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Biomarkers are needed to monitor disease progression in Alzheimer’s disease. Grey matter network measures have such potential,

as they are related to amyloid aggregation in cognitively unimpaired individuals and to future cognitive decline in predementia

Alzheimer’s disease. Here, we investigated how grey matter network measures evolve over time within individuals across the entire

Alzheimer’s disease cognitive continuum and whether such changes relate to concurrent decline in cognition. We included 190 cog-

nitively unimpaired, amyloid normal (controls) and 523 individuals with abnormal amyloid across the cognitive continuum (pre-

clinical, prodromal, Alzheimer’s disease dementia) from the Alzheimer’s Disease Neuroimaging Initiative and calculated single-sub-

ject grey matter network measures (median of five networks per individual over 2 years). We fitted linear mixed models to

investigate how network measures changed over time and whether such changes were associated with concurrent changes in mem-

ory, language, attention/executive functioning and on the Mini-Mental State Examination. We further assessed whether associa-

tions were modified by baseline disease stage. We found that both cognitive functioning and network measures declined over time,

with steeper rates of decline in more advanced disease stages. In all cognitive stages, decline in network measures was associated

with concurrent decline on the Mini-Mental State Examination, with stronger effects for individuals closer to Alzheimer’s disease

dementia. Decline in network measures was associated with concurrent cognitive decline in different cognitive domains depending

on disease stage: In controls, decline in networks was associated with decline in memory and language functioning; preclinical

Alzheimer’s disease showed associations of decline in networks with memory and attention/executive functioning; prodromal

Alzheimer’s disease showed associations of decline in networks with cognitive decline in all domains; Alzheimer’s disease dementia

showed associations of decline in networks with attention/executive functioning. Decline in grey matter network measures over

time accelerated for more advanced disease stages and was related to concurrent cognitive decline across the entire Alzheimer’s dis-

ease cognitive continuum. These associations were disease stage dependent for the different cognitive domains, which reflected the

respective cognitive stage. Our findings therefore suggest that grey matter measures are helpful to track disease progression in

Alzheimer’s disease.
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Introduction
Alzheimer’s disease is a neurodegenerative disorder that is

characterized by a progressive loss of cognitive function-

ing. The pathological cascade of Alzheimer’s disease starts

with the aggregation of amyloid beta up to 20 years be-

fore the onset of dementia (Bateman et al., 2012; Jansen

et al., 2015). Once amyloid reaches abnormal levels,

however, its absolute levels only show limited association

with cognitive decline (Farrell et al., 2017; Dubois et al.,

2018). Measures of neurodegeneration, such as hippo-

campal atrophy, are more strongly associated with cogni-

tive decline and clinical progression (Fox et al., 1999;

Jack et al., 2000; Dickerson et al., 2009), but manifest

relatively late in the disease process (Bateman et al.,

2012) and represent irreversible damage. Therapies tar-

geted to treat Alzheimer’s disease are probably most ef-

fective in the early stages of the disease, before overt and

irreversible atrophy. For development of such secondary

prevention trials, it is important to precisely and timely

measure disease progression. To this end, biological sub-

strates of cognitive dysfunction in early stages of the dis-

ease, when neurodegenerative changes are still subtle, are

needed.

Normal cognitive function requires communication be-

tween different brain areas through their connections (i.e.

brain connectivity). In Alzheimer’s disease, amyloid

impairs synaptic functioning (Walsh et al., 2002; Shankar

et al., 2008; Koffie et al., 2009), which may disrupt

large-scale brain connectivity networks (Selkoe, 2002;

Buckner et al., 2005; Sperling et al., 2009; Palmqvist

et al., 2017) and so early changes in brain connectivity

patterns may represent an early link between amyloid ag-

gregation and later cognitive decline in Alzheimer’s dis-

ease. Brain connectivity can be measured based on

similarity in grey matter (GM) (Mechelli et al., 2005;

Tijms et al., 2012), which has been associated with coor-

dinated growth during development (Alexander-Bloch

et al., 2013b), functional co-activation (Alexander-Bloch

et al., 2013a) and axonal connectivity (Gong et al.,

2012). We and others have previously shown that GM

connectivity is disrupted in Alzheimer’s disease (He et al.,

2008; Yao et al., 2010, Tijms et al., 2013a, b; Pereira

et al., 2016). In predementia stages, the level of GM net-

work disruptions seems to lie in between those for cogni-

tively normal and Alzheimer’s disease dementia

individuals (Yao et al., 2010; Pereira et al., 2016). Worse

network disruptions are related to more severe cognitive

impairment in Alzheimer’s disease dementia (Tijms et al.,

2013a, 2014) and to the rate of future cognitive decline

and clinical progression in predementia Alzheimer’s dis-

ease (Dicks et al., 2018; Tijms et al., 2018; Verfaillie
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et al., 2018). Disruptions in GM network measures have

been shown to manifest already in cognitively normal

individuals with the aggregation of amyloid (Tijms et al.,

2016; ten Kate et al., 2018) but before overt atrophy

(Voevodskaya et al., 2018), suggesting these measures de-

tect subtle structural changes in GM in the earliest stages

of the disease due to amyloid aggregation. It could be

hypothesized that the ongoing neurodegenerative changes

throughout the disease might render the networks increas-

ingly vulnerable, and thus represent a close biological

substrate for cognitive decline and disease progression in

Alzheimer’s disease. Because amyloid preferentially starts

to aggregate in distinct regions of the cortex (Villain

et al., 2012; Villeneuve et al., 2015; Palmqvist et al.,

2017) and atrophy affects different regions of the brain

(Whitwell et al., 2007; Dickerson et al., 2009), changes

in network measures might show a distinct temporo-spa-

tial pattern throughout the disease. While previous studies

suggested that GM networks change as the disease pro-

gresses, those results were based on cross-sectional com-

parisons, and as such it remains unclear, how GM

network measures evolve during the course of the

disease.

