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Background: Human α1-antitrypsin (hAAT) is a circulating anti-inflammatory

serine-protease inhibitor that rises during acute phase responses. in vivo, hAAT

reduces bacterial load, without directly inhibiting bacterial growth. In conditions

of excess nitric-oxide (NO), hAAT undergoes S-nitrosylation (S-NO-hAAT) and gains

antibacterial capacity. The impact of S-NO-hAAT on immune cells has yet to be explored.

Aim: Study the effects of S-NO-hAAT on immune cells during bacterial infection.

Methods: Clinical-grade hAAT was S-nitrosylated and then compared to unmodified

hAAT, functionally, and structurally. Intracellular bacterial clearance by THP-1

macrophages was assessed using live Salmonella typhi. Murine peritoneal macrophages

were examined, and signaling pathways were evaluated. S-NO-hAAT was also

investigated after blocking free mambranal cysteine residues on cells.

Results: S-NO-hAAT (27.5 uM) enhances intracellular bacteria elimination by

immunocytes (up to 1-log reduction). S-NO-hAAT causes resting macrophages to

exhibit a pro-inflammatory and antibacterial phenotype, including release of inflammatory

cytokines and induction of inducible nitric oxide synthase (iNOS) and TLR2. These

pro-inflammatory effects are dependent upon cell surface thiols and activation of

MAPK pathways.

Conclusions: hAAT duality appears to be context-specific, involving S-nitrosylation in

a nitric oxide rich environment. Our results suggest that S-nitrosylation facilitates the

antibacterial activity of hAAT by promoting its ability to activate innate immune cells. This

pro-inflammatory effect may involve transferring of nitric oxide from S-NO-hAAT to a free

cysteine residue on cellular targets.
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INTRODUCTION

Human α1-antitrypsin (hAAT) is a 52 kDa glycoprotein that is
mainly produced by hepatocytes, and circulates at steady-state
levels of 1.05–1.64 mg/ml (1). During acute phase responses,
such as during infection, circulating levels of hAAT rise more
than 4-fold (2). Recent findings establish that hAAT also modifies
immune cells toward a tolerogenic profile (3–6), while expediting
resolution of inflammatory events (7).

Innate immune cells display unique behaviors when exposed
to physiologic concentrations of hAAT. For example, stimulated
cultured macrophages release interleukin-10 (IL-10) at the
expense of interleukin-1-beta (IL-1β), interleukin-6 (IL-6), and
Tumor necrosis factor alpha (TNFα) (8). Accordingly, during
conditions of high hAAT levels, sera content displays an abrupt
shift toward lower IL-1β, IL-6, TNFα and IL-8, and higher IL-10
levels (5, 8–16).

At infection sites, immune cells like macrophages express
inducible nitric oxide synthase (iNOS), followed by production
of massive quantities of nitric oxide (NO) (17). Providing that
local levels of NO are sufficient, it is toxic to bacteria (18). In
addition, NO can act as a signaling molecule by promoting S-
nitrosylation (S-NO) of both host and pathogen proteins. Protein
S-nitrosylation has gained appreciation as a regulator of gene
transcription and protein function, as well as of inflammatory
and cell survival pathways (19); accordingly, dysregulation of
S-nitrosylation is related to a plethora of pathologies (20, 21).

hAAT has a single cysteine residue (position 232) and it was
previously shown to undergo S-nitrosylation in vitro and ex vivo
(22). Unlike unmodified hAAT, S-NO-hAAT gains the ability to
directly eliminate bacteria (22, 23), while its effect on immune
cells has yet to be explored. Here, we generated S-NO-hAAT
and explored its effects on immunocyte activities in the context
of bacterial infections. Our findings reveal a novel crosstalk
between S-NO-hAAT and immune cells, which may alter the
immune response to infection at the level of cell signaling and
inflammatory output.

