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Abstract: Bafilomycin A1 is the representative compound of the plecomacrolide natural product
family. This 16-membered ring plecomacrolide has potent antifungal and vacuolar H+-ATPase
inhibitory activities. In our previous work, we identified a bafilomycin biosynthetic gene cluster (baf )
from the marine bacterium Streptomyces lohii ATCC BAA-1276, wherein a luxR family regulatory gene
orf1 and an afsR family regulatory gene bafG were revealed based on bioinformatics analysis. In this
study, the positive regulatory roles of orf1 and bafG for bafilomycin biosynthesis are characterized
through gene inactivation and overexpression. Compared to the wild-type S. lohii strain, the knockout
of either orf1 or bafG completely abolished the production of bafilomycins. The overexpression of
orf1 or bafG led to 1.3- and 0.5-fold increased production of bafilomycins, respectively. A genetically
engineered S. lohii strain (SLO-08) with orf1 overexpression and inactivation of the biosynthetic genes
orf2 and orf3, solely produced bafilomycin A1 with the titer of 535.1 ± 25.0 mg/L in an optimized
fermentation medium in shaking flasks. This recombinant strain holds considerable application
potential in large-scale production of bafilomycin A1 for new drug development.

Keywords: Streptomyces; bafilomycin; regulatory gene; biosynthesis; fermentation optimization

1. Introduction

Bafilomycins, which are mainly produced by Streptomyces, belong to the plecomacrolide
(i.e., a 16- or 18-membered macrolactone connected to a 6-membered hemiacetal ring via
a three-carbon linker) subfamily of polyketide natural products. These 16-membered
ring macrolides have shown diverse biological activities including antibacterial [1], an-
tifungal [2], antitumor [3], and anti-osteoporotic [4] activities. Since bafilomycin A1, B1,
and C1 were first isolated from Streptomyces griseus sp. sulphurus (TÜ 1922) in 1983 [5],
nearly thirty bafilomycin derivatives have been discovered [5–7]. Essentially, most of these
derivatives (Figure 1) are generated from the bafilomycin A1 core structure through various
known [8–10] and unknown tailoring steps during their biosynthetic pathways.

As the first and archetypal compound of bafilomycins, bafilomycin A1 has attracted
much attention because it is a potent and specific inhibitor of vacuolar H+-ATPase (V-
ATPase), which is an important drug target for osteoporosis [4]. This compound may also be
applied in antitumor therapy due to its potent autophagy inhibitory activity, which prevents
autophagosome-lysosome fusion in cells by targeting the sarco/endoplasmic reticulum
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Ca2+-ATPase (SERCA) pump [11]. Moreover, bafilomycin A1 has been demonstrated
to show promising prospects in the field of combined pharmacotherapy. For example,
bafilomycin A1 and FK506 have displayed marked synergistic antifungal activities against
the fungal pathogen Cryptococcus neoformans [12]; the combined treatment with bortezomib
plus bafilomycin A1 has been proved to be capable of enhancing the cytocidal effect and
inducing U266 myeloma cells [13]; and the inhibition of autophagy by bafilomycin A1 can
decrease the resistance of gastric cancer cells to 5-fluorouracil in vitro [14]. Intriguingly,
bafilomycin A1 was recently reported to be capable of interrupting the function of the
viral receptor ACE2 via inhibiting the V-ATPase, thus being considered as a candidate for
treating the infections caused by coronaviruses (e.g., COVID-19, SARS-CoV, and MERS-
CoV) [15]. Despite these promising results, such a potent drug candidate has not entered
clinical application owing to its high toxicity to mammalian cells [16]. Thus, bafilomycin A1
has become an attractive target for medicinal chemists to synthesize unnatural bafilomycin
derivatives with lower toxicity [17]. For the purposes of new drug development and
diverse bioactivity assays, the demands for bafilomycin A1 are fast growing, which has
naturally led to the demand for bafilomycin A1 high-producing strains since total synthesis
of bafilomycin A1 remains highly challenging [18,19].

Mar. Drugs 2021, 19, x FOR PEER REVIEW 2 of 14 
 

 

  

Figure 1. Structures of representative bafilomycins. 

