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Neutrophil cytoplasmic factor 1/2/4 (NCF1/2/4) belongs to the NADPH oxidase complex, which is a cytoplasmic component, and
its polymorphism is the main factor related to autoimmune diseases, which is probably caused by the regulation of peroxide. They
also play a role in tumor growth and metastasis. This research is aimed at evaluating the biological function and prognostic role of
NCF1, NCF2, and NCF4 genes in kidney renal clear cell carcinoma (KIRC) by using multiple online bioinformatics website,
including Oncomine, GEPIA, UALCAN, Kaplan–Meier Plotter, TIMER, TISIDB, cBioPortal, LinkedOmics, GeneMANIA, and
DAVID databases. The mRNA levels of NCFs were higher in KIRC tissues than in normal tissues. The overexpression of NCFs
was significantly correlated with advanced pathological grades and individual cancer stages in KIRC. Meanwhile, the expressions
of NCFs played an important role in the tumorigenesis and progression of KIRC. Prognostic value analysis suggested that high
transcription levels of NCF1/4 were associated with poor overall survival in KIRC patients. In addition, results from the
LinkedOmics database showed that the KEGG pathway related to NCFs mainly focused on immune activation and immune
regulation function. NCF genetic alterations, including copy number amplification, missense mutation, and deep deletion, could
be found through the cBioPortal database. Further, NCF expression was significantly correlated with infiltration levels of various
immune cells as well as immune signatures. Protein-protein interaction network and enrichment analysis of NCF1/2/4 in KIRC
showed that NCF coexpressed genes mainly associated with diverse immune marker sets showed significance. Overall, these
results indicated that NCFs could be prognostic biomarkers as well as effective targets for diagnosis in KIRC.

1. Introduction

In recent years, the incidence of malignant kidney tumors
has been increasing. In 2019, approximately 73,820 Ameri-
cans were diagnosed with kidney cancer [1], and nearly
15,000 died of the disease [2, 3]. It is the seventh most com-
mon cancer among men and the ninth most common cancer
among women [4]. Kidney cancer represents several differ-
ent types of cancer, which have different histology, clinical
course, and response to treatment [5]. Clear cell carcinoma
is the most common histological type of kidney cancer
(75%) [6] and one of the most aggressive types [7]. Because
the kidney is located deep in the body, its clinical symptoms
usually appear in the late stage, so the 3-year survival rate in

the kidney renal clear cell carcinoma (KIRC) in the popula-
tion is less than 5% [8]. Until recently, we still lacked effec-
tive systemic therapies for KIRC, and surgery was the main
treatment method [9]. In addition, the prognosis of KIRC
is not good. One-third of patients will have local or distant
metastases, and about one-quarter of patients undergoing
radical surgery have recurred tumors at a distance [10].
Due to the high morbidity, high mortality, and difficulty of
early diagnosis of KIRC, it is important to evaluate carcino-
genic mechanisms and explore potential drug targets and
molecular markers that have a prognostic value that affects
the immune response of KIRC patients.

Neutrophil cytoplasmic factor 1 (NCF1), neutrophil
cytoplasmic factor 2 (NCF2), and neutrophil cytoplasmic
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factor 4 (NCF4) are also referred to as p47phox, p67phox,
and p40phox, respectively. They belong to the NADPH oxi-
dase complex, which is a cytoplasmic component, and its
polymorphism is the main factor related to autoimmune dis-
eases, which is probably caused by the regulation of peroxide
[11]. In the case of inflammatory stimulation, NADPH oxi-
dase is activated; phosphorylation of NCF1 (p47phox) leads
to the assembly of NCF2 (p67phox) and NCF4 (p40phox)
into an active oxidase complex p22phox/gp91phox. In this
process, it promotes the conversion of oxygen (O2) into
superoxide ions (O2

-) and hydrogen peroxide (H2O2), which
are all reactive oxygen species (ROS) [12]. Studies have
confirmed the correlation of these genes with chronic gran-
ulomatous disease [13], Crohn’s disease [14], and autoim-
mune arthritis [15]. They also play a role in tumor growth
and metastasis [16], such as Hodgkin’s lymphoma [17].
However, their relationship with tumors in many other
fields has not been explored, so this article is aimed at eval-
uating the biological function and prognostic role of NCF1,
NCF2, and NCF4 genes in KIRC.

2. Materials and Methods

2.1. Oncomine Database Analysis. The mRNA levels of NCFs
in various cancers were identified in the Oncomine database.
The Oncomine database (http://www.oncomine.org) is an
online cancer microarray database and synthetic gene-
wide data-mining platform [18]. We compared the tran-
scriptional levels of NCFs in different cancer tissues with
their corresponding adjacent normal controls from the
Oncomine database, using Student’s t-test to generate a p
value. Cutoffs of p value and fold change were defined as
0.05 and 2, respectively.

2.2. Gene Expression Profiling Interactive Analysis. Gene
Expression Profiling Interactive Analysis (GEPIA) (http://
gepia.cancer-pku.cn/) integrates a tremendous amount of
tumor and nontumor samples from The Cancer Genome
Atlas (TCGA) and the Genotype-Tissue Expression (GTEx)
database, providing differential expression analysis, correla-
tion analysis, and patient survival analysis online [19]. In
our study, GEPIA was used to analyze the expression of
NCFs in kidney renal clear cell carcinoma with correspond-
ing breast tissues. The cutoff of p value was 0.05 and log2FC
was 1 (fold change was 2). We also obtained the top 100 sim-
ilar expression protein-coding genes with certain NCFs in
KIRC Tumor dataset by similar gene module for Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) analysis.

2.3. UALCAN Database Analysis. UALCAN (http://ualcan
.path.uab.edu) is a comprehensive web resource based on
TCGA database level 3 RNA-seq and clinical data from 31
cancer types [20]. It can be used to estimate the relative tran-
scriptional expression of query genes between tumor and
normal samples as well as relative clinicopathologic parame-
ters on patient survival. In this study, UALCAN was used to
analyze the association between mRNA expressions of NCFs
grouped by known prognostic factors (individual cancer

stages, tumor grade, and KIRC subtype) in kidney renal clear
cell carcinoma.

2.4. Kaplan–Meier Plotter Database. The research on the
NCF prognostic value was performed in the KM-plotter
database, which could evaluate the survival of more than
50,000 genes in 21 cancer types [21]. The ccRCC dataset
with 530 samples was selected to explore the expression pro-
file of NCFs on ccRCC overall survival (OS). Furthermore,
the hazard ratio (HR), log-rank p value, and survival plots
were computed and output by the website automatically.