MATERIALS AND METHODS

hAAT Nitrosylation and Measurements
hAAT (20 mg/ml or 450µM; GlassiaTM, Kamada Ltd., Israel)
was reduced by 10min incubation with 50mM DTT (Sigma-
Aldrich, Israel) at 37◦C. Excess DTT was removed using
Sephadex G-25 columns (GE Healthcare, Israel) equilibrated
with nitrosylation buffer (25mM HEPES pH 7.4 as a buffer,
0.1mM EDTA, 0.2mM diethylenetriaminepentaacetate, 10µM
neocuproine, all three as chelating agents and 100mM NaCl,
all from Sigma-Aldrich). Reduced hAAT was then incubated
for 30min with the NO donor, 1,000µM diethylamine
NONOate (Cayman Chemical, USA) followed by adding
additional 500µM diethylamine NONOate at 37◦C for
30min. After excess NONOate was removed by Sephadex
G-25 columns, S-nitrosylation efficiency was calculated by
measuring protein concentration using Bicinchoninic acid
(BCA) protein assay kit (Santa Cruz Biotechnology, USA)
and S-NO content by Saville-Griess assay, as previously

described (24). Nitrosylation efficiencies (S-NO/protein ratio)
were 63–68%. After production, S-NO-hAAT was aliquoted
into dark tubes and stored at −80◦C. In all experiments,
S-NO-hAAT was compared to untreated hAAT and to GSNO
(S-Nitrosoglutathione) as a distinct NO carrier. S-NO-hAAT
transnitrosylation measurement was conducted after treating
peritoneal macrophages with 100mM N-ethylmaleimide (NEM,
Sigma-Aldrich) for 15min at room temperature. Then, cells were
incubated with S-NO-hAAT. Supernatant samples were collected
at indicated time points, and S-NO content was determined by
Saville-Griess assay.

Bacterial Killing Assay
S-NO-hAAT—mediated intracellular bacterial killing assay was
carried out using the human monocyte cell line, THP-1, as
described elsewhere (25). Briefly, cells were maintained in
RPMI 1640 containing 5% heat-inactivated FCS, 25mM HEPES,
2mM L-glutamine, 1mM sodium pyruvate and 1% modified
Eagle’s medium with non-essential amino acids. For macrophage
differentiation, the cells were added 40 ng/ml PMA (Sigma-
Aldrich) for 24 h. Logarithmic phase Salmonella typhi were
opsonized using 10% human serum in rotation for 30min.
The effect of S-NO-hAAT on bacterial infection was assessed
using either post-treatment or pre-treatment approach. For pre-
treatment, the cells were first treated with 27.5µM of S-NO-
hAAT, hAAT, or GSNO for 24 h. The cells were then washed
and introduced to opsonized bacteria (MOI 1:10), followed by
a 5min centrifugation at 800 g and 30min incubation at 37◦C.
To eliminate extracellular bacteria, the cells were washed 3 times
and incubated for 2 h with 100 mg/ml gentamicin, followed
by 12 mg/ml gentamicin containing medium for an additional
4 h. Cells were then washed, and lysed with sterile sodium
deoxycholate 0.1% (w/v) in PBS. Lysates were plated on blood
agar plates for 24 h at 37◦C, and CFU was determined manually.

In the post-treatment protocol, cells were first infected
by opsonized bacteria (MOI 1:5). After centrifugation and
incubation, the remaining extracellular bacteria were removed
by washing and incubation with medium containing 100 mg/ml
gentamicin. The cells were treated for 2 h with S-NO-hAAT,
hAAT, or GSNO, followed by replacement of supernatant
with medium containing 12 mg/ml gentamicin; lysis and CFU
counting followed.

Animals
C57BL/6J female mice (10–12 weeks old) were purchased from
Harlan (Jerusalem, Israel) and housed at standard conditions.
The study was carried out in accordance with recommendations
of the “1994 law for the prevention of cruelty to animals
(experiments on animals),” and was approved by Ben-Gurion
University of the Negev committee for the ethical care and use
of animals in experiments, approval #IL-21-05-2013.