Therefore, the objectives of this study were to investi-

gate how GM network measures decline over time within

individuals across the Alzheimer’s disease cognitive con-

tinuum (i.e. cognitively unimpaired to dementia), how

GM network measures are influenced by additional tau

pathology and whether these changes translate to decline

in specific cognitive domains within individuals.

Materials and methods

Participants

Data used in the preparation of this article were obtained

from the Alzheimer’s Disease Neuroimaging Initiative

(ADNI) database (http://adni.loni.usc.edu). The ADNI

was launched in 2003 as a public–private partnership,

led by Principal Investigator Michael W. Weiner, MD.

The primary goal of ADNI has been to test whether ser-

ial MRI, PET, other biological markers, and clinical and

neuropsychological assessment can be combined to meas-

ure the progression of mild cognitive impairment and

early Alzheimer’s disease. ADNI was approved by the in-

stitutional review board of all participating institutions

and written informed consent was obtained from all par-

ticipants at each site.

We included all cognitively unimpaired, amyloid-normal

individuals (controls; CN) and individuals with

Alzheimer’s disease across the cognitive continuum (pre-

clinical, prodromal, Alzheimer’s disease dementia) from

ADNI, who had baseline amyloid biomarkers (PiB, AV45

PET or amyloid b 1–42 CSF) and �0.9 years of MRI fol-

low-up available. A total of 713 individuals met inclusion

criteria (190 CN, 100 preclinical, 288 prodromal, 135

Alzheimer’s disease dementia). Criteria for clinical diagno-

ses in ADNI have been previously described (Petersen

et al., 2010). Briefly, clinical diagnoses were based on

subjective memory complaints, the CDR, the Mini-Mental

State Examination (MMSE) and education-adjusted cut-

off values for the delayed recall of the Logical Memory II

subscale of the Wechsler Memory Scale-Revised.

Dementia patients additionally had to fulfil clinical diag-

nostic criteria for probable dementia according to the

National Institute of Neurological and Communicative

Disorders and Stroke–Alzheimer’s Disease and Related

Disorders Association criteria for probable Alzheimer’s

disease (McKhann et al., 1984). Individuals with abnor-

mal amyloid diagnosed as ‘early’ or ‘late’ mild cognitive

impairment in ADNI were combined into the prodromal

AD group.

Amyloid status at baseline was determined based on

PiB or AV45 PET (http://adni.loni.usc.edu/methods/pet-

analysis/; Jagust et al., 2010, 2015), if available, and

otherwise based on amyloid b 1–42 CSF levels (Shaw

et al., 2009). To determine amyloid abnormality, we used

the recommended cut-offs of >1.5 standardized uptake

value ratio (SUVR) for PiB (n¼ 4, 0.6% available), >1.1

SUVR for AV45 (n¼ 476, 66.8% available) (for

both SUVRs the cerebellum was used as reference

region; Jagust et al., 2010, 2015) and <192 pg/ml for

amyloid b 1–42 CSF levels (n¼ 663, 93% available)

(Shaw et al., 2009).

MRI acquisition and preprocessing

We downloaded all available 3D T1-weighted scans with

minimal preprocessing by ADNI from the ADNI LONI

Image & Data Archive (IDA) [date of last access: 29

March 2017]. Within individuals, scans were only

included when they had the same field strength. Details

of image acquisition and initial preprocessing by ADNI

have been previously described by Jack et al. (2008) (see

also http://adni.loni.usc.edu/methods/mri-analysis/) and

further image processing for this study are described in

detail by Dicks et al. (2019). Briefly, longitudinal scans

within individuals were co-registered to a subject-specific

median template image (Reuter et al., 2012) and then

segmented into GM, white matter and cerebrospinal fluid

using SPM12. Using the subject-specific inversed normal-

ization parameters, we warped the automated anatomical

labelling atlas (Tzourio-Mazoyer et al., 2002) from stand-

ard space to subject space. GM volumes were calculated

for each of the 90 regional cortical and subcortical auto-

mated anatomical labelling areas. Total intracranial vol-

ume was computed as the sum of grey and white matter

and cerebrospinal fluid in cubic centimetre. A total of

3523 scans were of sufficient quality with a median num-

ber of 5 (IQR; 4–6) MRI scans per individual over a me-

dian follow-up of 2 (2–4) years. From all individual GM

segmentation, we extracted single-subject GM networks

using an automated method that has been previously
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described (https://github.com/bettytijms/Single_Subject_

Grey_Matter_Networks; Tijms et al., 2012).

Grey matter network measures

For each network reconstructed from each scan, we cal-

culated the network size, degree, connectivity density,

clustering coefficient, path length and small-world meas-

ures (i.e. gamma, lambda) [for an overview of the meas-

ures see Rubinov and Sporns (2010)]. The network size

corresponds to the number of nodes in the network and

the degree indicates the average number of connections

per node. Connectivity density is the ratio of the number

of existing connections to the number of connections pos-

sible in the network. The clustering coefficient is the pro-

portion of connected nodes that are also interconnected.