2.5. LinkedOmics Database Analysis. LinkedOmics is a pub-
licly available portal that included multiomics data from 32
TCGA cancer types [22]. The “Linkfinder” module was used
to perform the volcano map showing the NCF association
results and heat map showing the coexpressed genes of
NCFs. The “LinkInterpreter” module was used to perform
GO and KEGG analysis of NCFs based on gene set enrich-
ment analysis (GSEA). The criterion about GSEA is as
follows: the minimum number of genes (size) is 3 and a sim-
ulation is 500. The top 5 terms of GO and KEGG analysis
were exhibited. Gene terms with p value < 0.05 and false
discovery rate ðFDRÞ < 0:05 were considered significant.

2.6. cBioPortal Data Analysis. The cBioPortal for Cancer
Genomics is a comprehensive web resource that can visual-
ize and analyze multidimensional cancer genomic data
[23]. Copy number variation (CNV), mutations, and the
clinic outcomes of the gene types in KIRC were evaluated
according to the online tools of cBioPortal. The p value set
as 0.05 was considered significantly different.

2.7. TIMER Database Analysis. The TIMER database is a
comprehensive resource for systematical analysis of immune
infiltrates across diverse cancer types [24]. Associations
between NCF expression and TIIC infiltration levels were
analyzed via TIMER, a website tool for analysis of gene-
specific correlation with TIICs. TIICs included B cells,
CD4+ T cell, CD8+ T cell, macrophages, neutrophils, and
dendritic cells.

2.8. TISIDB Database Analysis. Through the TISIDB online
platform (http://cis.hku.hk/TISIDB/), the expression levels
of NCFs in the six immune subtypes were analyzed [25].

2.9. Protein-Protein Interaction Network Construction. The
STRING (http://string-db.org, version 11.0) database was
used to predict the PPI network of DEGs and analyze the
interactions between proteins [26]. GeneMANIA is an inter-
active and visual online protein-protein interaction (PPI)
prediction tool, which provides the customizable function
of the detection of genes with similar functions. GeneMA-
NIA is a prediction website tool for analyzing genetic and
protein interactions, coexpression, pathways, colocalization,
and domain-protein similarity of target genes [27]. In this
study, we analyzed the relationship between NCFs and their
interactive genes by the GeneMANIA database and the
STRING database.

2 BioMed Research International

http://www.oncomine.org
http://gepia.cancer-pku.cn/
http://gepia.cancer-pku.cn/
http://ualcan.path.uab.edu
http://ualcan.path.uab.edu
http://cis.hku.hk/TISIDB/
http://string-db.org


2.10. DAVID Database. DAVID contains a comprehensive
set of functional annotation tools for better clarifying the
biological functions of target genes [28]. In this work, Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway enrichment analyses of NCFs
and their coexpressed genes (100) were conducted using the
DAVID tool. The cutoff value for significant GO terms and
KEGG pathways was a false discover rate (FDR) of <0.05.

2.11. Cell Culture and Transfection. We purchased human
normal renal tubular epithelial cell line HK-2 and kidney
cancer cell line 786-O from the Cell Bank of Type Culture
Collection of Shanghai Institute of Cell Biology. The cells
were cultivated aseptically within DMEM medium (Gibco,
San Diego, CA) that contained 10% fetal bovine serum
(FBS) and maintained at 37°C in a humidified incubator with
5% CO2. For H2O2-induced oxidative stress, 500μM H2O2
was added to the culture medium. Small interfering RNA of
targeted NCF4 RNA (si-NCF4, 50 nM) were designed and
synthesized by RiboBio (China). Cell transfection was per-
formed with the usage of Lipofectamine 2000 (Invitrogen),
according to the protocol provided by the supplier.

2.12. Determination of ROS Formation. ROS formation was
measured using H2DCFDA (Invitrogen), after pretreat-
ment with 4μmol H2DCFDA in serum-free and pH
indicator-free medium for 30min. Then, incubation cells
were washed twice with PBS and analyzed (FACSCalibur,
Becton Dickinson). Relative ROS level was determined by
fluorescence intensity.

2.13. Cell Counting Kit-8 (CCK-8) and Colony Formation.
The Cell Counting Kit-8 (Beyotime Biotechnology, Jiangsu,
China) was used to measure cell proliferation according to
the manufacturer’s protocol. Cells were seeded into 96-well
plates at a density of 1 × 103 cells per well and determined
every 24 h. The way to determine was by adding 10μl of
CCK-8 solution into each well and then culturing for 4 hours
in an incubator. Four hours later, the absorbance value (A) of
cells was detected at the wavelength of 490nm. For colony
formation assays, cells were seeded into six-well plates at
the density of 500/well and were cultivated continuously at
37°C for 14d. Then, the colonies were washed and stained
with 0.2% crystal violet solution for 2 hours.

2.14. Wound Healing and Transwell Assays. When the cell
density attained 90% after 24 hours of transfection in 6-
well plates, the wound was scratched by a 10μl sterile tip
and then washed off the floated cells. Under the microscope,
photographs of the wound were taken at 0 and 36 hours. For
transwell migration assays, 1 × 105 cells were plated into the
upper chambers of a transwell apparatus (24-well insert,
8μm pore size, Corning) with 200μl of serum-free medium,
and the bottom chamber was filled with 700μl medium sup-
plemented with 10% FBS. After 24 h of incubation, the cells
on the lower surface of the membrane were stained, photo-
graphed, and counted in six random fields per group using
a microscope.

2.15. RNA Extraction and Western Blotting. According to the
manufacturer’s instructions, the total RNA was extracted
from cultured cells by using Trizol reagent (Invitrogen,
USA). Then, the cDNAs were synthesized following the pro-
tocol of PrimeScript™ RT Master Mix (Takara). Quantitative
real-time PCR was conducted using SYBR Premix Ex Taq™
II (Takara) on Thermal Cycler CFX6 System (Bio-Rad). The
relative transcriptional levels of target genes were calculated
by using the 2−ΔΔCt method. The RT-qPCR primer
sequences were as follows: NCF1 forward primer 5′-ACGA
GAGTGGTTGGTGGTTC-3′ and reverse primer 5′-TGTA
GGCTTTGATGGTGACG-3′, NCF2 forward primer 5′-
GCGCTAGGCTGGGACCTTGAAGCC-3′ and reverse
primer 5′-GTCTTGAAGAAGGGCAGTGATAAC-3′, and
NCF4 forward primer 5′-TGAACAGCTTCCGGAT
GATG-3′ and reverse primer 5′-TGAAGCCTCTCTTCTC
CTCGAT-3′. Western blot was performed by adding lysis
buffer into cells and total protein was extracted. Equal
amounts of protein samples were added to SDS/PAGE for
conducting electrophoresis. Next, after being blocked for
1 hour with 5% defatted milk, the membranes with pro-
teins were incubated in a primary antibody against NCF4
(Invitrogen), E-cadherin, α-catenin, vimentin, MMP9, and
β-actin (Cell Signaling Technology), overnight at 4°C.
Then, the membranes were incubated with the secondary
antibodies and the proteins in the membranes were visual-
ized by ECL after washing with TBST. β-Actin was used as
a reference.