As the first and archetypal compound of bafilomycins, bafilomycin A1 has attracted 

much attention because it is a potent and specific inhibitor of vacuolar H+-ATPase (V-

ATPase), which is an important drug target for osteoporosis [4]. This compound may also 

be applied in antitumor therapy due to its potent autophagy inhibitory activity, which 

prevents autophagosome-lysosome fusion in cells by targeting the sarco/endoplasmic re-

ticulum Ca2+-ATPase (SERCA) pump [11]. Moreover, bafilomycin A1 has been demon-

strated to show promising prospects in the field of combined pharmacotherapy. For ex-

ample, bafilomycin A1 and FK506 have displayed marked synergistic antifungal activities 

against the fungal pathogen Cryptococcus neoformans [12]; the combined treatment with 

bortezomib plus bafilomycin A1 has been proved to be capable of enhancing the cytocidal 

effect and inducing U266 myeloma cells [13]; and the inhibition of autophagy by bafilo-

mycin A1 can decrease the resistance of gastric cancer cells to 5-fluorouracil in vitro [14]. 

Intriguingly, bafilomycin A1 was recently reported to be capable of interrupting the func-

tion of the viral receptor ACE2 via inhibiting the V-ATPase, thus being considered as a 

candidate for treating the infections caused by coronaviruses (e.g., COVID-19, SARS-CoV, 

and MERS-CoV) [15]. Despite these promising results, such a potent drug candidate has 

not entered clinical application owing to its high toxicity to mammalian cells [16]. Thus, 

bafilomycin A1 has become an attractive target for medicinal chemists to synthesize un-

natural bafilomycin derivatives with lower toxicity [17]. For the purposes of new drug 

development and diverse bioactivity assays, the demands for bafilomycin A1 are fast 

growing, which has naturally led to the demand for bafilomycin A1 high-producing 

strains since total synthesis of bafilomycin A1 remains highly challenging [18,19]. 

To engineer a bafilomycin A1 high-producer, knowledge on its biosynthetic mecha-

nisms is required. To date, at least six bafilomycin biosynthetic gene clusters from Strep-

tomyces and Kitasatospora species have been reported by this and other laboratories 

[8,10,20–23]. The modular and domain organization in five type I polyketide synthase 

(PKS) genes (exemplified by bafAI–bafAV, Figure 2a) collinearly matches the structure of 

bafilomycin A1. The five open reading frames bafB–F are responsible for biosynthesis of 

the methoxymalonate extender unit based on bioinformatics analysis. Recently, we com-

pletely elucidated the post-PKS tailoring steps (Figure 2b) of the bafilomycin biosynthetic 

pathway in Streptomyces lohii ATCC BAA-1276. Specifically, the adenylyltransferase Orf3 

activates fumarate to fumaryl-AMP, whose fumaryl moiety is then transferred to C21-

Figure 1. Structures of representative bafilomycins.

To engineer a bafilomycin A1 high-producer, knowledge on its biosynthetic mech-
anisms is required. To date, at least six bafilomycin biosynthetic gene clusters from
Streptomyces and Kitasatospora species have been reported by this and other laborato-
ries [8,10,20–23]. The modular and domain organization in five type I polyketide synthase
(PKS) genes (exemplified by bafAI–bafAV, Figure 2a) collinearly matches the structure of
bafilomycin A1. The five open reading frames bafB–F are responsible for biosynthesis of the
methoxymalonate extender unit based on bioinformatics analysis. Recently, we completely
elucidated the post-PKS tailoring steps (Figure 2b) of the bafilomycin biosynthetic pathway
in Streptomyces lohii ATCC BAA-1276. Specifically, the adenylyltransferase Orf3 activates
fumarate to fumaryl-AMP, whose fumaryl moiety is then transferred to C21-hydoxyl group
of bafilomycin A1 by the fumaryl transferase Orf2, giving rise to bafilomycin C1. Next,
the ATP-dependent amino synthetase BafY catalyzes the C–N bond formation between
bafilomycin C1 and 2-amino-3-hydroxycyclopent-2-enone (C5N) to form bafilomycin B1.
The C5N unit is assembled by the acyl-CoA ligase BafX and the bifunctional enzyme
BafZ [9,20].
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Except for those characterized as biosynthetic enzymes, bafG and orf1 are the only two
rest genes in the baf gene cluster with unclear functionality. According to the previous
bioinformatics analysis [20], bafG and orf1 likely encode an AfsR family transcriptional reg-
ulator and a LuxR family transcriptional regulator, respectively. To construct bafilomycin
high-producers, however, it is necessary to understand the regulatory roles of bafG and
orf1 in the production of bafilomycins. In this work, we first optimized the fermentation
medium for bafilomycin production. Subsequently, the regulatory roles of orf1 and bafG in
bafilomycin biosynthesis were characterized through gene inactivation and overexpression.
By knocking out orf2 and orf3 that are responsible for the conversion of bafilomycin A1
to C1, together with orf1 overexpression, a bafilomycin A1 high-producing strain (SLO-
08) with the titer of 535.1 ± 25.0 mg/L in shaking flasks was successfully engineered.
We anticipate that this strain will be utilized in the future to produce bafilomycin A1 in
a cost-effective and eco-friendly manner for pharmacological researches and new drug
development efforts.