Path length measures the average number of connections

along the shortest path between every pair of nodes in

the network. We further computed small-world measures

in order to investigate how the network topology devi-

ated from randomly generated networks: We used the

corresponding values of five randomized networks with

preserved degree distribution (Maslov and Sneppen,

2002) to calculate normalized values of the clustering co-

efficient (gamma) and path length (lambda). Local values

of the degree, clustering and path length were computed

by averaging the values over the corresponding nodes of

each automated anatomical labelling area and global val-

ues were computed by averaging the values for all nodes

over the entire network. For all network measures, we

used the functions of the Brain Connectivity Toolbox

adjusted for large-sized networks (https://sites.google.com/

site/bctnet/; Rubinov and Sporns, 2010).

Neuropsychological assessments

We used the immediate and delayed recall subtests of the

Rey Auditory Verbal Learning Test (RAVLT) (Rey,

1964), category fluency (animals), the trail making test

(TMT) (Reitan, 1958) part A, TMT B and the MMSE

(Folstein et al., 1975) available in ADNI as measures for

memory, language, attention/executive functioning and

disease severity, respectively. For analyses investigating

whether changes in network measures were associated

with concurrent cognitive decline over time within indi-

viduals, we included only those individuals from our total

sample who had �0.9 years of follow-up of both the re-

spective neuropsychological assessment and MRI scans

available. A total of 3049 assessments were available for

the RAVLT, 3081 assessments for category fluency, 2935

assessments for the TMT and 3092 assessments for the

MMSE. For all neuropsychological tests, the median

number of assessments per individual was 4 (IQR; 3–5)

over a median follow-up time of 2 (2–4) years.

Statistical analysis

Differences in baseline characteristics between diagnostic

groups were assessed with one-way ANOVA, Kruskal–

Wallis or chi-squared tests, where appropriate. If signifi-

cant differences were found, we performed post hoc com-

parisons with Tukey’s or Dunn’s tests adjusted for

multiple comparisons with the Hochberg procedure.

We fitted two sets of Bayesian linear mixed models

with subject-specific intercepts and slopes with the pack-

age ‘rstanarm’ (Goodrich et al., 2020): we first assessed

how network measures changed over time (model 1) and

then investigated whether changes in network measures

were associated with concurrent change in cognition

within individuals (model 2). For model 1, follow-up

time in years was entered as predictor and longitudinal

network measures (NM) were included as outcome.

NM ¼ bIntercept þ bTimeTimeþ ð1þ TimejSubjectÞ

We repeated model 1 for local network measures for

each of the 90 automated anatomical labelling areas, cor-

recting for longitudinal local GM volume.

For model 2, longitudinal network measure was entered

as predictor and longitudinal cognitive test score was

entered as outcome.

Cognition ¼ bIntercept þ bNMNMþ ð1þNMjSubjectÞ

Both sets of models additionally included baseline diag-

nosis (i.e. CN, preclinical, prodromal, Alzheimer’s disease

dementia) as a main term and an interaction effect with

the predictor in order to investigate whether changes in

network measures over time or associations with cogni-

tion depended on the baseline disease stage and in this

way also approximated non-linear changes during the dis-

ease course. All analyses were corrected for age at base-

line, sex, field strength and baseline total GM volume.

Baseline total GM volume was excluded for network size

and degree due to the high correlation between these

measures. For associations with concurrent decline in cog-

nition (model 2), we additionally corrected for education-

al level. All network measures and neuropsychological

test scores were standardized to the mean values of CN

group at baseline. Estimated marginal means and trends,

and group differences between baseline disease stages

were estimated with the emmeans package (Lenth, 2018).

All models except for network size and degree were

run using eight independent chains with 10 000 iterations

after 5000 initial warm-up samples. The final posterior

sample consisted of 4000 draws. In models for network

size and degree, we increased iterations to 15 000 with

7500 warm-up samples because not all iterations initially

converged as indicated by the Gelman and Rubin (1992)

potential scale reduction factor (Gelman and Shirley,

2011). For all models, we used a Cauchy distribution as

prior for the intercept and each fixed effect. Effects were

considered statistically significant if the 95% credible
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interval (95% CI) of the posterior distribution did not

overlap zero.

In order to assess whether additional tau pathology

influences GM network measures in Alzheimer’s disease

individuals, we fitted two sets of linear mixed models

with subject-specific random intercepts and slopes with

the package ‘lme4’. For the first set of models, we used

continuous baseline CSF total tau levels, follow-up time

in years and their interaction (i.e. baseline CSF total tau

levels � follow-up time in years) as predictor and longi-

tudinal network measures as outcome. For the second set

of models, we used dichotomized baseline CSF total tau

(i.e. normal/abnormal), follow-up time in years and their

interaction (i.e. baseline CSF total tau status � follow-up

time in years) as predictor and longitudinal network

measures as outcome. Both sets of models were repeated

for each Alzheimer’s disease diagnostic group and were

adjusted for age, sex, field strength and total GM

volume.

All statistical analyses were performed in R (version

3.4.4, 2018-03-15) and Surf Ice (version 2017-08-08)

was used to visualize regional results.