2.16. Statistical Analysis. Statistical analyses were performed
using the SPSS 23.0 statistical software (IBM, USA), Graph-
Pad Prism software (7.0). The quantitative data were shown
as mean ± standard deviation (SD) and were compared
through Student’s t-test. The enumeration data enlisted as
percentages were compared via the chi-square test. It would
be considered as statistical significance when p < 0:05.

3. Result

3.1. Aberrant Expression of NCF1, NCF2, and NCF4 in
Multiple Cancer Types and In-Depth Verification in KIRC.
In order to preliminarily evaluate the role in tumorigenesis,
we analyzed the different expression levels for NCF1,
NCF2, and NCF4 between tumor and adjacent normal tis-
sues in all TCGA tumors (Figure 1(a)). Our results showed
that the levels of NCF expression are significantly downreg-
ulated in multiple cancer types including LUAD (lung ade-
nocarcinoma) and LUSC (lung squamous cell carcinoma),
but were higher in GBM (glioblastoma multiforme), KIRC
(kidney renal clear cell carcinoma), and KIRP (kidney renal
papillary cell carcinoma). These data show that NCF1,
NCF2, and NCF4 have different expression levels in different
cancers, suggesting that NCFs exerted diverse functions in
various cancers. Differential expression was observed
between tumor and normal tissues for NCF1, NCF2, and
NCF4 in KIRC data from TCGA. The results indicated that
NCF1, NCF2, and NCF4 were upregulated in KIRC
compared with adjacent normal tissues (p < 0:001;
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Figure 1: Continued.
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Figure 1: The expression levels of NCF1, NCF2, and NCF4 in KIRC were higher than those in the respective adjacent normal tissues. (a)
Expression levels of NCF1, NCF2, and NCF4 in different types of tumors from TCGA database were determined using TIMER 2.0. (b–d)
Expression levels of NCF1, NCF2, and NCF4 in KIRC tissues compared with normal tissues using the GEPIA database. (e, f) Expression
levels of NCF1, NCF2, and NCF4 were expressed as box plots in normal individuals and patients with KIRC using the UALCAN
database. ∗p < 0:05, ∗∗p < 0:01, and ∗∗∗p < 0:001.
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Figure 2: Continued.
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Figures 1(b)–1(d)). Analysis of TCGA-KIRC samples in the
UALCAN database revealed that mRNA expression levels of
NCF1, NCF2, and NCF4 were significantly higher in KIRC
tissues than in control tissues (p < 0:001; Figures 1(e)–1(g)).

3.2. The Levels of NCF1, NCF2, and NCF4 Expression in
Subgroups of Patients with KIRC. To study various clinico-
pathological characteristics, we further analyzed TCGA-
KIRC samples in the UALCAN database. We next explored
the different expression levels of the 3 genes in KIRC, strat-
ified according to the cancer stage and pathological grade.
The results demonstrated that the expression of the 3 genes
was higher in KIRC tissues than in normal tissues based on
different pathological grades and individual cancer stages.
Therefore, expression levels of NCF1, NCF2, and NCF4
may serve as potential diagnostic markers in patients with
KIRC (Figures 2(a)–2(f)). In addition, we also analyzed the
mRNA expression levels of the NCFs in different subgroups
of primary KIRC patients and healthy people. NCF1, NCF2,

and NCF4 are significantly higher in ccA and ccB subtypes
than normal tissues, and the expression of NCF1 and
NCF4 in ccB subtypes is significantly higher than that in
ccA subtypes (Figures 2(g)–2(i)). Therefore, the results indi-
cated that the expression of these genes plays an important
role in the tumorigenesis and progression of HCC.

3.3. Clinicopathological Characteristics and Prognostic
Significance of NCF1, NCF2, and NCF4 Expression in
KIRC. The transcriptome RNA-seq data from TCGA data-
bases for 530 KIRC patients was collected. The clinicopath-
ological characteristics of these kidney cancer patients are
depicted in Table 1. Next, we sought to investigate the prog-
nostic significance of NCF1, NCF2, and NCF4 expression in
KIRC. The association between NCF1, NCF2, and NCF4
expression levels and the survival outcomes of KIRC patients
was assessed using Kaplan–Meier survival curves. The results
showed that patients were divided into two groups based on
the expression values of NCF1, NCF2, and NCF4 in each
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Figure 2: The expression levels of NCF1, NCF2, and NCF4 in subgroups of patients with KIRC. Relative expression of NCF1, NCF2, and
NCF4 in (a–c) normal individuals and patients with KIRC at different grades, (d–f) normal individuals and patients with KIRC at different
stages, and (g–i) normal individuals and patients with KIRC at different subtypes. ∗p < 0:05, ∗∗p < 0:01, and ∗∗∗p < 0:001.
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cohort (autoselect the best cutoff). The group with high
NCF1 and NCF4 expression had significantly shorter overall
survival (OS) compared to the group with low expression of

NCF1, NCF2, and NCF4 based on TCGA data using the
GEPIA database (Figure 3). These results strongly highlight
the prognostic value of NCF1, NCF2, and NCF4 in KIRC.
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Figure 3: NCF1, NCF2, and NCF4 are associated with the overall survival (OS) rate in KIRC. (a–c) Kaplan–Meier survival curves
comparing high- and low-expression levels of NCF1, NCF2, and NCF4 in KIRC using Kaplan–Meier Plotter database. Survival curves
based on overall survival (OS).
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3.4. Alterations of NCF1, NCF2, and NCF4 Expression
Networks in KIRC. Since gene regulation networks reflect
common genetic risk factors that compose functional relation-
ships, we investigated the regulatory factors related to NCF1,
NCF2, andNCF4 inKIRC. Figures 4(a)–4(c) showgeneshighly
coexpressed with NCF1, NCF2, and NCF4 based on Pearson
correlation; genes positively and negatively correlated with
NCF1, NCF2, and NCF4 are marked in the dark red and dark
blue dots, respectively (FDR < 0:01). The top 50 genes showing
significant positive and negative correlationwithNCF1, NCF2,
and NCF4 are shown in heat maps (Figures 4(d)–4(f)).

In addition, results from the LinkedOmics database
showed that the KEGG pathway related to NCFs mainly

focused on immune activation and immune regulation func-
tion (Figures 4(g)–4(i)).

