Figure 3H. A two-tailed t test 

was used to determine significance between fluorescence intensities for the data presented in 

Figure 6E.

Heterozygous RP-GFP quantification—All images were deconvolved using softWoRx 

software accompanying the DeltaVision microscope, and maximum-intensity projections 

were generated using ImageJ/FIJI image processing software (RRID:SCR_002285; 

Schneider et al., 2012). Mean intensity of signal from the cells was measured using the 

“measure” tool in FIJI, and was divided by the background signal from the same image.
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DATA AND SOFTWARE AVAILABILITY

Genome-wide data analyzed here were generated previously (Cheng et al., 2018). In short, 

mRNA levels were assayed by mRNA-seq, translation measurements were assayed by 

ribosome profiling, and protein levels were assayed by quantitative mass spectrometry 

(TMT10) for 8 time points during the meiotic program and two vegetative time points (one 

in rich media and one in sporulation media matched to meiotic samples). All measurements 

showed high reproducibility, with R values ranging from 0.935 to 0.992. All original data 

can be found at NCBI GEO: GSE108778 and MassIVE: MSV000081874. Processed data 

used for analyses here are in Table S1.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• The synthesis of most protein complex components during meiosis is 

imprecisely matched

• The levels of most protein interaction partners are post-translationally 

adjusted

• Ribosomal proteins are degraded and re-synthesized late in the meiotic 

program

• Analysis of meiotic protein levels over time points to additional Ama1-

APC/C targets
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Figure 1. Regulated Protein Degradation Can Be Detected by Analysis of Protein Levels during 
Meiosis
(A) Schematic of meiotic gene expression experiment. Illustrations representing vegetative 

growth or meiotic stage are used to depict sample identity throughout figures. Left-hand 

vegetative cells are exponentially growing, and far-right cells are in nutrient-poor sporulation 

medium. Meiotic stages are noted above central portion of illustration and time in 

sporulation medium is noted directly below.

(B–D) Comparison of translation, assayed by ribosome footprint density (blue) and protein, 

assayed by quantitative mass spectrometry (black) are shown over time points for (B) Cdc28 
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(green box highlights a period of inferred protein stability; RPKM, reads per kilobase 

million); (C) Zip1 (pink box highlights a period of inferred protein instability that matches 

known regulation); and (D) Sic1 (pink box highlights a period of inferred protein instability 

that matches known regulation).

(E) Protein fold changes between sequential time points were calculated for genes (n = 

4,464) quantified by mass spectrometry (i.e., first column is 1.5 hr/0 hr protein abundance 

ratio, and so on). Values were subjected to hierarchical clustering. A cluster containing 

known Ama1 targets are noted at middle right.

See also Figure 2.
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Figure 2. Protein Co-clustering Is Predictive of Shared Degradation Regulation by Ama1
(A) mRNA levels over time for known and predicted Ama1 targets. The green box 

highlights a period of matched mRNA induction timing, consistent with known 

transcriptional co-regulation.

(B) Translation levels over time for known and predicted Ama1 targets.

(C) Protein levels over time for known and predicted Ama1 targets. The pink box highlights 

a period of decrease in protein levels that is matched in timing and degree, suggesting co-

regulation.
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(D–H) Western blot analysis and quantification for protein levels of meiotic proteins, with 

and without AMA1. (D) Known Ama1-dependent degradation target Ssp1, (E) known 

Ama1-dependent degradation target Ndt80, (F) predicted Ama1 target Pes4, (G) predicted 

Ama1 target Mip6, and (H) Stu2.

See also Figures 1 and S1.
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Figure 3. Meiotic Cells Are Capable of Perfect Synthesis Matching of Heterodimer Partners, but 
It Is Uncommon
(A–F) Z-score plots show gene expression level trends of mRNA levels (left), translation 

levels (middle), and protein levels (right) over all time points for pairs of genes, including 

(A) heterodimer Tub1 and Tub2, (B) heterodimer Rbg1 and Tma46, (C) heterodimer Pob3 

and Spt16, (D) heterodimer Gtr1 and Gtr2, (E) sequential enzymes involved in purine 

nucleotide biosynthesis Ade1 and Ade2, and (F) sequential enzymes involved in histidine 

biosynthesis His2 and His5.

(G) Correlation coefficients for translation and protein between annotated heterodimer 

partners are shown at left. Yellow represents higher, blue represents lower. The same scaling 

is used at upper right to compare to a subset of sequential enzymes in biosynthetic pathways. 

Below right, a summary of trends for heterodimers and adjacent enzymes in biosynthetic 

pathways. Heterodimer partners show a greater protein than translation correlation, while 

sequential biosynthetic enzymes show the opposite trend.

(H) Cumulative distribution plots for the translation and footprint correlations in (G). 

Translation correlations are indistinguishable for the heterodimers and biosynthetic pathway 

genes, but protein correlations are significantly higher for the heterodimers as assessed by 

the Kolomogorov-Smirnov (K-S) test.
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See also Figures S2, S3, and S4.
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Figure 4. Members of Multiprotein Complexes Show Higher Agreement of Protein Levels during 
Meiosis than Translation, While Members of Biosynthetic Pathways Do Not
(A–J) Z-score plots to show gene expression level trends of translation levels (middle) and 

protein levels (right) are shown over all time points for groups of genes, including all 

quantified members of representative protein complexes and biosynthetic pathways: (A) the 

OST complex, (B) the CCT complex, (C) the F1F0 ATPase complex, (D) the HDA complex, 

(E) the EMC complex, (F) the heme biosynthesis pathway, (G) the pyrimidine biosynthesis 

pathway, (H) the ergosterol biosynthesis pathway, (I) the Ccr4-Not complex, and (J) the 

exosome complex.