Peritoneal Macrophage Isolation and
Activation
With the exception of the intracellular bacterial killing assay,
all experiments were performed using primary peritoneal
macrophages. Mice were sacrificed 4 days after 3% thioglycolate
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(2ml) peritoneal-injection (i.p.). For peritoneal macrophages
collection, 8ml ice-cold PBS were injected i.p., then recovered
using an 18G needle. The cells were counted and left to adhere
for at least 2 h in RPMI 1640 supplemented with 10% FCS, 1%
L-glutamine, and 1% penicillin-streptomycin (all from Biological
Industries, Ltd). In vitro activation experiments were carried out
in RPMI 1640 supplemented with 5% FCS medium. Cells were
treated with 27.5µM of hAAT, S-NO-hAAT, or GSNO 1h prior
to LPS activation (10 ng/ml, Sigma-Aldrich). At indicated time
points, supernatants were collected for analysis and cells were
lysed for RNA or protein analysis.

Cytokine Analysis
Supernatant levels of TNFα, IL-1β, and CXCL-1 were
determined by Q-Plex mouse cytokine chemiluminescence-
based ELISA (Quansys Biosciences, Logan, UT), according to
manufacturer recommendations.

Real-Time PCR Assays
Total RNA was extracted from cells using total RNA purification
kit (Norgen Biotek Corp., Canada), and quantified using
NanoDrop spectrophotometer (ND-1000, NanoDrop
Technologies, USA). Reverse transcription was performed
with the qScriptTM cDNA synthesis kit (Quanta BioSciences,
Gaithersburg, MD). Quantification of gene transcription was
performed using Fast SYBR Green Master Mix and StepOnePlus
Real-Time PCR system (Applied Biosystems, USA). Transcript
levels were normalized to GAPDH transcript output.

FIGURE 1 | S-NO-hAAT–activated macrophages kill intracellular Salmonella

typhi. THP-1 cells (0.5 × 106 per well) were pre- (A) or post- (B) treated with

equimolar (27.5µM) S-NO-hAAT, hAAT, and GSNO. The cells were also

infected with live Salmonella typhi either prior or after treatment. CT, cells

without treatment. In order to eliminate extracellular bacteria, the cells were

washed and incubated with gentamicin, as detailed in the methods section.

Remaining live bacteria were determined in cell lysates by counting CFU on

blood agar, and exhibited logarithmic scale. (A,B) are representative results of

two independent experiments (n = 3) for every condition. Mean ± SD,
*p < 0.05 and ****p < 0.0001.

Primer sequences are as follows (′5 to ′3, FW | RE):
GAPDH, TCAACAGCAACTCCCACTCTTCCA | ACCCTG
TTGCTGTAGCCGTATTCA; TNFα, GACCCTCACACTCAG
ATCATCTTC | CGCTGGCTCAGCCACTCC; IL-1β, AAAGCC
TCGTGCTGTCGGACC | TTGAGGCCCAAGGCCACAGGTA;
CXCL-1, AGACCATGGCTGGGATTCAC | AGTGTGGCTATG
ACTTCGGT; IL-6, CCAGTTGCCTTCTTGGGACT | GGTCTG
TTGGGAGTGGTATCC; iNOS, TTCACTCCACGGAGTAGC
CT | CCAACGTTCTCCGTTCTCTTG; TLR2, GCATCCGAA
TTGCATCACCG | CCTCTGAGATTTGACGCTTTGTC.

All primer melting curves had a single clear peak across
samples, indicating that their RT-PCR products are single entities
(Supplementary Figure 1).

Kinase Array and Western Blot Analysis
After activation, cells were lysed and phospho-protein levels
were compared using human phospho-kinase antibody array
(R&D Systems), according to manufacturer guidelines. Array
dots were digitally analyzed using the open-source software
ImageJ version 1.49 (NIH, USA). Lysate proteins were also
denatured and separated on SDS-PAGE, and transferred to
PVDF membrane. Western blotting was performed using
primary rabbit antibodies anti-Pp38 (sc-17852-R, Santa Cruz
Biotechnology), anti-p38 (#9212), anti-PSAPK/JNK (#9251),
anti-SAPK/JNK (#9252), anti-PErk1/2 (#9101), anti-Erk1/2
(#9102), all from Cell Signaling Technology (USA) and
mouse anti-actin (MAB1501, Merk Millipore, Germany). To
detect primary antibody binding, blots were incubated with
horseradish-peroxidase-conjugated anti-rabbit or anti-mouse
antibodies. The immobilized antibodies were detected by ECL
reagent (Advansta, USA).