High expression of NCF1 was associated with adaptive
immune response (BP category), immunological synapse
(CC category), MHC protein binding (MF category), and
Staphylococcus aureus infection (KEGG category). High
expression of NCF2 was associated with detection of biotic
stimulus (BP category), MHC protein complex (CC category),
pattern recognition receptor activity (MF category), and
Staphylococcus aureus infection (KEGG category). High
expression of NCF4 was associated with adaptive immune
response (BP category), immunological synapse (CC cate-
gory), immunoglobulin binding (MF category), and
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Figure 4: Differentially expressed genes and gene set enrichment analysis (GSEA) with NCF1, NCF2, and NCF4 high and low expression
groups. (a–c) The NCF1, NCF2, and NCF4 highly correlated genes identified by Pearson test in KIRC cohort. (d–f) Heat map showing
positive and negative correlations of the first 50 genes with NCF1, NCF2, and NCF4 in KIRC. Red indicates positively related genes, and
blue indicates negatively related genes. (g–i) Significantly enriched KEGG pathways of NCF1, NCF2, and NCF4 in KIRC.
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Table 2: Enrichment of NCF1, NCF2, and NCF4 in KIRC (DAVID). The diagram showed the GO enrichment in cellular component (CC)
terms, biological process (BP) terms, and molecular function (MF) terms and bar plot of Kyoto Encyclopedia of Genes and Genomes
(KEGG) enriched terms.

Gene Category Gene set Description Size ES p value FDR

NCF1

BP

GO:0002250 Adaptive immune response 121 0.75491 <0.001 <0.001
GO:0002449 Lymphocyte-mediated immunity 85 0.73747 <0.001 <0.001
GO:0002694 Regulation of leukocyte activation 167 0.70281 <0.001 <0.001
GO:0007159 Leukocyte cell-cell adhesion 112 0.72889 <0.001 <0.001
GO:0002764 Immune response-regulating signaling pathway 159 0.70894 <0.001 <0.001

CC

GO:0001772 Immunological synapse 32 0.89059 <0.001 <0.001
GO:0042611 MHC protein complex 19 0.92416 <0.001 0.0016732

GO:0098636 Protein complex involved in cell adhesion 35 0.83931 <0.001 0.0037646

GO:0070820 Tertiary granule 155 0.8063 <0.001 0.0046849

GO:0001891 Phagocytic cup 21 0.8995 <0.001 0.0050195

MF

GO:0042287 MHC protein binding 24 0.923 <0.001 <0.001
GO:0003823 Antigen binding 52 0.84395 <0.001 0.0033726

GO:0019865 Immunoglobulin binding 22 0.91359 <0.001 0.0036792

GO:0035586 Purinergic receptor activity 26 0.86795 0.0023095 0.0040471

GO:0052813 Phosphatidylinositol bisphosphate kinase activity 74 0.82566 <0.001 0.0044676

KEGG

hsa05150 Staphylococcus aureus infection 52 0.92179 <0.001 <0.001
hsa05416 Viral myocarditis 56 0.90004 <0.001 <0.001
hsa05320 Autoimmune thyroid disease 50 0.90708 <0.001 <0.001
hsa05140 Leishmaniasis 71 0.89 <0.001 <0.001
hsa04940 Type I diabetes mellitus 41 0.90434 <0.001 <0.001

NCF2

BP

GO:0009595 Detection of biotic stimulus 21 0.95106 <0.001 <0.001
GO:0033108 Mitochondrial respiratory chain complex assembly 68 -0.66273 <0.001 <0.001
GO:0010257 NADH dehydrogenase complex assembly 49 -0.73433 <0.001 <0.001
GO:0042116 Macrophage activation 78 0.8476 <0.001 0.00047859

GO:0042107 Cytokine metabolic process 106 0.848 <0.001 0.0004994

CC

GO:0042611 MHC protein complex 19 0.93646 <0.001 <0.001
GO:0030964 NADH dehydrogenase complex 43 -0.65251 <0.001 <0.001
GO:0098798 Mitochondrial protein complex 213 -0.5402 <0.001 <0.001
GO:0001772 Immunological synapse 32 0.87477 <0.001 0.00058165

GO:0070820 Tertiary granule 155 0.84456 <0.001 0.00087247

MF

GO:0038187 Pattern recognition receptor activity 20 0.94123 <0.001 <0.001
GO:0042287 MHC protein binding 24 0.91201 <0.001 0.00094517

GO:0003823 Antigen binding 52 0.87062 <0.001 0.00094517

GO:0019865 Immunoglobulin binding 22 0.93547 <0.001 0.0012602

GO:0043394 Proteoglycan binding 33 0.87104 <0.001 0.0040957

KEGG

hsa05150 Staphylococcus aureus infection 52 0.92654 <0.001 <0.001
hsa05140 Leishmaniasis 71 0.90715 <0.001 <0.001
hsa05310 Asthma 28 0.93861 <0.001 <0.001
hsa05322 Systemic lupus erythematosus 122 0.86618 <0.001 <0.001
hsa04640 Hematopoietic cell lineage 93 0.89299 <0.001 <0.001

NCF4

BP

GO:0002250 Adaptive immune response 368 0.78931 <0.001 <0.001
GO:0032609 Interferon-gamma production 102 0.79916 <0.001 <0.001
GO:0032613 Interleukin-10 production 46 0.82482 <0.001 <0.001
GO:0042110 T cell activation 439 0.76892 <0.001 <0.001
GO:0007159 Leukocyte cell-cell adhesion 310 0.76451 <0.001 <0.001

CC
GO:0001772 Immunological synapse 32 0.83629 <0.001 <0.001
GO:0042579 Microbody 125 -0.56583 <0.001 <0.001
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Staphylococcus aureus infection (KEGG category). More
enrichment pathways are shown in Table 2.

3.5. Genomic Alterations of NCF1, NCF2, and NCF4 in
KIRC. The frequency and types of genetic alterations in
NCF1, NCF2, and NCF4 in patients with HCC were ana-
lyzed by using the cBioPortal database. A total of 274 KIRC
cases from TCGA were explored. NCF1, NCF2, and NCF4
were altered in 4%, 7%, and 5% of KIRC cases, respectively
(Figure 5(a)). NCF1 mutation consisted of 4.01% mRNA
high (11 cases). NCF2 mutation consisted of 0.36% mutation
(1 case), 0.36% deep deletion (1 case), and 5.84% mRNA
high (16 cases). NCF4 mutation consisted of 0.36% mutation
(1 case), 0.36% deep deletion (1 case), and 4.01% mRNA
high (11 cases) (Figure 5(b)). NCF2 and NCF4 have existed
mutations in the protein functional domain (Figure 5(c)).
However, the copy number alteration status of NCF1,
NCF2, and NCF4 was not significantly associated with the
overall survival (OS) and disease-specific survival (DSS) of
KIRC (Figures 5(d)–5(i)). In KIRC patients, the probability
of mutations in NCF1, NCF2, and NCF4 is not high. We
did not find that mutations may have beneficial or harmful
effects on survival in this small sample of data. Therefore,
genomic alterations of these genes could not be considered
as poor prognosis factors in KIRC patients.