Data availability

The data used for this study were obtained from the

ADNI database (adni.loni.usc.edu).

Results
The total sample included 713 individuals: 190 CN, 100

preclinical, 288 prodromal and 135 Alzheimer’s disease

dementia individuals (Table 1). The preclinical

Alzheimer’s disease group included more females than the

prodromal Alzheimer’s disease group and individuals

with preclinical Alzheimer’s disease were older than CN

or prodromal Alzheimer’s disease individuals (P < 0.05).

CN showed higher years of education than individuals

with prodromal Alzheimer’s disease or Alzheimer’s dis-

ease dementia (P < 0.05). CSF amyloid beta 1–42 levels

and GM volumes were lowest and CSF total tau levels

highest for Alzheimer’s disease dementia individuals fol-

lowed by prodromal Alzheimer’s disease, preclinical

Alzheimer’s disease and CN individuals (P < 0.05).

Alzheimer’s disease dementia individuals had the shortest

follow-up time with the fewest MRI scans available and

CN and preclinical Alzheimer’s disease individuals add-

itionally had fewer MRI scans than individuals with pro-

dromal Alzheimer’s disease available (P < 0.05).

Longitudinal changes in cognitive performance over

time by baseline disease stage are shown in Fig. 1 (see

also Supplementary Fig. 1 and Tables 1 and 2). As

expected, CN individuals and individuals with preclinical

Alzheimer’s disease showed the least impairment in cogni-

tion at baseline and the slowest cognitive decline, fol-

lowed by prodromal Alzheimer’s disease and then

Alzheimer’s disease dementia in all neuropsychological

tests. Across neuropsychological tests, decline was most

pronounced for the MMSE and attention/executive func-

tioning in individuals with Alzheimer’s disease dementia.

Cross-sectional differences and

within-individual changes in GM

network measures

At baseline, individuals with Alzheimer’s disease dementia

showed lower network size compared to prodromal

Alzheimer’s disease (Figs 2 and 3A; see also

Supplementary Table 3). Alzheimer’s disease dementia

individuals showed the lowest path length values com-

pared to all other groups. For gamma and lambda, base-

line values were highest for CN individuals, followed by

preclinical and prodromal Alzheimer’s disease, and then

Alzheimer’s disease dementia. Cross-sectional results of

local network measures largely reflected those for global

network measures (see Supplementary Figs 2 and 3).

Over time, all network measures, except connectivity

density, significantly declined within individuals of all

groups, with fastest decline in gamma and lambda, fol-

lowed by clustering, then path length and finally basic

network measures (i.e. size, degree, connectivity density;

see Figs. 2 and 3B; Supplementary Table 4 and also

Supplementary Fig. 4 for individual-specific line plots).

The rate of decline in network measures depended on

individuals’ cognitive stage, with decline in network

measures generally accelerating with advancing disease

stages: Network size and degree declined similarly in CN

and preclinical Alzheimer’s disease individuals, and then

accelerated significantly in prodromal Alzheimer’s disease

and Alzheimer’s disease dementia individuals, indicating

acceleration in later disease stages in these measures.

Connectivity density declined only in individuals with

preclinical and prodromal Alzheimer’s disease, but

showed similar rates of decline. Decline in clustering and

gamma was slowest in CN individuals, slightly acceler-

ated for preclinical Alzheimer’s disease and significantly

accelerated in prodromal and dementia stages, suggesting

an accelerating decline early in the disease process.

Additionally, decline in gamma was significantly faster in

Alzheimer’s disease dementia than prodromal Alzheimer’s

disease, suggesting increasingly faster rates of decline in

gamma values throughout the course of the disease.

Decline in path length and lambda values was similar for

CN and preclinical Alzheimer’s disease individuals and

then declined significantly faster for prodromal

Alzheimer’s disease and Alzheimer’s disease dementia

individuals, indicating an acceleration of decline in later

disease stages.

When we repeated analyses correcting for longitudinal

whole-brain GM volume, effects were attenuated, with

only those in prodromal Alzheimer’s disease remaining
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significant (Supplementary Figs 5 and 6 and Tables 5

and 6).

On a regional level, correcting for concurrent local at-

rophy (Fig. 4; see also Supplementary Fig. 7 for group

differences), the local degree most consistently declined,

with the decline manifesting in the temporal lobes in CN

individuals, additionally including most prominently the

cingulate cortices in preclinical Alzheimer’s disease indi-

viduals and then further affecting more frontal areas in

individuals with prodromal Alzheimer’s disease. At the

same time, the local degree in mostly parietal regions

increased in all three groups. For Alzheimer’s disease de-

mentia individuals, we further found almost exclusively

increases over time in the local degree, particularly in the

bilateral hippocampi. For the local clustering coefficient,

we found mostly decline over time, with relatively little

decline manifesting in CN individuals mostly restricted to

parietal regions, and increasingly widespread effects in

preclinical and prodromal Alzheimer’s disease individuals.

For Alzheimer’s disease dementia individuals, decline in

local clustering values was steeper compared to the other

groups, and restricted to mostly fronto-parietal regions.