Cysteine Blocking and Inhibitors of
Signaling Pathways
The involvement of reduced membrane thiols in the activities
of S-NO-hAAT was assessed by treating cells with 3mM 5,5

′

-
dithiobis (2-nitrobenzoic acid) (DTNB) for 30min at 37◦C.
p38, JNK and ERK inhibition was executed by pre-treatment
for 30min with 30µM SB203580, SP600125 and PD98059,
respectively (all from Sigma-Aldrich). After either cysteine
blocking or signaling inhibition, cells were washed and treated
with S-NO-hAAT for 1 h, followed by RNA isolation.

Statistical Analysis
Analyses were performed using GraphPad Prism 5 software
(GraphPad Prism 5, Pugh computers, UK). Results are expressed
as the mean ± standard deviation. Significance of differences
between groups was determined by two-tail non-parametric
Mann-Whitney test. Results are considered significant
at p ≤ 0.05.

RESULTS

S-NO-hAAT Improves Killing of
Intracellular Bacteria by Macrophages
S-NO-hAAT was recently found to directly reduce bacterial
count. In order to examine the involvement of immunocytes
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in this phenomenon, macrophage-mediated bacterial killing
assay was carried out. Macrophage bacterial killing activity
was examined using PMA-primed THP-1 cells infected with
Salmonella typhi after or prior to treatment with hAAT, S-
NO-hAAT, or GSNO (Figure 1). In both settings, analysis of
CFU counts obtained from lysed macrophages showed that
antibacterial activity was enhanced by S-NO-hAAT. In contrast,
non-nitrosylated hAAT and GSNO had no significant effect.

S-NO-hAAT Increases Macrophage
Pro-inflammatory and Anti-bacterial
Phenotype
In order to determine whether S-NO-hAAT maintains
the anti-inflammatory profile of non-nitrosylated–hAAT,
LPS-stimulated peritoneal macrophages were cultured

in the presence of S-NO-hAAT for 48 h (Figure 2A).
As expected, non-nitrosylated—hAAT significantly
inhibited LPS-induced release of TNFα. In contrast,
S-NO-hAAT failed to reduce macrophage release
of TNFα.

Without added stimulation, macrophages were exposed
for 48 h to either S-NO-hAAT, hAAT, or GSNO (all at

27.5µM), and thereafter inflammatory mediators were
measured. As shown, unlike hAAT or GSNO, S-NO-

hAAT significantly increased the released levels of TNFα,

IL-1β, and CXCL-1 (Figure 2B) as well as inflammatory
genes expression after 6 h (Figure 2C). The kinetics of this
phenomenon on IL-1β and CXCL-1 gene expression, as
representative pro-inflammatory genes, appears to be rapid and
short-lived (Figure 2D).

FIGURE 2 | Unlike unmodified hAAT, S-NO-hAAT increases inflammatory responses. Cytokine levels were determined in the supernatants of peritoneal macrophages

(0.5 × 106 per well) 48 h post-treatment with equimolar (27.5µM) S-NO-hAAT, hAAT, GSNO and nitrosylation buffer (CT). (A) 10 ng/ml LPS stimulation 1 h

post-treatment (n = 4). (B) S-NO-hAAT, hAAT, and GSNO treatment without added stimulus (n = 4). (C) mRNA relative levels in peritoneal macrophages (0.25 × 106

per well, n = 6 from two independent experiments) 6 h post-treatment with equimolar (27.5µM) S-NO-hAAT, hAAT, GSNO and nitrosylation buffer (CT). (D) Relative

mRNA levels post S-NO-hAAT treatment at indicated time intervals. All data are presented as mean ± SD, *p < 0.05, **p < 0.01, and ***p < 0.001.