3.6. Correlation between NCF Expression and Immune
Infiltrating Level in KIRC. The survival of patients in several
cancers is determined by the number and activity of tumor-
infiltrating lymphocytes. Therefore, the TIMER database
was used to investigate the relationship between the levels
of immune infiltrating and the expressions of NCF1,
NCF2, and NCF4 in KIRC patients. As shown in
Figure 6(a), high levels of NCF1, NCF2, and NCF4 mRNA
expression had a significantly negative correlation with
tumor purity (NCF1, r = −0:284, p < 0:001; NCF2, r = −
0:241, p < 0:001; and NCF4, r = −0:357, p < 0:001) in KIRC.

Overexpression of each of these genes was significantly
associated with higher immune cell infiltration levels. Specif-
ically, the NCF1, NCF2, and NCF4 expression level was pos-
itively correlated with infiltration levels of CD8+ T cells
(NCF1, r = 0:406, p < 0:001; NCF2, r = 0:389, p < 0:001;
and NCF4, r = 0:245, p < 0:001), CD4+ T cells (NCF1, r =
0:336, p < 0:001; NCF2, r = 0:328, p < 0:001; and NCF4, r
= 0:464, p < 0:001), B cells (NCF1, r = 0:452, p < 0:001;
NCF2, r = 0:425, p < 0:001; and NCF4, r = 0:265, p < 0:001),
macrophages (NCF1, r = 0:466, p < 0:001; NCF2, r = 0:672, p
< 0:001; and NCF4, r = 0:559, p < 0:001), neutrophils
(NCF1, r = 0:566, p < 0:001; NCF2, r = 0:683, p < 0:001; and
NCF4, r = 0:575, p < 0:001), and DCs (NCF1, r = 0:636, p
< 0:001; NCF2, r = 0:726, p < 0:001; and NCF4, r = 0:528,
p < 0:001) (Figures 6(b)–6(d)). Specifically, NCF2 expres-
sion was not correlated with immune subtypes (C1-C6:
wound healing, IFN-gamma dominant, inflammatory, lym-
phocyte depleted, and TGF-β dominant) in KIRC. In addi-
tion, it was found that the mRNA levels of NCF1 and
NCF4 were obviously decreased in immunologically quiet
KIRC immune subtype.

Moreover, the relationships between somatic copy num-
ber alterations (SCNA) of the 3 genes and tumor infiltration
levels among KIRC were investigated. Interestingly, the
results showed that the CNA of NCF1 had significant corre-
lations with the infiltration levels of CD4+ T cells and B cells;
the CNA of NCF2 had significant correlations with CD8+ T
cells, CD4+ T cells, B cells, neutrophils, dendritic cells, and
macrophages; and the CNA of NCF4 had a significant corre-
lation with CD8+ T cells, CD4+ T cells, neutrophils, and
dendritic cells (Figures 7(a)–7(c)).

3.7. Enrichment Analyses of NCFs in KIRC. We then per-
formed enrichment analyses of NCFs. We collected NCF1,
NCF2, and NCF4 and their coexpressed genes and plotted
PPI plots with GeneMANIA (20) and STRING (10)
(Figures 8(a) and 8(b)). The PPI network was constructed
and revealed that NCFs were associated with osteoclast

Table 2: Continued.

Gene Category Gene set Description Size ES p value FDR

GO:0001891 Phagocytic cup 21 0.85403 <0.001 0.00053463

GO:0070820 Tertiary granule 155 0.72836 <0.001 0.00080194

GO:0042611 MHC protein complex 19 0.84613 <0.001 0.0016039

MF

GO:0019865 Immunoglobulin binding 22 0.88392 <0.001 <0.001

GO:0016903
Oxidoreductase activity, acting on the aldehyde

or oxo group of donors
43 -0.62542 <0.001 <0.001

GO:0042287 MHC protein binding 24 0.85887 <0.001 0.0011573

GO:0004896 Cytokine receptor activity 88 0.75566 <0.001 0.001736

GO:0019955 Cytokine binding 119 0.69907 <0.001 0.009982

KEGG

hsa05150 Staphylococcus aureus infection 52 0.88097 <0.001 <0.001
hsa04640 Hematopoietic cell lineage 93 0.80875 <0.001 <0.001
hsa05320 Autoimmune thyroid disease 50 0.84733 <0.001 <0.001
hsa04672 Intestinal immune network for IgA production 45 0.83546 <0.001 <0.001
hsa05140 Leishmaniasis 71 0.80899 <0.001 <0.001
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differentiation, natural killer cell-mediated cytotoxicity,
MHC class I protein binding, GTPase activator activity,
immunological synapse, and immune response.

To understand specifically the potential role of NCFs in
the development of kidney renal clear cell carcinoma, we
conducted GO and KEGG functional enrichment analysis
of the top 100 correlated genes of distinct NCFs using
DAVID which was extracted from the GEPIA (http://gepia
.cancer-pku.cn/) database as presented in Table S1. We
observed that all these three members were closely associated
with immune-related biological functions, such as adaptive
immune response, innate immune response, regulation of
immune response, and integrin-mediated signaling pathway
(Figure 8(c)). Therefore, we have reason to believe that NCF
members may be related to the immune response in the
tumor microenvironment (Figure 8(c)). In addition, we have
also observed a higher correlation between NCFs and
immunosuppressive immune infiltrating cells (Table 3).

3.8. NCF4 Inhibition Blocks Kidney Cancer Cell Proliferation
In Vitro. We tested the expression of NCFs in human nor-
mal renal tubular epithelial cell line HK-2 and KIRC cell line
786-O and found that NCF1, NCF2, and NCF4 were signif-
icantly upregulated in the KIRC cell line (Figure 9(a)). To
verify the effects of NCF4 on the biological function of KIRC
cells in vitro, the siRNAs were synthesized for knocking
down the expression of NCF4 in the 786-O cell line
(Figures 9(b) and 9(c)). Overexpression of NCF4 led to acti-
vation of the NADPH oxidase 2 complex and ROS produc-
tion (activation of NADPH oxidase subunit NCF4 induces
ROS-mediated EMT signaling in kidney cancer cells). The
generation, location, and local concentration of free radicals

in tumor cells play an important role in the biological behav-
ior of tumors [29]. In order to explore the relationship
between them, we measured the level of ROS after knocking
down NCF4 in the 786-O cell line. NCF4 knockdown
decreases the level of ROS in kidney cancer cells
(Figure 9(d)). A CCK-8 assay indicated that cell viability
was inhibited by silencing NCF4 and enhanced by exoge-
nous hydrogen peroxide in 786-O cells (Figure 9(e)). The
data of the colony formation assay also showed that exoge-
nous hydrogen peroxide increased the proliferation, whereas
silencing NCF4 inhibited the proliferation in kidney cancer
cells (Figure 9(f)).