2. Results
2.1. Optimization of the Fermentation Medium

We elected to optimize the fermentation medium since the accumulative production
of bafilomycins A1, B1, and C1 by the wild type S. lohii strain (SLO-01, Table 1) was low
(<40 mg/L) upon a 7-day fermentation. According to the previous study [24], soybean oil
was considered as a cheap carbon source for Streptomyces to efficiently generate acyl-CoAs,
which are common precursors of polyketide natural products. To test if soybean oil can also
boost the production of bafilomycins, the fermentation media with different concentrations
(w/v) of soybean oil (0, 3%, 6%, 9%, and 12%) were used to culture the wild type S. lohii
strain. As shown in Figure 3, the bafilomycin production was significantly increased by
addition of soybean oil. Specifically, 6% soybean oil resulted in the highest production
of bafilomycins, corresponding to a 5.3-fold enhancement in bafilomycins production by
S. lohii when compared to that in the same fermentation medium without soybean oil. Thus,
the 6% soybean oil containing broth was used as the optimized fermentation medium for
the production of bafilomycins in the following experiments.
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Table 1. Bacterial strains and plasmids.

Strain or Plasmid Characteristics Reference

Escherichia coli strains
DH5a Cloning host [25]

ET12567/pUZ8002 Interspecies conjugation [26]
Streptomyces strains

SLO-01 Streptomyces lohii ATCC BAA-1276
(wild-type strain) [20]

SLO-02 S. lohii ∆bafG This study
SLO-03 S. lohii ∆orf1 This study
SLO-04 S. lohii/pSET152-ermE*-bafG This study
SLO-05 S. lohii/pSET152-ermE*-orf1 This study
SLO-06 S. lohii/pSET152-ermE* This study
SLO-07 S. lohii ∆orf2&orf3 [9]
SLO-08 S. lohii ∆orf2&orf3/pSET152s-ermE*-orf1 This study

Plasmids
pSET152-ermE* Apramycin resistance [27]
pSET152s-ermE* Spectinomycin resistance This study

pIJ778 Spectinomycin resistance [28]
pCIMt002 Ampicillin and Apramycin resistance [29]
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Figure 3. The relative percentage of bafilomycin production by wild-type S. lohii when supplied with
different concentrations (w/v) of soybean oil in fermentation media. Note: The average bafilomycin
production in the fermentation medium with 6% soybean oil is assigned as 100%.