Frontiers in Immunology | www.frontiersin.org 4 April 2019 | Volume 10 | Article 590

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Kaner et al. S-Nitrosylated α1-Antitrypsin Alters Immunocyte

S-NO-hAAT Activates MAPK Pathways in
Macrophages
In order to validate the authenticity of S-NO-hAAT pro-
inflammatory effect, signaling pathways activation were analyzed
on peritoneal macrophages. Phosphorylation of proteins in the
MAPK cascade was evaluated, using kinase array and western
blot analysis of the cell lysates. S-NO-hAAT-treated macrophages

displayed a rapid (5min) rise in p38 and JNK phosphorylation.

JNK phosphorylation was observed only by Western blot. ERK
phosphorylation was observed after 15min and the transcription

factors CREB and RSK appeared to be phosphorylated after
30min (Figures 3A,B). Phosphorylation was not observed after

S-NO-hAAT treatment in the other arrayed proteins (Akt,

AMPK, Catenin, Chk-2, c-jun, EGF R, eNOS, FAK, Fgr, Fyn,

FIGURE 3 | S-NO-hAAT activates MAPK signaling pathways. Peritoneal macrophages lysate (1 × 107 per well) after incubation with 27.5µM S-NO-hAAT for

indicated time periods. (A) Kinase array, performed once for each time interval. Graph, densitometry analysis, mean ± SD. Below, representative assay blots. (B)

Representative Western blot analysis of MAPK signaling proteins. (C) mRNA transcript levels of IL-1β and CXCL-1 of naïve (gray) or 1 h S-NO-hAAT treated (black)

peritoneal macrophages (0.25 × 106 per well) in the presence of signaling inhibitors or DMSO (–). mRNA transcript levels normalized to GAPDH (n = 3). Data are

presented as mean ± SD. ns, non-significant, *p < 0.05, **p < 0.01, and ***p < 0.001.
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GSK-3, Hck, HSP27, HSP60, Lck, Lyn, MSK1/2, p27, p53, p70 S6
Kinase, PDGF, PLCγ-1, PRAS40, Pyk2, Src, STAT2/3/5/6, TOR,
WNK-1, Yes).

In order to further validate these data, pretreatment
of the peritoneal macrophages with MAPK inhibitors was
performed prior to S-NO-hAAT introduction. With regards
to inflammatory gene expression, both IL-1β and CXCL-1
transcript levels increased several-fold in the presence of S-
NO-hAAT (Figure 3C). However, this inducible profile was
significantly diminished in the presence of a p38 inhibitor.
In addition, treatment with a JNK inhibitor inhibited S-NO-
hAAT—mediated induction of CXCL-1, although the induction
of IL-1β transcript levels did not change in a statistically
significant manner.

S-NO-hAAT Acts on Cells by
Transnitrosylation
We considered the possibility that some activities of S-NO-
hAAT may involve transnitrosylation, namely, the transfer of
NO molecules from S-NO-hAAT to cellular targets. In order to
investigate this possibility, peritoneal macrophages were treated
with NEM, a blocker of free cysteines in cellular proteins.
Subsequently, cells were treated with S-NO-hAAT followed by
analysis of S-NO content in cell supernatants (mostly S-NO-
hAAT). As shown in Figure 4A, the level of nitrosylated proteins
in cell supernatants had rapidly declined in the presence of naïve
cells, but remained mostly unchanged in cultures pretreated with
NEM. These data may indicate the possibility that NO groups are
transferred from S-NO-hAAT to cellular targets.

Unlike NEM, DTNB does not enter cells; by using DTNB
pre-conditioned macrophages, we explored the possibility that
S-NO-hAAT transnitrosylates surface targets. As shown in
Figure 4B, the inflammatory response elicited by S-NO-hAAT
was significantly compromised by DTNB, suggesting that S-
NO-hAAT activities depend upon availability of free thiols on
cell surfaces.