3.9. NCF4 Inhibition Blocks the Migration and Epithelial-
Mesenchymal Transition of Kidney Cancer Cells In Vitro.
Wound healing assays and transwell assays were conducted
simultaneously after NCF4 knockdown to figure out the
potential role of NCF4 in the migration and invasion capac-
ity of bladder cancer cells. The results showed that knock-
down of NCF4 significantly inhibited the ability of
migration of KIRC cells (Figures 10(a) and 10(b)).
Epithelial-mesenchymal transition (EMT) has been reported
to play an important role in carcinoma metastasis, and due
to EMT-mediated cell morphology changes, tumor cells are
more likely to metastasize to distant places [30]. After con-
firming that NCF4 mediated KIRC cell migration, we inves-
tigated the EMT-relevant markers by western blotting. As
the result showed, the expression of the epithelial marker
E-cadherin was enhanced, and the mesenchymal markers
vimentin and matrix metalloproteinase MMP9 that are
closely correlated with metastasis were attenuated when
NCF4 was knocked down (Figure 10(c)).
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Figure 5: Genomic alterations of NCF1, NCF2, and NCF4 in KIRC. (a) OncoPrint of NCF1, NCF2, and NCF4 alterations in KIRC. Different
types of genetic alterations highlighted in different colors, including mutation, mRNA high, and deep deletion. (b) Mutation frequency and
copy number variations in the TCGA-BRCA dataset were determined using the cBioPortal website. (c) The mutation site legend of
NCF1/2/4. (d–i) Association between cases with NCF1, NCF2, and NCF4 CNA status and overall survival (OS) and disease-specific
survival (DSS) of patients with KIRC.
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Figure 6: Continued.
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4. Discussion

Clear cell RCC (KIRC) is a kind of silent cancer. The symp-
toms are not obvious in the early stage of the disease and it is
difficult to be detected [31]. Therefore, the prognosis of this
disease is often very bad [31]. RCC is showing an upward
trend all over the world, especially in developed countries
that maintain a high incidence [32]. At present, the research
on early screening and molecular diagnosis of RCC is con-
tinuously deepening, and the diagnosis and treatment of
RCC have been improved to a certain extent [33].

RCC is considered to be an immunogenic tumor, but it is
known to mediate immune function to a large extent by
causing immunosuppressive cells (such as regulatory T cells
and suppressor cells of myeloid origin) to infiltrate the
tumor microenvironment, considered as a “cold tumor”
[34]. With the further in-depth research of TME, the recep-
tors on the surface of immune cells and stromal cells in the
tumor microenvironment have been recognized and studied
more, which brings more opportunities and approaches for
tumor treatment but also clarifies tumor progression. There-
fore, more abnormally expressed genes with potential clini-
cal relevance need to be considered for their possible
effects, which will bring benefits to patients with more
detailed diagnostic evaluation and treatment. In addition,
the data of the past few decades clearly show that immuno-
suppressive changes in tumors are important tumor driving
factors and immune escape mechanisms, which occur ear-
lier. Tumor immunosuppression is usually found in cancer.
Tumors mainly pass through two types of cells, regulatory
T cells or Tregs and myeloid cells, called myeloid-derived
suppressor cells (MDSC), which are immunosuppressive
agents, which means that they secrete chemicals (such as
cytokines) to inhibit infiltrating T cells [35].

In our study, NCF1, NCF2, and NCF4 showed a high
expression in renal clear cell carcinoma. And we further
proved that especially NCF1 and NCF4 were significantly
correlated with high tumor grade and clinic stage. In addi-
tion, overexpression of NCF1, NCF2, and NCF4 was associ-
ated with shorter overall survival. So far, more and more
evidence show that NCF1, NCF2, and NCF4 play an impor-
tant role in tumorigenesis and development.

NOX2 is often referred to as NADPH oxidase, composed
of the assembly of CYBB/gp91phox with the membrane-
anchored CYBA/p22phox and the cytosolic subunits
NCF4/p40phox, NCF1/p47phox, and NCF2/p67phoxon
the plasma membrane to generate extracellular ROS [16].
ROS affects the occurrence, development, and metastasis of
cancer through a variety of mechanisms [16]. In recent
years, a large number of studies have shown that altered
ROS production may promote tumors, while other findings
have also proved that ROS production can increase the sen-
sitivity of cancer cells to various death-inducing pathways
[36]. NCFs are the subunits of NOX2. Variations and dele-
tions in any one subunit may induce changes in ROS pro-
duction, which will affect tumors.

The study by van der Weyden et al. showed that NOX2
significantly affects the process of metastasis, because mice
that are genetically deprived of any major NOX2 subunits
(any subunit is necessary for NOX2 function) always after
intravenous injection of tumor cells show a lower rate of lung
metastasis [37]. Kelkka et al. found that NCF1 (m1J) mutant
mice developed significantly smaller tumors in twomelanoma
models and tumor incidence was reduced in Lewis lung can-
cer tumors. The lack of ROS-mediated protection against
tumor growth was associated with increasing immunity-
associated cytokines [38]. NCF2 is significantly upregulated
in RCC, as a potential factor predicting RCC [39].
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Figure 6: Correlation between NCF expression and immune infiltrating level in KIRC. (a) NCF1, NCF2, and NCF4 expression levels were
significantly related to tumor purity and significant positive correlations existed with immune infiltration cells including CD4+ T cells, CD8+

T cells, B cells, neutrophils, macrophages, and DCs in KIRC. (b–d) Correlation of NCF1, NCF2, and NCF4 expression and immune subtypes
(C1-C6: wound healing, IFN-gamma dominant, inflammatory, lymphocyte depleted, and TGF-β dominant) in KIRC.
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Figure 7: The correlation between copy number alteration of NCFs and immune cell infiltration in KIRC. (a–c) CNA of NCF1, NCF2, and
NCF4 had significant correlations with immune infiltration cells including CD4+ T cells and B cells. CNA: copy number alteration.
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Immune infiltrating cells in the tumor environment have
received more and more attention, and many of their func-
tions have been found to be targets for tumor treatment.
As early as 1985, Miller et al. began to study the effect of
active immunotherapy for renal cell carcinoma [40]. Gillon
et al. explored the role of the immune response reflected in
the migration inhibition factor (MIF) test in the defense
mechanism of RCC patients and explored the role of macro-
phages in kidney cancer [41].