For the local path length, similar to the other network

measures, decline manifested in few regions in CN indi-

viduals, including the left precuneus and superior frontal

gyrus, and became increasingly widespread in preclinical

and then prodromal Alzheimer’s disease. Additionally, we

found an increase in path length values over time, most

consistently in the right parahippocampal gyrus in CN

and prodromal Alzheimer’s disease individuals, but not in

individuals with preclinical Alzheimer’s disease or

Alzheimer’s disease dementia. For Alzheimer’s disease de-

mentia, similarly to the local clustering coefficient, the de-

cline in path length values that were observed was

Table 1 Demographic and clinical characteristics of the included sample and by baseline disease stage

Total (n 5 713) CN (n 5 190) Preclinical Alzheimer’s

disease (n 5 100)

Prodromal Alzheimer’s

disease (n 5 288)

Alzheimer’s disease

dementia (n 5 135)

Female 342 (48%) 90 (47%) 64 (64%) 124 (43%)b 64 (47%)

Age in years 73.5 (6.65) 72.55 (5.95)b 75.44 (5.57) 73.19 (6.91)b 74.08 (7.43)

Education in years 16 (14–18) 16 (15–18) 16 (14–18) 16 (14–18)a 16 (13–18)a

Progression to MCI 40 (6%) 21 (11%) 19 (19%) n.a. n.a.

Progression to

dementia

159 (22%) 5 (3%) 7 (7%) 147 (51%) n.a.

APOE4 allele (0/�1) 328 (46%) /385 (54%) 151 (79%) /39 (21%)b, c, d 53 (53%) /47 (47%)c, d 96 (33%) /192 (67%)d 28 (21%) /107 (79%)

PiB PET SUVRe 1.88 (0.27) n.a. n.a. 1.88 (0.33) 1.89 (n.a.)

Abnormal PiB PET

>1.5 SUVRe

4 (100%) n.a. n.a. 3 (100%) 1 (100%)

AV45 PET SUVRf 1.28 (0.22) 1.02 (0.05)b, c, d 1.34 (0.18)d 1.38 (0.16)d 1.45 (0.16)

Abnormal AV45 PET

>1.11 SUVRf

333 (70%) 0 (0%) 70 (100%) 189 (100%) 74 (100%)

CSF Ab 1–42 in

pg/mlg
163.01 (50.41) 229.86 (38.22) 153.33 (35.36)a 139.95 (27.17)a, b 129.23 (21.33)a, b, c

Abnormal Ab
1–42< 192 pg/mlg

497 (75%) 29 (17%)b, c, d 81 (87%)c, d 263 (96%)d 124 (100%)

CSF total tau in pg/mlg 96.93 (54.03) 58.99 (23.83)b, c, d 77.71 (36.49) c, d 110.47 (52.7)d 133.63 (60.79)

Abnormal tau

>93 pg/mlg
291 (44%) 19 (11%)b, c, d 27 (29%)c, d 153 (56%) d 92 (74%)

Follow-up time in

years

2 (2–4) 2.2 (2–4) 2.1 (2–4) 3 (2–4) 1.5 (1–2)a, b, c

Number of MRI scans 5 (4–6) 5 (4–6)c 5 (3.2–6)c 5 (4–6) 4 (4–4)a, b, c

Field strength (3T) 2303 (69%) 666 (77%) 315 (73%) 997 (67%) 325 (59%)a

Total intracranial vol-

ume in cm3

1452.91 (146.18) 1455.99 (140.97) 1435.76 (140.14) 1463.19 (145.29) 1439.36 (158.58)

Grey matter volume

in cm3

592.38 (71.79) 618.61 (59.66) 597.74 (66.4) 593.53 (71.32)a 549.01 (72.93)a, b, c

Normalized GM vol-

ume in cm3

408.86 (41.38) 426.29 (34.69) 417.47 (36.81) 406.75 (40.97)a 382.45 (40.06)a, b, c

Hippocampal volume

in cm3

7.86 (1.44) 8.78 (1.03) 8.36 (0.96)a 7.71 (1.3)a, b 6.54 (1.42)a, b, c

Data are presented as N (%), mean (SD) or median (Q1–Q3), where appropriate.
aHigher for CN.
bHigher for preclinical Alzheimer’s disease.
cHigher for prodromal Alzheimer’s disease.
dHigher for Alzheimer’s disease dementia.
eAvailable for n¼ 4.
fAvailable for n¼ 476.
gAvailable for n¼ 663.

n.a., not applicable.

6 | BRAIN COMMUNICATIONS 2020: Page 6 of 15 E. Dicks et al.

https://academic.oup.com/braincommsarticle-lookup/doi/10.1093/braincomms/fcaa177#supplementary-data
https://academic.oup.com/braincommsarticle-lookup/doi/10.1093/braincomms/fcaa177#supplementary-data
https://academic.oup.com/braincommsarticle-lookup/doi/10.1093/braincomms/fcaa177#supplementary-data


steeper, but restricted to fewer regions, partly reflecting

those regions that showed increasing values of the local

degree in the same group of individuals.

We additionally investigated whether GM network dis-

ruptions in individuals with Alzheimer’s disease were

associated with tau pathology (Supplementary Tables

7–9). Cross-sectionally, higher baseline levels of total tau

were associated with lower baseline network size and de-

gree in prodromal Alzheimer’s disease and lower baseline

degree, connectivity density and clustering in Alzheimer’s

disease dementia. Longitudinally, higher baseline tau was

associated with faster decline in lambda in preclinical

Alzheimer’s disease and faster decline in degree and

clustering values in prodromal Alzheimer’s disease. For

Alzheimer’s disease dementia, lower baseline tau was

associated with faster decline in lambda values. When we

repeated analyses for Alzheimer’s disease dementia

excluding one individual with noticeably low tau and fast

decline in lambda (see Supplementary Fig. 8), the associ-

ation between tau and lambda was greatly reduced and

no longer significant (b 6 SE¼ 0.001 6 0.0005;

P¼ 0.07).