See also Figure S5.
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Figure 5. Among Highly Correlated Protein-level Trends for Complex Members, Outliers 
Suggest Non-constitutive Association
(A) Hierarchical clustering of levels of exosome complex components (from Figure 4J) for 

mRNA (left), translation (middle), and protein (right). Mpp6 (red) is a non-constitutive 

component and clusters far from others at the protein level. Rrp6/Lrp1 (green) is a non-

constitutive heterodimer; these genes cluster closely to each other but separate from the core 

exosome complex at the protein level.

(B) Hierarchical clustering of protein data for proteasome components and accessory 

factors. Matched mRNA (far left) and translation levels (middle). Note two discrete protein-
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level clusters—one with all 20S components except Pre9 and the other cluster with all 19S 

components. Far right, a proteasome illustration is color coded to match gene names to its 

left.

(C) All 19S regulatory (orange) and 20S core (blue) proteasome members were analyzed 

together, scaled to the maximum value measured for each. The means and SDs (bars) are 

shown for mRNA (left), translation (middle), and protein (right). Note protein divergence 

between the two groups of genes at late time points (represented by gray box), suggesting 

synthesis co-regulation for all but independent post-translational adjustment for two 

complexes at late stages.

See also Figure 4.
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Figure 6. RPs Are Actively Degraded Late in the Meiotic Program
(A) Hierarchical clustering of protein levels was performed for all RP genes quantified 

(right), and is compared to matched translation (middle) and mRNA (left). Values shown are 

z-score normalized.

(B) Quartile analysis of all RPs at all levels of expression. Pink shading represents period 

late in meiosis when transcription and translation increase but protein decreases, a hallmark 

of active degradation.
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(C) A strategy to identify active protein degradation and re-synthesis after spore wall 

formation. This approach uses heterozygous GFP tagging of the protein of interest, in this 

case Rpl26b, in diploid cells. Before spore formation, protein from both alleles is in the 

cytosol. After spore formation, if a protein is degraded and re-synthesized, then the 

fluorescent signal should decrease in spores that inherited the untagged allele and should 

increase in spores that inherited the tagged allele. This is observed for Rpl26b, but not 

histone protein Htb1. Inset numbers represent frame numbers for 20-min intervals; scale bar 

represents 2 μM.

(D) Quantification of the fluorescence over time for the two cells in (C), starting when spore 

individualization begins. Note the decrease in GFP signal in two spores and the increase in 

the other two.

(E) Quantification of additional cells (n = 10 tetrads) from the experiment in (C) and (D) and 

a similar experiment using heterozygous RPL29-GFP. Error bars represent SD. p values 

determined by paired t test: *p = 0.033, ***p < 0.001.

See also Figure S6.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Mouse anti-V5 antibody Invitrogen Cat#46–0705

Rabbit anti-hexokinase antibody Stratech Cat#H2035

Anti-rabbit secondary Li-Cor Cat#925–68071

Anti-mouse secondary Li-Cor Cat#925–32210

Chemicals, Peptides, and Recombinant Proteins

PMSF Sigma Cat#78830

Pepstatin A Sigma Cat #P4265

Protease Inhibitor Cocktail Roche Cat#29384100

Experimental Models: Organisms/Strains

BrÜn1061 (MATa/α ndt80::NDT80–3V5::KANMX) This paper N/A

BrÜ n11983 (MATa/α stu2::STU2–3V5:KanMX ama1::HISMX) This paper N/A

BrÜn11985 (MATa/α ndt80::NDT80–3V5::KANMX ama1::HISMX) This paper N/A

BrÜn12076 (MATa/α stu2::STU2–3V5:KanMX) This paper N/A

BrÜn13016 (MATa/α pes4::PES4–3V5:KanMX/ ama1::HISMX) This paper N/A

BrÜn13018 (MATa/α pes4::PES4–3V5:KanMX) This paper N/A

BrÜn13024 (MATa/α mip6::MIP6–3V5:KanMX ama1::HISMX) This paper N/A

BrÜn13026 (MATa/α mip6::MIP6–3V5:KanMX) This paper N/A

BrÜn13712 (MATa/α ssp1::SSP1–3V5:KanMX ama1::HISMX) This paper N/A

BrÜn13714 (MATa/α ssp1::SSP1–3V5:KanMX) This paper N/A

BrÜn7085 (MATa/α rpl29::RPL29-HTA-GFP:KanMX/RPL29 htb1::HTB1-mCherry-
HISMX6/HTB1)

This paper N/A

BrÜn7087 (MATa/α rpl26b::RPL26B-HTA-GFP:KanMX/RPL29 htb1:: HTB1-
mCherry-HISMX6/HTB1)

This paper N/A

Software and Algorithms

ImageJ Schneider et al., 
2012

https://imagej.net/Downloads
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