The results of expression with NCFs and TIMER data-
base results indicate that these three genes are strongly
related to SPI1, HCK, VAV1, CD53, ITGB2, and so on.
According to the results of KEGG pathway enrichment, they
are mainly involved in inflammation and immune response
or tumorigenesis [42–46]. Our results show that NCFs and
their coexpressed genes, including SPI1, HCK, VAV1,
CD53, and ITGB2, are significantly associated with tumor-
infiltrating immune cells, especially with immunosuppressive
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Figure 8: Enrichment pathway of NCFs in KIRC. (a) PPI network of NCF1, NCF2, and NCF4 (GeneMANIA). Different colors of the
network edge indicate the bioinformatics methods applied: physical interactions, coexpression, predicted, colocalization, pathway, genetic
interactions, and shared protein domains. (b) PPI network of NCF1, NCF2, and NCF4 (STRING). (c) Bubble diagram showed the GO
enrichment in cellular component (CC) terms, biological process (BP) terms, and molecular function (MF) terms and bar plot of Kyoto
Encyclopedia of Genes and Genomes (KEGG) enriched terms.
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Table 3: Correlation analysis between NCF1, NCF2, and NCF4 and gene markers of immune cells.

Description Gene markers
NCF1 NCF2 NCF4

None Purity None Purity None Purity
Cor p Cor p Cor p Cor p Cor p Cor p

CD8 T cell
CD8A 0.612 ∗∗∗ 0.574 ∗∗∗ 0.436 ∗∗∗ 0.393 ∗∗∗ 0.482 ∗∗∗ 0.403 ∗∗∗
CD8B 0.606 ∗∗∗ 0.572 ∗∗∗ 0.405 ∗∗∗ 0.362 ∗∗∗ 0.488 ∗∗∗ 0.424 ∗∗∗

T cell (general)

CD3D 0.675 ∗∗∗ 0.642 ∗∗∗ 0.446 ∗∗∗ 0.399 ∗∗∗ 0.601 ∗∗∗ 0.536 ∗∗∗
CD3E 0.694 ∗∗∗ 0.661 ∗∗∗ 0.462 ∗∗∗ 0.413 ∗∗∗ 0.592 ∗∗∗ 0.527 ∗∗∗
CD2 0.702 ∗∗∗ 0.672 ∗∗∗ 0.510 ∗∗∗ 0.471 ∗∗∗ 0.600 ∗∗∗ 0.538 ∗∗∗

B cell
CD19 0.448 ∗∗∗ 0.404 ∗∗∗ 0.282 ∗∗∗ 0.247 ∗∗∗ 0.536 ∗∗∗ 0.492 ∗∗∗
CD79A 0.503 ∗∗∗ 0.455 ∗∗∗ 0.316 ∗∗∗ 0.265 ∗∗∗ 0.538 ∗∗∗ 0.482 ∗∗∗

Monocyte
CD86 0.735 ∗∗∗ 0.715 ∗∗∗ 0.825 ∗∗∗ 0.826 ∗∗∗ 0.704 ∗∗∗ 0.679 ∗∗∗

CD115 (CSF1R) 0.684 ∗∗∗ 0.665 ∗∗∗ 0.685 ∗∗∗ 0.677 ∗∗∗ 0.738 ∗∗∗ 0.720 ∗∗∗

TAM

CCL2 0.129 ∗∗ 0.087 0.062 0.182 ∗∗∗ 0.154 ∗∗ 0.130 ∗∗ 0.077 0.100

CD68 0.545 ∗∗∗ 0.528 ∗∗∗ 0.613 ∗∗∗ 0.618 ∗∗∗ 0.484 ∗∗∗ 0.493 ∗∗∗
IL10 0.527 ∗∗∗ 0.469 ∗∗∗ 0.639 ∗∗∗ 0.603 ∗∗∗ 0.600 ∗∗∗ 0.558 ∗∗∗

M1 macrophage

INOS (ISYNA1) -0.070 0.105 -0.113 ∗ -0.198 ∗∗∗ -0.238 ∗∗∗ 0.068 0.116 0.023 0.622

IRF5 0.524 ∗∗∗ 0.522 ∗∗∗ 0.442 ∗∗∗ 0.463 ∗∗∗ 0.406 ∗∗∗ 0.411 ∗∗∗
cox2 (PTGS2) -0.015 0.733 -0.057 0.219 0.108 ∗ 0.089 0.056 0.163 ∗∗∗ 0.117 ∗

M2 macrophage

CD163 0.483 ∗∗∗ 0.458 ∗∗∗ 0.671 ∗∗∗ 0.664 ∗∗∗ 0.567 ∗∗∗ 0.551 ∗∗∗
VSIG4 0.597 ∗∗∗ 0.578 ∗∗∗ 0.636 ∗∗∗ 0.624 ∗∗∗ 0.703 ∗∗∗ 0.686 ∗∗∗
MS4A4A 0.530 ∗∗∗ 0.496 ∗∗∗ 0.698 ∗∗∗ 0.693 ∗∗∗ 0.646 ∗∗∗ 0.619 ∗∗∗

Neutrophils

CD66b (CEACAM8) 0.039 0.374 0.045 0.335 0.113 ∗∗ 0.136 ∗∗ 0.074 0.087 0.105 ∗
CD11b (ITGAM) 0.711 ∗∗∗ 0.690 ∗∗∗ 0.780 ∗∗∗ 0.767 ∗∗∗ 0.657 ∗∗∗ 0.637 ∗∗∗

CCR7 0.540 ∗∗∗ 0.496 ∗∗∗ 0.463 ∗∗∗ 0.429 ∗∗∗ 0.579 ∗∗∗ 0.540 ∗∗∗

Natural killer cell

KIR2DL1 0.125 ∗∗ 0.108 ∗ 0.102 ∗ 0.053 0.260 0.096 ∗ 0.033 0.481

KIR2DL3 0.134 ∗∗ 0.152 ∗∗ 0.131 ∗∗ 0.118 ∗ 0.126 ∗∗ 0.110 ∗
KIR2DL4 0.273 ∗∗∗ 0.260 ∗∗∗ 0.169 ∗∗∗ 0.123 ∗∗ 0.282 ∗∗∗ 0.239 ∗∗∗
KIR2DS4 0.075 0.082 0.063 0.175 0.038 0.386 -0.005 0.914 0.093 ∗ 0.072 0.120

KIR3DL1 0.121 ∗∗ 0.144 ∗∗ 0.131 ∗∗ 0.116 ∗ 0.088 ∗ 0.075 0.107

KIR3DL2 0.184 ∗∗∗ 0.174 ∗∗∗ 0.110 ∗ 0.091 0.051 0.165 ∗∗∗ 0.146 ∗∗
KIR3DL3 0.130 ∗∗ 0.098 ∗ 0.073 0.092 0.056 0.231 0.144 ∗∗ 0.122 ∗∗