Using tau status (normal/abnormal) as predictor instead

of continuous values, we observed similar results for indi-

viduals with preclinical Alzheimer’s disease (see

Supplementary Tables 10–13): preclinical Alzheimer’s

Figure 1 Longitudinal changes in neuropsychological test scores over time by baseline disease stage. Changes in MMSE, RAVLT

immediate and delayed recall (A) and changes in TMT A, B and category fluency performance (B). Regression lines are based on estimated

marginal means (intercept) and trends (slope) per baseline disease stage as modelled with Bayesian linear mixed models. The shaded area

represents 95% credible intervals. Note that scores for TMTwere inverted, so that lower scores indicate worse performance. Intercept and

slope estimates can additionally be found in Supplementary Fig. 1 and Tables 1 and 2. AD, Alzheimer’s disease.
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disease individuals with abnormal tau showed steeper

rates of decline in path length and lambda compared to

preclinical Alzheimer’s disease individuals with normal

tau levels. Together, these results suggest that additional

tau pathology accelerates the decline in network measures

particularly in the predementia stages of the disease.

Associations of within-individual

change in network measures and

concurrent cognitive decline

We further investigated whether decline in network meas-

ures was related to concurrent decline in cognition within

individuals. We found several associations between

changes in network measures and cognitive decline over

time within individuals of all groups, with decline in net-

work measures, most prominently gamma and lambda,

being related to concurrent decline in distinct cognitive

domains depending on disease stage (Fig. 5; see also

Supplementary Table 14): In CN individuals, decline in

network measures was associated with concurrent decline

in memory (RAVLT immediate: network size, clustering;

RAVLT delayed: connectivity density, clustering and

gamma), language (category fluency: clustering and

gamma) and MMSE (gamma). For preclinical Alzheimer’s

disease, the association between decline in network meas-

ures and concurrent memory decline was slightly stronger

Figure 2 Longitudinal changes in global network measures over time by baseline disease stage. Changes in network size, degree and

connectivity density (A) and changes in clustering, path length, gamma and lambda values (B). Regression lines are based on estimated

marginal means (intercept) and trends (slope) per baseline disease stage as modelled with Bayesian linear mixed models. The shaded area

represents 95% credible intervals. Intercept and slope estimates can additionally be found in Fig. 3 and Supplementary Tables 3 and 4. AD,

Alzheimer’s disease. Gamma is normalized clustering; lambda is normalized path length.
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compared to CN (RAVLT immediate and delayed: path

length, gamma and lambda), and we observed associa-

tions of decline in network measures and decline in atten-

tion/executive functioning (TMT B: gamma, lambda) and

decline in network measures was additionally related to

decline in language functioning (path length, lambda) and

the MMSE (gamma, lambda). In prodromal Alzheimer’s

disease, these associations were generally stronger than

for preclinical Alzheimer’s disease, with decline in all net-

work measures and most prominently gamma and

lambda, showing associations with concurrent decline in

all cognitive domains. In Alzheimer’s disease dementia,

we found fewer associations between decline in network

measures and decline in memory functioning (RAVLT im-

mediate: network size, clustering, gamma and lambda),

while decline in most network measures (except for the

path length) was associated with decline in attention/ex-

ecutive functioning and all network measures were related

to decline on the MMSE. Additionally, decline in net-

work measures (network size, clustering, path length,

gamma and lambda) was associated with decline in lan-

guage functioning in Alzheimer’s disease dementia

individuals.

When repeating analyses additionally accounting for

the effect of whole-brain GM or hippocampal volume

changes, effects for path length and lambda on decline in

memory tests remained in preclinical Alzheimer’s disease,

and for prodromal and Alzheimer’s disease dementia

effects were attenuated but remained significant

(Supplementary Figs 9 and 10 and Tables 15 and 16),

indicating that these measures explain variance in cogni-

tive decline in addition to GM atrophy and hippocampal

atrophy.

Discussion
Our main finding is that GM network measures, particu-

larly gamma and lambda, declined over time across the

Alzheimer’s disease clinical continuum, with disruptions

accelerating for more advanced disease stages.

Importantly, changes in these network measures were

associated with concurrent decline in specific cognitive

domains, which reflected the respective cognitive stage.

These findings suggest that GM network measures are

useful to track disease progression across the Alzheimer’s

disease cognitive continuum.