DISCUSSION

Macrophages are part of the innate immune system, recognizing,
engulfing and destroying potential pathogens, including bacteria.
As our results indicate, S-NO-hAAT reduces intracellular
bacterial load. The question whether this effect is caused directly
by NO molecules carried by S-NO-hAAT, or is an indirect effect
facilitated by antibacterial activity of immunocytes, is raised.
The observed difference between S-NO-hAAT and the same
amount of NO molecules, bound to cysteine on a different
carrier (GSNO), suggests that bacterial burden reduction was
indirect, possibly a result of altered macrophage activity. Another
supporting evidence is that macrophages that were pretreated
with S-NO-hAAT (followed by washing) prior to bacterial
introduction successfully reduced the bacterial load (Figure 1A).
Additionally, unlike in some other reports (22, 23), our results
suggest that a direct antibacterial effect is achieved using supra-
physiological concentrations of S-NO-hAAT (> 20µM, not
shown). This difference in the direct anti-bacterial activity may

FIGURE 4 | Transnitrosylation-dependent activity of S-NO-hAAT. (A) Amount

of remaining nitrosylated proteins in supernatant following S-NO-hAAT

introduction to naïve (solid) and NEM-pretreated (dashed) peritoneal

macrophages (1 × 106 per well, n = 3). (B) DTNB or DMSO

(vehicle)-pretreated peritoneal macrophages (0.25 × 106 per well, n = 3) were

examined for mRNA levels without S-NO-hAAT (gray) or 1 h after introducing it

(black). Data are presented as mean ± SD, **p < 0.01, ***p < 0.001, and ****p

< 0.0001.

be the result of disparity in bacterial strains across studies,
as well as the source of hAAT and hAAT S-nitrosylation
procedure parameters.

hAAT augmentation therapy is afforded to patients with
genetic hAAT deficiency (26), and improves long-term clinical
outcomes (27). While in vivo experiments are indeed warranted
with regards to the prospect of S-NO-hAAT as a therapeutic,
our results agree with antibacterial effects of hAAT augmentation
therapy observed in several independent clinical studies (28,
29), and to high phagocytosis rate in hAAT-treated alveolar
macrophages (30). These studies counter the concern that
hAAT supplementation will increase the risk for opportunistic
infections, although the mechanism for this is yet unknown.

How may an anti-inflammatory protein increase bacterial
clearance via macrophages? Unlike unmodified hAAT or
GSNO, our study shows that S-NO-hAAT facilitates the
inflammatory state of macrophages by upregulating pro-
inflammatory molecules. Although a similar pattern was detected
in the levels of pro-inflammatory genes expression and proteins
release, it should be noted that the amount of cytokines
in the supernatant needs to be examined after shorter time
intervals following S-NO-hAAT’s introduction, in future studies.
The enhancement of macrophages antibacterial activity may
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be explained by S-NO-hAAT—dependent induction of host-
response genes, such as iNOS and TLRs (31). THP-1 cells were
previously shown to express iNOS upon exposure to heat-killed
Methicillin-resistant strains of Staphylococcus aureus (MRSA)
(32), granulocyte macrophage colony-stimulating factor (GM-
CSF) (33), LPS and silica (34). Future studies would need
to address the specific and detailed mechanism of bacterial
eradication in various cell lines.

hAAT seems to exert complex effects on the specifics of
an inflammatory event, by either promoting or suppressing
cellular inflammatory responses. For example, hAAT has a highly
consistent inhibitory profile with respect to soluble levels of
TNFα (11, 35). However, as our results indicate, S-NO-hAAT can
also promote the release of TNFα. Some other studies support this
duality: we recently reported that following bacterial infection,
inflammation, and neutrophil infiltration are increased in hAAT-
expressing mice shortly after infection, resulting in significantly
reduced bacterial burden in vivo. At later time points, immune
cell activation and pro-inflammatory mediators were alleviated
and overall tissue and organ damage was minimized (9).
Additional in vitro and in vivo evidences to the duality of hAAT
may be found in studies that display a short pro-inflammatory
burst after hAAT and LPS treatment, such that was higher than
after LPS treatment alone, followed by an anti-inflammatory
wave (36, 37).

While hAAT can exert anti-apoptotic effects (13, 38–40),
outcomes of S-NO-hAAT on cell survival are not yet elucidated.
Our results indicate that despite the pro-inflammatory phenotype
that follows S-NO-hAAT introduction, macrophage survival
remained unaffected (Supplementary Figure 2). In vivo, S-NO-
hAAT has a cytoprotective effect in the context of ischemia-
reperfusion injury (41). In contrast, murine lymphoma cell
line (RMA) readily expire upon exposure to S-NO-hAAT (31).
Therefore, it seems that the effect of S-NO-hAAT on cell survival
depends on cell type and surrounding conditions; further studies
are needed.