Dendritic cell

HLA-DPA1 0.702 ∗∗∗ 0.672 ∗∗∗ 0.697 ∗∗∗ 0.680 ∗∗∗ 0.576 ∗∗∗ 0.522 ∗∗∗
HLA-DPB1 0.763 ∗∗∗ 0.749 ∗∗∗ 0.686 ∗∗∗ 0.667 ∗∗∗ 0.640 ∗∗∗ 0.609 ∗∗∗
HLA-DQB1 0.487 ∗∗∗ 0.442 ∗∗∗ 0.419 ∗∗∗ 0.376 ∗∗∗ 0.402 ∗∗∗ 0.341 ∗∗∗
HLA-DRA 0.731 ∗∗∗ 0.714 ∗∗∗ 0.750 ∗∗∗ 0.741 ∗∗∗ 0.612 ∗∗∗ 0.583 ∗∗∗

BDCA-1 (CD1C) 0.395 ∗∗∗ 0.345 ∗∗∗ 0.460 ∗∗∗ 0.419 ∗∗∗ 0.429 ∗∗∗ 0.379 ∗∗∗
BDCA-4 (NRP1) -0.001 0.982 -0.064 0.167 0.212 ∗∗∗ 0.166 ∗∗∗ 0.050 0.247 -0.015 0.756

CD11c (ITGAX) 0.655 ∗∗∗ 0.629 ∗∗∗ 0.676 ∗∗∗ 0.670 ∗∗∗ 0.645 ∗∗∗ 0.639 ∗∗∗

Th1

T-bet (TBX21) 0.455 ∗∗∗ 0.434 ∗∗∗ 0.297 ∗∗∗ 0.261 ∗∗∗ 0.426 ∗∗∗ 0.383 ∗∗∗
STAT4 0.454 ∗∗∗ 0.404 ∗∗∗ 0.373 ∗∗∗ 0.342 ∗∗∗ 0.523 ∗∗∗ 0.465 ∗∗∗

IFN-γ (IFNG) 0.592 ∗∗∗ 0.553 ∗∗∗ 0.410 ∗∗∗ 0.365 ∗∗∗ 0.453 ∗∗∗ 0.382 ∗∗∗
TNF-α (TNF) 0.478 ∗∗∗ 0.475 ∗∗∗ 0.388 ∗∗∗ 0.384 ∗∗∗ 0.462 ∗∗∗ 0.437 ∗∗∗

STAT1 0.588 ∗∗∗ 0.537 ∗∗∗ 0.633 ∗∗∗ 0.605 ∗∗∗ 0.428 ∗∗∗ 0.352 ∗∗∗

Th2

GATA3 0.212 ∗∗∗ 0.234 ∗∗∗ 0.133 ∗∗ 0.118 ∗ 0.222 ∗∗∗ 0.188 ∗∗∗
STAT6 0.150 ∗∗∗ 0.167 ∗∗∗ 0.189 ∗∗∗ 0.206 ∗∗∗ 0.099 ∗ 0.138 ∗∗
STAT5A 0.629 ∗∗∗ 0.614 ∗∗∗ 0.598 ∗∗∗ 0.583 ∗∗∗ 0.535 ∗∗∗ 0.495 ∗∗∗
IL13 0.053 0.219 0.038 0.420 -0.063 0.145 -0.061 0.194 0.173 ∗∗∗ 0.165 ∗∗∗

Tfh BCL6 -0.029 0.500 -0.034 0.465 0.029 0.499 0.028 0.544 0.091 ∗ 0.098 ∗
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macrophages. According to the result of the TISIDB data-
base, the mRNA levels of NCF1 and NCF4 were obviously
decreased in immunologically quiet KIRC immune subtype.
According to the difference in copy number, both arm-level

deletion and arm-level gain of NCFs may induce changes in
the level of immune cell infiltration. These results indicate
that the expression level of NCFs is closely related to
tumor-infiltrating immune cells. NCFs and their coexpressed
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Figure 9: NCF4 promotes KIRC cell proliferation. (a) Expression levels of NCF1, NCF2, and NCF4 in HK-2 and 786-O cell lines were
determined by qRT-PCR. NCF4 silencing effect was examined by (b) qRT-PCR and (c) western blotting in 786-O cell lines. After
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genes may participate in the regulation of the immune
response of renal cell carcinoma, leading to a poor prognosis
of GC patients.

It is worth mentioning that when exploring the markers
related to NCFs and immune cells, we found that NCFs
showed a strong correlation with M2 macrophages and
tumor-associated macrophages, but not with M1 macro-
phages. The above data indicate that the high expression
level of NCFs may promote the differentiation of macro-
phages into M2 macrophages and finally into TAM, which
may contribute to the occurrence of kidney cancer and lead
to a poor prognosis. Overexpression of NCFs may induce
the massive production of ROS in the tumor immune micro-
environment. Studies have shown that TAM induced by
ROS can promote tumor proliferation in vitro [47] and
angiogenesis [48]. In addition, the sources of ROS produc-
tion are also different, partly from the tumor cells them-
selves, but also from other stromal cells in the
microenvironment, such as tumor-associated fibroblasts
[49] and neutrophils [50].

However, the comprehensive analysis of the NCF family
is carried out using different databases and algorithms, and
there are still some limitations. First of all, the prognostic
NCF family themselves and their related gene characteristics
have not been widely adopted and verified. Considering that
there are some potential obstacles to the promotion of
sequencing technology in clinical tumor detection, the era

when molecular prognostic biomarkers are widely used in
clinical practice will take more time. Secondly, the role of
the NCF family in tumors is only based on our bioinformat-
ics analysis, and the internal mechanism of its impact on
tumors deserves more exploration. Thirdly, as a retrospec-
tive study, the main limitation of this study lies in its retro-
spective nature. Therefore, it is necessary to conduct a
multicenter prospective study in the future.

5. Conclusion

In summary, we found that the overexpression of NCFs in
KIRC is associated with clinical manifestations and predicts
a poor prognosis. The high expression of NCFs is closely
related to the level of infiltrating immune cells, and it may
promote the differentiation of macrophages into TAM. Tar-
geting NCFs, NOX2, and ROS-related pathways may
become a new antitumor treatment strategy by regulating
immune infiltration. These results bring new insights into
NCF-mediated KIRC immune regulation.

Data Availability

The datasets analyzed in the current study are publicly avail-
able in cBioPortal and TCGA and accessed via the Genomic
Data Commons Data Portal (https://gdc.cancer.gov). The
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