2.2. Bioinformatics Analysis of the Regulatory Genes bafG and orf1

The proteins encoded by bafG (BafG, 609 amino acids) and orf1 (Orf1, 117 amino acids)
show high sequence similarity with the AfsR family regulatory proteins and the LuxR
family regulatory proteins from different Streptomyces spp., respectively (Figures S1 and S2).
To investigate the evolutionary relationship between BafG and the select number of AfsR
family regulators from Streptomyces, the phylogenetic tree was built based on their amino
acid sequences using the neighbor-joining method [30] (Figure 4a). This phylogenetic
analysis confirmed that BafG is indeed an AfsR family member (Figure 4a). According to
multiple sequence alignment (Figure S1) and BLAST analysis, BafG exhibits several typical
conservative DNA binding domains including the transcriptional regulatory protein, C-
terminal domain (trans_reg_C domain: 6–73 aa), the bacterial transcriptional activation
domain (BTA domain: 81–225 aa), and the nucleotide-binding adaptor shared by APAF-1,
R proteins, and CED-4 domain (NB-ARC domain: 302–479 aa); three 34-aa tetratricopeptide
repeat motifs (TPR motifs: 81–114 aa, 136–169 aa, and 173–206 aa), which is responsible
for recruiting RNA polymerase to bind to the promoter of target genes [31]; and several
key residues related to the nucleotides recognition: 24SerVal25, Thr44, Thr47, 55SerLeu56,
Thr66, and Gly70. Compared with the 993-aa AfsR, the C-terminus of 609-aa BafG lacks
four TPR repeats which has been validated to be dispensable for the basic function of AfsR
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as a transcriptional activator [31]. Furthermore, there is a unique “TTA” (Leu173) in the
coding sequence of bafG, which is the rarest codon in the high-GC-content Streptomyces
genomes (Figure S3) [32,33]. This rare codon strongly suggests the possibility that bafG
might participate in the regulation of bafilomycin biosynthesis since the involvement of
the genes with a “TTA” codon in regulating cell differentiation and antibiotics production
has been proposed for other Streptomyces species [32].
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identified LuxR family proteins. AfsR family proteins: AfsR (993 aa, GenBank accession number: BAA14186.1) and SCO3217
(638 aa, NP_627431.1) from Streptomyces coelicolor A3(2), AfsR-sl from Streptomyces lividans TK 24 (993 aa, EFD67634.1),
AfsR-sv from Streptomyces venezuelae ATCC 15439 (1056 aa, ABR08660.1), SCAB1371 from Streptomyces scabies 87.22 (641 aa,
CBG67361.1), AfsR-p from Streptomyces peucetius ATCC 27952 (982 aa, CAH10136.1), PteR from Streptomyces avermitilis MA-
4680 (1096 aa, NP_821585.1), AfsR-g from Streptomyces griseus (974 aa, BAA83790.1), and Orf2 from Streptomyces acidiscabies
ATCC 49003 (990 aa, BAO31545.1); LuxR family proteins: LuxR from Vibrio fischeri ATCC 7744 (250 aa, CAA68561.1), SalRIII
from Streptomyces albus (231 aa, ABG02265.1), ORF4 from Streptomyces noursei ATCC 11455 (210 aa, AAF71781.1), FscRI
from Streptomyces sp. FR-008 (222 aa, AAQ82551.1), PimM from Streptomyces natalensis (192 aa, CAM35468.1), ScnRII from
Streptomyces chattanoogensis (192 aa, ADX66474.1), AmphRIV from Streptomyces nodosus (243 aa, WP_079161981.1), FilF
from Streptomyces filipinensis (192 aa, AKX77828.1), LasR from Pseudomonas aeruginosa (239 aa, BAA06489.1), GerE from
Bacillus subtilis (74 aa, CAA11701.1), and NarL from Escherichia coli K-12 (216 aa, AKK17394.1). The bars show the distance
representing 0.1 (a) and 0.05 (b) substitutions per amino acid position and the bootstrap percentages under 50% from
1000 replicates are hidden.

With respect to Orf1, this small protein displays >45%/68% identity/similarity to
several identified LuxR family members from Streptomyces (Figure S2). A phylogenetic tree
was built using a number of LuxR family proteins including LuxR from Vibrio fischeri ATCC
7744 [34], GerE from Bacillus subtilis [35], LasR from Pseudomonas aeruginosa [36], NarL
from Escherichia coli K-12 [37], and so on (Figure 4b). The phylogenetic analysis clearly
indicated Orf1 is a LuxR family transcriptional regulator. Specifically, the protein sequence
alignment result showed that there is a highly conserved helix-turn-helix (HTH) motif at
the C-terminus of Orf1 (41–95 aa), which is a common feature of LuxR family regulators
(Figure S2) [38]. At the N-termini of many LuxR family members, there generally exist a
receptor for inducer binding [39], such as the Per-Arnt-Sim (PAS) domains of SalRIII [40],
PimM [41], and FscRI [42]. However, Orf1 only has a C-terminal HTH motif as GerE,
suggesting that Orf1 might be an inducer-independent LuxR homologue capable of directly
activating the transcription of related genes as the N-truncated LuxR (∆2–162) [43].