Previous studies using cross-sectional approaches

reported disruptions in GM network measures across the

clinical spectrum of Alzheimer’s disease: starting in the

earliest stages of Alzheimer’s disease, when cognition was

still intact and amyloid started aggregating (Tijms et al.,

2016; ten Kate et al., 2018; Voevodskaya et al., 2018),

showing intermediate disruptions for prodromal

Alzheimer’s disease as compared to CN and Alzheimer’s

disease dementia individuals (Yao et al., 2010; Pereira

et al., 2016) and being associated with the rate of future

cognitive decline in preclinical (Verfaillie et al., 2018) and

prodromal Alzheimer’s disease (Dicks et al., 2018), and

with cognitive impairment in the dementia stage (Tijms

Figure 3 Cross-sectional and longitudinal effects in global network measures by baseline disease stage. Cross-sectional effects are shown in

A and longitudinal effects are shown in B and are based on estimated marginal means and trends, respectively, as modelled with Bayesian

linear mixed models. The error bars represent 95% credible intervals. Effects were considered significant if the 95% credible interval did not

cross zero. Group differences were considered significant if the 95% credible interval of the pairwise group comparison did not cross zero

and effects for the respective groups were significant. Estimates can additionally be found in Supplementary Tables 3 and 4. AD, Alzheimer’s

disease. Gamma is normalized clustering; lambda is normalized path length.
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et al., 2013a, 2014). Here, using a longitudinal approach,

we extend on those results by showing in a longitudinal

design that within individuals the rate of decline in GM

network measures accelerates as the disease progresses

and that those changes are associated with decline in cog-

nition throughout the Alzheimer’s disease cognitive

continuum.

Network measures, most notably gamma and lambda,

declined in all groups with decline accelerating in individ-

uals in more advanced stages of the disease. For preclin-

ical Alzheimer’s disease, baseline clustering and especially

gamma and lambda values were already lower than in

CN individuals, suggesting that GM network disruptions

manifest in the earliest stage of Alzheimer’s disease.

Additionally, decline in clustering and gamma values over

time was slightly faster in preclinical Alzheimer’s disease

than for CN individuals. Lower clustering values have

previously been related to lower CSF amyloid levels

(Tijms et al., 2016) and higher amyloid PET SUVR (ten

Kate et al., 2018) mostly within the normal range in cog-

nitively normal individuals. Presumably, early synaptic

dysfunction due to amyloid aggregation renders GM

morphology more dissimilar at a regional level, resulting

in lower clustering and gamma values already in the pre-

clinical stage. We further observed that decline in net-

work measures was accelerated with higher tau levels in

the preclinical and prodromal Alzheimer’s disease stage.

This suggests that high levels of tau may exacerbate the

disruption of GM networks in the predementia stages of

the disease. Future studies should further investigate the

association between network measures and tau with e.g.

tau PET.

In line with the results for global network measures,

local associations showed that already in the preclinical

stage clustering values were lower compared to CN most-

ly in the temporal lobes. Over time, clustering values

declined in widespread regions, which extended to frontal

and parietal areas. Potentially, local early

Figure 4 Surface plots of longitudinal effects in regional network measures by baseline disease stage. Longitudinal changes in local degree

(A), local clustering (B) and local path length (C) are based on estimated marginal trends as modelled with Bayesian linear mixed models.

Effects were considered significant if the 95% credible interval did not cross zero. Group differences were considered significant if the 95%

credible interval of the pairwise group comparison did not cross zero and effects for the respective groups were significant. For differences

between baseline disease stages, see Supplementary Fig. 7. Subcortical structures are plotted in ventricular areas as approximation. L, left

hemisphere; R, right hemisphere.
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neurodegenerative changes may cause large-scale disrup-

tions network-wide, presumably due to lack of stimula-

tion and/or neurotrophic factors from connecting regions

(Salehi et al., 2006; Seeley et al., 2009). Additionally,

while local path length values showed a similar wide-

spread anatomical pattern of decline, this decline was

observed for spatially separate regions from those of

clustering, which suggests that clustering and path length

may capture distinct aspects of ongoing neurodegenera-

tive processes. In preclinical Alzheimer’s disease individu-

als, decline in network measures, most prominently

gamma and lambda, was furthermore associated with

concurrent decline on the MMSE and in memory func-

tioning, which is in line with the observation that

Figure 5 Within-individual associations of declines in global network measures and cognition by baseline disease stage. Effects of network

measures on cognitive decline in CN (A), preclinical AD (B), prodromal AD (C) and AD dementia individuals (D) are based on estimated

marginal trends as modelled with Bayesian linear mixed models. The error bars represent 95% credible intervals. Effects were considered

significant if the 95% credible interval did not cross zero. Group differences were considered significant if the 95% credible interval of the

pairwise group comparison did not cross zero and effects for the respective groups were significant. Estimates can additionally be found in

Supplementary Table 14. AD, Alzheimer’s disease. Gamma is normalized clustering; lambda is normalized path length.
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memory functioning is the first cognitive domain to be

affected in (typical) Alzheimer’s disease (Scheltens et al.,
2016). A practical implication of these findings is that

network measures, and especially gamma, might be used

to monitor disease worsening from the earliest stages of

Alzheimer’s disease, which is important for the develop-

ment of new therapies in clinical trials.

For prodromal Alzheimer’s disease and Alzheimer’s dis-

ease dementia, baseline network measures were more

decreased and decline in network measures markedly

accelerated, suggesting that as neuronal damage becomes

more widespread in later stages of disease, networks be-

come increasingly random, as indicated by a rapid decline

in small-world values, in line with previous cross-section-

al studies in Alzheimer’s disease (He et al., 2008; Yao

et al., 2010, Tijms et al., 2013a, b; Pereira et al., 2016).