The site of S-nitosylation on hAAT is highly conserved—a
single cysteine residue at position 232 (Supplementary Table 1).
This cysteine is surrounded by three positively-charged
lysines (positions 233, 234 and 274) (42) that may promote
deprotonation of its thiol (43). Although S-nitrosylation on
the cysteine residue in hAAT was not yet observed in vivo,
it is likely to occur considering its extremely low pKa (44)
and reactivity (42). Interestingly, a mutation of cysteine 232
to proline, results in a superior anti-inflammatory profile of
hAAT that lacks serine-protease inhibition activity (45). In
contrast, S-nitrosylation of cysteine 232 does not interfere with
its inhibition capacity of serine-proteases, found to be similar
to (23). Nonetheless, it appears that S-NO-hAAT gains activities
that non-nitrosylated hAAT lacks, such as inhibiting several
cysteine-proteases (23). Although S-nitrosylation of hAAT does
alter its function, the protein remains a 52 kDa protein; that said,
it may undergo a structural change (Supplementary Figure 3),
an outcome observed in other nitrosylated circulating proteins,
including albumin (46), and hemoglobin (47). However,
our structural assessment should be elaborated by more
structural methods.

MAPK pathways are important for many cell functions,
including inflammation, and seem to play a major role in the
activity of S-NO-hAAT. Our results indicate that S-NO-hAAT
affects MAPK members, especially by activation of p38 and
JNK; both phosphorylated within 5min following S-NO-hAAT
treatment, and their inhibition, especially p38, appeared to have
significantly reduced S-NO-hAAT-mediated induction of pro-
inflammatory genes. These correlations come in contrast with the
inhibitory effect of hAAT on p38 (39, 48), as well as inflammation
modulation after S-nitrosylation of macrophage proteins (19).
In this regard, S-nitrosylation was previously reported to inhibit
apoptosis signal-regulating kinase 1 (ASK1),which acts upstream
to JNK and p38 (49). On the other hand, S-nitrosylation of
neuronal p38 alters its activity according to the source of NO (50).
As such, it is unknown whether p38 or JNK are S-nitrosylated
by S-NO-hAAT, and it remains to be elucidated exactly how
S-NO-hAAT activates p38 and JNK.

What might be the molecular targets of S-NO-hAAT? One
possible target may be the scavenger receptor, LDL receptor-
related protein 1 (LRP1, also known as CD91), a receptor for
complexed hAAT (51, 52) that binds and internalizes hAAT
(53). LRP1 also binds LDL and DAMPs, such as gp96 (51,
54, 55). Surfactant D (SP-D), an extracellular protein that is
abundant in the lungs and turns inflammatory instead of anti-
inflammatory upon S-nitrosylation (56–59), is modified through
S-nitrosylation (S-NO-SP-D) and increases inflammation (60–
62). After being S-nitrosylated on two cysteine residues, S-NO-
SP-D complex disintegrates into trimeric subunits, that then
bind and activate LRP1 (58, 63, 64). As a result, LRP1 activates
p38-dependent pro-inflammatory signaling pathways. Therefore,
LRP1 is a possible target of S-NO-hAAT, although more studies
are needed to clarify this prospect.

The kinetics of S-NO-hAAT-induced cytokine expression are
not obvious. S-NO-hAAT induced maximal cytokine expression
within 1–2 h, which had then sharply declined. We speculate that
this short-lived effect may be due to rapid reduction in S-NO-
hAAT levels with concomitant emergence of transnitrosylated
targets. Indeed, our results indicate that S-NO-hAAT is rapidly
de-nitrosylated upon its interaction with its target cells.
Moreover, blocking of free cell surface cysteine residues by
DTNB reduced the inflammatory flare triggered by S-NO-hAAT,
suggesting that the transnitrosylation process of S-NO-hAAT is
essential for its pro-inflammatory effect.