2.3. The Regulatory Roles of bafG and orf1 in Bafilomycin Production

To probe the functions of the afsR family member bafG and the luxR family regula-
tory gene orf1 for bafilomycin production in S. lohii, a 682-bp internal fragment of bafG
or a 335-bp internal fragment of orf1 was in-frame replaced by the aac(IV) cassette via
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homologous recombination, giving rise to the bafG deletion mutant SLO-02 and the orf1
deletion mutant SLO-03, respectively (Figure S4). As results, SLO-02 and SLO-03 with-
out any cell growth and morphological difference completely lost the ability to produce
any bafilomycins (Figure 5). These results suggested that the disruption of bafG or orf1
might transcriptionally inactivate/repress some key biosynthetic genes in the baf clus-
ter. Next, bafG and orf1 were overexpressed in S. lohii by generating the strains SLO-04
(S. lohii/pSET152-ermE*-bafG, Table 1) and SLO-05 (S. lohii/pSET152-ermE*-orf1, Table 1).
Compared with the wild type S. lohii, the transcriptional levels of orf1 and bafG in these
two mutants, without any cell growth difference observed, were significantly increased
at 12 h and 36 h under the strong promoter ermE* (Figure 6). Furthermore, wild-type
S. lohii produced 220.3 ± 10.9 mg/L of bafilomycins in the optimized fermentation medium
within 7 days in the 250 mL shaking flasks (Figures 7 and 8), while the bafG overexpression
strain SLO-04 and the orf1 overexpression strain SLO-05 generated 338.9 ± 10.7 mg/L and
508.5 ± 41.2 mg/L of bafilomycins in parallel fermentations, respectively, corresponding to
1.5- and 2.3-fold higher total bafilomycins titers than the wild type strain (Figures 7 and 8).
The bafilomycin A1 titers of SLO-04 (271.1 ± 19.7 mg/L) and SLO-05 (423.5 ± 29.5 mg/L)
increased 0.8- and 1.8-fold relative to that of wild-type S. lohii (152.9 ± 11.4 mg/L), respec-
tively (Figures 7 and 8). These titer improvements could be qualitatively rationalized by
the quantitative real-time PCR (qRT-PCR) results (Figure 6): the overexpression of orf1 in
SLO-05 led to a 4.9- and 1.4-fold improvement of the transcriptional level of bafAV, the
final PKS gene for bafilomycin biosynthesis, when compared with wild-type S. lohii at 12 h
and 36 h, respectively; and the transcriptional level of bafAV in SLO-04 was increased by
4.7- and 0.7-fold compared to that of wild-type S. lohii at 12 h and 36 h, respectively. These
results strongly suggested that bafG and orf1 are indeed positive transcriptional factors for
bafilomycin biosynthesis in S. lohii.
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2.4. Construction of Bafilomycin A1 High-Producing Strains

In our previous study [9], SLO-07 (S. lohii ∆orf2&orf3, Table 1), in which the region
encoding orf2 and orf3 was replaced by aac(IV) to disrupt the bafilomycin post-PKS tailoring
steps in S. lohii, was constructed. In this study, this strain solely produced bafilomycin A1
(167.3 ± 5.4 mg/mL) under the optimized fermentation conditions (Figures 7 and 8). To
further construct a bafilomycin A1 high-producing strain, orf1, whose overexpression led
to higher bafilomycin A1 production than that of bafG, was chosen to be introduced into
SLO-07, giving rise to SLO-08 (Table 1). Upon overexpression of orf1 in the strain that purely
produces bafilomycin A1, the resultant yield of bafilomycin A1 reached 535.1 ± 25.0 mg/L
(Figures 7 and 8), representing the highest reported bafilomycin A1 production to date.
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3. Discussion

Generally, oil is one of excellent carbon sources commonly used in the fermentation
media of Streptomyces to support cell growth and metabolites [24]. More importantly,
soybean oil has been used as a low-cost feedstock to enhance the supply of biosynthetic
precursors for improvement of polyketide production in Streptomyces since fatty acids
can be directly bioconverted into acyl-CoAs as the precursors of polyketides [24,44,45].
For example, the FK506 production in Streptomyces tsukubaensis was increased 0.9-fold by
feeding soybean oil into the production medium [24]. Here, the initial fermentation medium
for S. lohii was optimized through investigating the relationship between soybean oil
concentrations and bafilomycin production; and 6% soybean oil showed the best improving
effect. Based on our analysis of the draft genome of S. lohii, at least forty esterase/lipase
genes were revealed, suggesting that soybean oil could be efficiently utilized via primary
metabolism for both cell growth (the biomass of S. lohii was significantly enhanced in the
optimized medium) and bafilomycin production. In the optimized fermentation medium,
the dominant product of the wild type S. lohii was bafilomycin A1, accounting for about
70% of total production of bafilomycins, although bafilomycin B1 is the primary product
when using the MD2 medium for S. lohii fermentation in our previous study [20]. Thus,
using different fermentation materials to regulate the bafilomycin production and product
distribution will be our next goal.

In this work, BafG and Orf1 were identified as the positive AfsR family regulator
and the positive LuxR family regulator, respectively. AfsR was firstly characterized by
Horinouchi et al. as a global activator involved in the regulatory cascades and antibiotics
production in the type strain Streptomyces coelicolor A3(2) [46,47]. The activity of AfsR for
enhancing the transcription of afsS can be significantly improved after the phosphorylation
of its threonine and serine residues by AfsK [47]. Generally, AfsR family proteins work as
transcriptional activators in secondary metabolite biosynthesis. For example, the overex-
pression of afsR-sv in S. venezuelae ATCC 15439 improved the production of pikromycin [48];
SCAB1371 was identified as a positive transcriptional regulator for pyochelin biosynthesis
in the plant pathogen Streptomyces scabies 87–22 [49]; the overexpression of afsR in Strep-
tomyces lomondensis led to up-regulation of two genes related to lomofungin biosynthesis
and increased the lomofungin production by 2.5-fold [50]. Similarly, the disruption of
the bafG homologue bfmH in Kitasatospora setae KM-6054 also led to the abolishment of
bafilomycins [8]. The characterization of bafG will expand the pool of the afsR family
regulatory genes and it may be overexpressed in other Streptomyces species for isolation
of novel compounds through activating silent genes or for improvement of the target
antibiotics production, which is currently ongoing in our laboratory. However, there is no
any afsK homologue in the baf cluster, which suggests that BafG might be phosphorylated
by an AfsK homologue outside the gene cluster.