In these individuals, local network measures at baseline

were mostly decreased compared to preclinical

Alzheimer’s disease, and for prodromal Alzheimer’s dis-

ease showed widespread and slightly steeper annual de-

cline, particular for local clustering values. Unexpectedly,

we observed for individuals with Alzheimer’s disease de-

mentia an increase in local degree, concerning mostly

parietal and medial temporal regions that overlapped

with a decline in local path length values. Possibly, this

increase indicates that neurodegeneration starts to affect

almost the entire cortex in the dementia stage of

Alzheimer’s disease, which leads to increased similarity

between brain areas due to atrophy and causes an in-

crease in random connections in GM networks as sug-

gested by the concurrent decline in normalized path

length.

In individuals with prodromal Alzheimer’s disease, de-

cline in all network measures was associated with concur-

rent decline in all cognitive tests and showed the

strongest effects across all groups. This finding may indi-

cate how continuing neuronal loss, as reflected by the

disruption in network measures, gives rise to the cogni-

tive dysfunction as seen in Alzheimer’s disease, particular-

ly in the prodromal stage. In Alzheimer’s disease

dementia individuals, these associations were again

reduced for most cognitive tests, possibly reflecting floor

effects in cognitive and neurodegenerative decline in the

dementia stage of the disease. However, associations with

decline on non-memory domains and global cognition be-

came stronger in this group, suggesting that network

measures might still have use to monitor disease severity

in this stage and might thus aid in the development of

tertiary prevention trials.

Network measures also declined in CN individuals,

who had normal amyloid levels based on PET, and these

changes were associated with concurrent decline in mem-

ory, language functioning and on the MMSE. This sug-

gests that with normal aging, networks also become more

randomly organized, albeit at much slower rates than in

Alzheimer’s disease, and that these changes are associated

with decline in cognition during normal ageing.

Alternatively, subthreshold effects of abnormal amyloid in

CSF may explain at least some of the decline in network

measures we observed in CN individuals. Additional post

hoc analyses showed that indeed individuals with lower,

but still mostly normal CSF amyloid levels already

showed decline in degree (Supplementary Tables 17 and

18). However, longer follow-up is necessary to determine

how many individuals developed abnormal amyloid, and

whether their network organization further declines to re-

semble those in the preclinical stage. Previous cross-sec-

tional studies on normal aging have reported both

reorganization of brain networks towards a more regular

(i.e. high clustering, high path length) and towards a

more random (i.e. low clustering, low path length) top-

ology (Chen et al., 2011; Wu et al., 2012, 2013; Zhu

et al., 2012; Carey et al., 2019). Cross-sectional studies

only capture a moment in time of a sample of individu-

als, and cohort effects might explain the conflicting

results previously reported. Here, using a longitudinal ap-

proach, our results of declining gamma and lambda val-

ues in CN support the finding of brain networks

reorganizing towards a more random topology in older

age. Additional post hoc analyses showed that while

older individuals had lower baseline network measures,

the rate of decline in network measures was not associ-

ated with age (Supplementary Table 19), suggesting that

network measures decline linearly with advancing age.

Future studies should further aim to clarify how network

measures change within ‘healthy’ individuals across a

wider lifespan. Our finding of associations between net-

work measures and concurrent changes in cognition in

cognitively unimpaired normal older individuals also sup-

ports the idea that network measures may provide a bio-

logical substrate for cognitive dysfunction during normal

ageing.

A potential limitation is that we modelled changes in

network measures over disease advancement using fol-

low-up time as predictor, which may not adequately cap-

ture where individuals are in their own disease trajectory

(Bateman et al., 2012; Insel et al., 2017; Vogel et al.,

2018), and as such slope estimates based on time may be

overestimated (Dicks et al., 2019). Still, modelling con-

current changes in GM network measures and cognitive

dysfunction, we showed that network measures are close-

ly related to disease advancement within individuals, and

thus network measures may inform on an individual’s

precise disease stage. Additionally, we used individual

neuropsychological tests to investigate the association of

declines in network measures and cognition. Composite

scores may outperform their single components in assess-

ing cognitive decline over time and may show stronger

associations with neuroimaging markers (Crane et al.,

2012; Gibbons et al., 2012). However, using individual

tests as outcome measures eases interpretation of results

and comparison across different cognitive stages. Another

potential limitation of our study is that we prioritized

amyloid PET to determine amyloid positivity, and in this
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way included some individuals in the Alzheimer’s disease

continuum although they had normal amyloid in CSF.

This may have attenuated some of the results, but, since

the percentage of individuals with discordant amyloid

was low (13% for preclinical, 4% for prodromal

Alzheimer’s disease), such effects are likely to be minimal.

Strengths of our study include the large number of partic-

ipants from ADNI who had long follow-up duration of

up to 10 years with repeated MRI available. Using our

approach to construct single-subject GM networks fur-

thermore enabled us to investigate declines in network

measures and cognition and their associations on an indi-

vidual participant data level, in contrast to group-level

network measures. Additionally, GM networks are recon-

structed from structural MRI, which are routinely

acquired in large research cohorts and clinical practice,

are less affected by artefacts, and their acquisition and

processing are less time-consuming than those for other

sequences.

In conclusion, we showed that network measures con-

tinuously decline over time within individuals, and that

the rate of decline accelerates for individuals in more

advanced stages of the disease. Changes in network meas-

ures were associated with concurrent cognitive decline

across the entire Alzheimer’s disease continuum, suggest-

ing that GM network measures may have use to help

monitoring disease progression in Alzheimer’s disease.

Supplementary material
Supplementary material is available at Brain

Communications online.
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