The hypothesis by which S-NO-hAAT targets are present on
cell membranes is supported by several other studies; hAAT
has been shown to dock onto membrane lipid rafts (65),
which usually contain multiple inflammatory receptors. hAAT
has several hydrophobic domains and directly interacts with
cholesterol (66, 67), and exerts a synergistic cytoprotective
effect together with HDL (68, 69). hAAT was shown to readily
enter the cytosol (53, 70, 71), but according to the rapid
effect of S-NO-hAAT, it is more likely that S-NO-hAAT has
membrane-associated targets, that unmodified hAAT might not
interact with.

Although we do not know the precise proportion of S-NO-
hAAT generated in vivo, nor the ratio between hAAT/ S-NO-
hAAT in the periphery or at infection site, we propose a putative
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mechanism of action upon S-nitrosylation during bacterial
infections (Figure 5). In brief, unlike non-nitrosylated hAAT (13,
72), S-NO-hAAT increases iNOS expression, suggesting there
exists a local pro-inflammatory positive feedback loop. hAAT
is an abundant protein in the circulation, with distinct context-
specific activities. According to this concept, in the periphery,
hAAT most probably remains in its unmodified form and acts
as an anti-inflammatory and tissue-protective agent. However,
during infection, infiltrating and resident immune cells become
activated, iNOS expression is induced and local nitric-oxide levels
dramatically rise; it is postulated that hAAT that reaches a site of
infection is thus S-nitrosylated, and can assist in the reduction
of the bacterial burden by further activating immune cells. The
rise in iNOS expression has a potential to form more S-NO-
hAAT upon entry of unmodified hAAT to the site of infection, in
accordance with the prototypical elevation in circulating hAAT
levels during infection. Nitric oxide may then be transferred
from S-NO-hAAT to immune cell-associated proteins by direct
transnitrosylation, thus reducing the probability of residual
inflammatory S-NO-hAAT in the periphery.

In addition to S-nitrosylation, hAAT is known to undergo
two more post-translational modifications at inflamed sites:
its proteolytic cleavage, and an oxidation process (Figure 6).
hAAT oxidation is a reversible modification mediated by

reactive oxygen species that are typically abundant at an
inflamed tissue. The oxidation of hAAT occurs on two
methionine residues, Met351 and Met358 (73), and oxidized
hAAT turns inflammatory toward monocytes (74) and epithelial
cells (75). The proteolytic cleavage of hAAT results in the
release of a 36 amino-acid long peptide (C-36) from the
carboxyl terminus of hAAT; C-36 activates human monocytes
(76, 77) and facilitates human neutrophil chemotaxis and
degranulation (78). Indeed, S-nitrosylation, oxidation and
proteolytic-cleavage occur primarily in inflammatory conditions,
such that contain excessive levels of free radicals and proteases,
and under circumstances that elevate hAAT levels in the
whole organism.

To conclude, S-nitrosylation of hAAT represents a
physiological post-translational modification, which alters the
function of hAAT from an anti- to a pro-inflammatory protein,
through, at least in part, activation of MAPK signaling pathways.
S-NO-hAAT is not an antibiotic; unlike antibiotics, indirect
facilitation of immunocytes toward pathogen elimination
possesses a therapeutic potential with lower chances of bacterial
resistance emergence. Further investigation is required in
order to fully understand the dynamics and mechanism of
action of S-NO-hAAT, and the full spectrum of its possible
clinical applications.

FIGURE 5 | hAAT duality: proposed mechanism. It is suggested that hAAT acts in two different manners according to its S-nitrosylation state. In an infected, inflamed,

nitric oxide-rich site, hAAT is nitrosylated and can reduce the bacterial load by acting as an inflammatory trigger for immune cells. However, in the periphery, nitric

oxide levels are low and hAAT is presumed to maintain its unmodified anti-inflammatory and tissue-protective activity profile.

FIGURE 6 | Post-translational modifications in hAAT: pro-inflammatory outcomes. As an acute phase protein that rises during inflammation, hAAT may turn

pro-inflammatory in an infected site as a result of S-nitrosylation (Cys232, pink), oxidation (Met351 and Met358, green), or proteolytic cleavage followed by release of

its 36 amino-acids carboxyl terminal (C-36, red).
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