LuxR was firstly characterized in the lux operon of Vibrio fischeri ATCC 7744, which is
a cell density-dependent transcriptional activator involved in luciferase biosynthesis and
play important roles in acyl-homoserine lactones-mediated quorum sensing [34,39]. To
date, hundreds of LuxR family members have been discovered by genome mining and
bioinformatics predictions. Of note, dozens of LuxR family regulatory factors have been
proved to participate in Streptomyces secondary metabolite biosynthesis, such as PikD,
which was identified as a pathway-specific positive regulator for pikromycin biosynthesis
in Streptomyces venezuelae [51]; TmcN, the activator of tautomycetin biosynthesis in Strep-
tomyces sp. CK4412 [52]; and RapH, a putative transcriptional regulator for rapamycin
biosynthesis in Streptomyces hygroscopicus [53]. Generally, the N-terminal motifs of LuxR
family proteins are bound by the quorum-sensing molecules to relieve the repression by
the C-terminal motif responsible for activating the transcription of related genes [39]. In
this study, the results of orf1 inactivation and overexpression strongly suggest its positive
regulatory role in bafilomycin biosynthesis of S. lohii. To our surprise, Orf1 was identified
as a LuxR family protein with only a conservative C-terminal HTH motif, suggesting it
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may function as an inducer-independent activator, similar to GerE and the N-truncated
LuxR (∆2–162) [35,43].

In previous studies, the gamma-butyrolactone synthetase/autoregulator receptor
homologues were found to play vital roles in bafilomycin production. Specifically, the
deletion of the gamma-butyrolactone synthetase gene homologue stcA from Streptomyces
sp. SBI034 led to the complete abolishment of bafilomycin production as well as aerial
mycelium formation and sporulation [54]; the deletion of gamma-butyrolactone autoreg-
ulator receptor genes ksbA and ksbC in Kitasatospora setae indicated that KsbA and KsbC
respectively control bafilomycin production and aerial mycelium formation negatively and
positively [55,56]. However, the regulatory factors involved in bafilomycin biosynthesis
has not caught much attention in Streptomyces species. Our study provides some initial
understandings of the regulatory roles of the afsR and luxR family genes in governing
the biosynthesis of bafilomycins, which also provide an effective strategy for engineering
high bafilomycin producers. Since total synthesis of bafilomycin A1 has been proved to be
complex and low-yield [18,19], the construction of bafilomycin A1 high-producing strains
holds great potential of application.

4. Materials and Methods
4.1. Materials

The chemicals and antibiotics in this study were purchased from Solarbio (Beijing,
China) and Sinopharm Chemical Reagent (Beijing, China) unless otherwise specified.
Apramycin sulfate was bought from Sangon (Shanghai, China). T4 DNA ligase and all
fast-digest restriction endonucleases were bought from Thermo Fisher Scientific (Waltham,
MA, USA). I-5™ 2 × High-Fidelity Master Mix obtained from TsingKe (Beijing, China)
was used for PCR amplification. ClonExpress Ultra One Step Cloning Kit was purchased
from Vazyme (Nanjing, China). MonPure™ Gel & PCR Clean Kit and Plasmid Miniprep
Kit were bought from Baisai Biotechnology (Qingdao, China). GelRed for agarose gel
electrophoresis was purchased from the MDBio (Xinbei, China). The MiniBEST Universal
RNA Extraction Kit for RNA extraction and genomic DNA digestion, the PrimeScript™RT
reagent for cDNA preparation and the TB Green®Premix Ex Taq™II (Tli RNaseH Plus) for
qRT-PCR were purchased from Takara (Dalian, China).

4.2. Strains, Plasmids, and Bacterial Growth Conditions

Strains and plasmids used in this study are listed in Table 1. E. coli DH5a [25] was
used as the host strain for plasmid construction, replication, and preservation. E. coli
ET12567/pUZ8002 [26] was employed for interspecies conjugation between E. coli and
S. lohii. All E. coli strains were cultivated in Luria–Bertani medium (10 g tryptone, 5 g yeast
extract, and 10 g NaCl per liter) at 37 ◦C. The wild type and mutant S. lohii strains were
grown on MS agar (mannitol 20 g, soybean flour 20 g, and agar 20 g per liter) at 28 ◦C for
sporulation and conjugation. 2 × YT liquid medium (16 g tryptone, 10 g yeast extract, and
5 g NaCl per liter) was used to grow S. lohii cells for genomic DNA (gDNA) preparation.
The initial fermentation medium (pH = 7.1) contained 20 g glucose, 20 g soybean flour, 2 g
NZ-amine, 1.5 g corn syrup, 1 g yeast extract, 8 g NaNO3, 8 g CaCO3, 6 g (NH4)2SO4, 5 g
NaCl, and 0.3 g K2HPO4 per liter. The optimized fermentation medium was the initial
fermentation medium supplemented with 6% soybean oil. The concentrations of antibiotics
used in this study were as follows: apramycin (50 µg/mL), spectinomycin (100 µg/mL),
kanamycin (50 µg/mL), chloramphenicol (25 µg/mL), and nalidixic acid (25 µg/mL).

4.3. DNA Sequencing and Bioinformatics Analysis

DNA sequencing and primer synthesis were performed by TsingKe (Qingdao, China).
Gene annotation and the collection of amino acid sequences of AfsR and LuxR family mem-
bers were carried out using NCBI databases (http://www.ncbi.nlm.nih.gov/). The gene
promoters were predicted using Softberry online tools (http://linux1.softberry.com/). The
phylogenetic analysis was performed by MEGA version 7.0 (Philadelphia, PA, USA) [57]

http://www.ncbi.nlm.nih.gov/
http://linux1.softberry.com/
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using the neighbor-joining method [30]. DNAman 7.0 (San Ramon, Cal, USA) was used for
protein sequence alignments.

4.4. Construction of the Suicide Knockout Vectors

The primers for vector construction are listed in Table S1. The suicide vector pCIMt002
was kindly provided by Prof. Yihua Chen at Institute of Microbiology, Chinese Academy
of Sciences [29]. To generate the suicide knockout vectors for bafG and orf1 inactivation, the
upstream and downstream homologous fragments (approximately 2.0 kb) of bafG were
amplified from the S. lohii gDNA using the primer pairs of bafG-LA-FP/bafG-LA-RP and
bafG-RA-FP/bafG-RA-RP, respectively; and the upstream and downstream homologous
fragments (about 2.0 kb) of orf1 were amplified from the S. lohii gDNA using the primer
pairs of orf1-LA-FP/orf1-LA-RP and orf1-RA-FP/orf1-RA-RP, respectively. Subsequently,
the homologous fragments were cloned into the NcoI and NheI restriction sites of pCIMt002
to generate pCIMt002-∆bafG and pCIMt002-∆orf1 using the ClonExpress Ultra One Step
Cloning Kit.

4.5. Gene Inactivation in S. lohii

The gene orf1 or bafG in S. lohii was replaced by the apramycin resistance cassette
(aac(IV)) following the blue-white screening strategy developed by Chen et al. [29]. The
suicide vectors pCIMt002-∆bafG or pCIMt002-∆orf1 were transferred into S. lohii via E.
coli–Streptomyces conjugation [26]. Upon an incubation at 28 ◦C for 12 h, each MS agar
plate (containing 50 mM CaCl2 and 50 mM MgCl2) was overlaid with 1 mL sterilized water
containing 1.25 mg apramycin and 0.5 mg nalidixic acid. After a further 28 ◦C incubation
for 3–5 days, the white colonies indicative of the desired double-crossover recombinants
were picked up from the blue colonies indicative of the undesired single-crossover mutants.
The genotypes of the two picked mutants (SLO-02 for ∆bafG and SLO-03 for ∆orf1, Table 1)
were confirmed by PCR (Figure S4).

4.6. Construction of Integrative Plasmids for Regulatory Gene Overexpression

The coding sequences of bafG (1830 bp) and orf1 (354 bp) were amplified using the
S. lohii gDNA as template. For bafG, the primer pair was BafG-BamHI-FP/BafG-KpnI-
RP; and for orf1, the primer pair was Orf1-BamHI-FP/Orf1-KpnI-RP (Table S1). The
bafG and orf1 fragments were inserted into the BamHI restriction site of pSET152-ermE*
(Bierman et al., 1992) to generate the regulatory gene overexpression vectors pSET152-
ermE*-bafG and pSET152-ermE*-orf1, respectively. Since the apramycin resistance gene has
already been integrated into the genome of S. lohii ∆orf2&orf3, the spectinomycin resistance
gene (aadA) fragment was PCR amplified from pIJ778 (Gust et al., 2003) using the primers
Spec-NdeI-FP/Spec-SacI-RP as the second selection marker. Next, the aadA cassette was
in-fusion cloned into the SacI-pre-digested pSET152-ermE*, yielding the integrative vector
pSET152s-ermE*. The coding sequence of orf1 was cloned into pSET152s-ermE* to afford
pSET152s-ermE*-orf1 for gene overexpression in S. lohii ∆orf2&orf3.

4.7. Overexpression of Regulatory Genes

For gene overexpression of bafG or orf1, the integrative plasmid pSET152-ermE*-bafG
or pSET152-ermE*-orf1 was introduced into wild-type S. lohii, respectively, by interspecies
conjugation from E. coli ET12567/pUZ8002 [26]. Upon an incubation at 28 ◦C for 12 h,
each plate was overlaid with 1 mL sterilized water containing 1.25 mg apramycin and
0.5 mg nalidixic acid. After additional 3–5 days, the recombinants were inoculated onto
MS plates with 25 µg/mL nalidixic acid and 50 µg/mL apramycin. The resultant two
apramycin resistant strains SLO-04 (S. lohii/pSET152-ermE*-bafG, Table 1) and SLO-05
(S. lohii/pSET152-ermE*-orf1, Table 1) were PCR confirmed using their gDNA as template.
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4.8. Genotypic Confirmation of S. lohii Mutants

The primers for PCR confirmation of S. lohii mutants are listed in Table S2. The primers
bafG-KO-FP/bafG-KO-RP were used for screening the ∆bafG mutants. The expected length
of the PCR fragments from the wild type and the ∆bafG mutants is 916 bp and 1227 bp,
respectively (Figure S4a,b). The primers orf1-KO-FP/orf1-KO-RP were used for screening
the ∆orf1 mutants. The expected length of the PCR fragments from the wild type and
the ∆orf1 mutants is 562 bp and 1220 bp, respectively (Figure S4c,d). The primers M13F-
47/M13R-48 were used to screen the orf1 and bafG overexpression strains (Figure S5): the
expected length of the PCR product from SLO-06 (Table 1) is 471 bp; the expected length
of PCR products of SLO-05 and SLO-08 (Table 1) is 831 bp; and the expected length of
PCR products of SLO-04 is 2307 bp. All the PCR fragments were gel purified and further
confirmed by DNA sequencing.

4.9. Fermentation and HPLC Analysis

A single colony of the wild type or each mutant of S. lohii was used to inoculate 30 mL
2 × YT medium, and cultured at 220 rpm, 28 ◦C. After 2 days, 3 mL seed culture was
inoculated into 30 mL fermentation medium and cultivated at 28 ◦C, 250 rpm for another
7 days. Next, 200 µL fermentation culture was extracted by adding 600 µL methanol,
vortexed for 30 min, and centrifuged at 14,000× g for 10 min. The supernatants were
directly used for reverse phase HPLC analysis (254 nm) with a Thermo C-18 column (4.6 ×
150 mm) under a liner gradient of 60–100% acetonitrile over 15 min, 100% acetonitrile for
5 min, and 100–60% acetonitrile over 2 min in deionized H2O (with 0.1% trifluoroacetic acid)
at a flow rate of 1 mL/min. The fermentation of the wild type and all mutant S. lohii strains
were carried out in duplicate, and the production of bafilomycins was quantified based on
the integrated peak areas using authentic bafilomycin A1, B1, and C1 as standards [9].

4.10. Transcriptional Analysis of the Wild Type and Mutant S. lohii Strains by qRT-PCR

The mycelia of the wild type or mutant S. lohii strains in the optimized fermentation
media were collected at 12 and 36 h. The total RNA was extracted with the genomic DNA
removed using the MiniBEST Universal RNA Extraction Kit, and was reversely transcribed
using random primer mix by following the product manual. The primers for qRT-PCR
were designed by Primer3Plus online service (http://www.primer3plus.com/cgi-bin/dev/
primer3plus.cgi) and listed in Table S3. The transcription of target genes was determined
by qRT-PCR on a LightCycler 480 II (Roche Life Science, Basel, Switzerland) in triplicate.
For determination of the relative transcription levels, the data were normalized to the
housekeeping gene hrdB in S. lohii and quantified by the 2−∆∆CT method [58].
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and regulatory genes overexpression vectors, Table S2: The primers for construction of knock-out
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PCR.
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