scientific reports # **OPEN** Four consecutive yearly point-prevalence studies in Wales indicate lack of improvement in sepsis care on the wards Maja Kopczynska^{1,25}, Harry Unwin^{2,25}, Richard J. Pugh³, Ben Sharif⁴, Thomas Chandy⁵, Daniel J. Davies⁶, Matthew E. Shield⁶, David E. Purchase², Samuel C. Tilley², Arwel Poacher⁷, Lewis Oliva², Sam Willis⁸, Isabelle E. Ray², John Ng C. Hui⁵, Bethany C. Payne², Eilis F. Wardle², Fiona Andrew², Hei Man Priscilla Chan⁹, Jack Barrington², Jay Hale², Joanna Hawkins², Jess K. Nicholas², Lara E. Wirt², Lowri H. Thomas², Megan Walker¹⁰, Myat P. Pan², Tallulah Ray², Umair H. Asim¹⁰, Victoria Maidman², Zeid Atiyah², Zain M. Nasser², Zhao Xuan Tan¹¹, Laura J. P. Tan¹², Tamas Szakmany^{13,14\infty} & The Welsh Digital Data Collection Platform collaborators* The 'Sepsis Six' bundle was promoted as a deliverable tool outside of the critical care settings, but there is very little data available on the progress and change of sepsis care outside the critical care environment in the UK. Our aim was to compare the yearly prevalence, outcome and the Sepsis Six bundle compliance in patients at risk of mortality from sepsis in non-intensive care environments. Patients with a National Early Warning Score (NEWS) of 3 or above and suspected or proven infection were enrolled into four yearly 24-h point prevalence studies, carried out in fourteen hospitals across Wales from 2016 to 2019. We followed up patients to 30 days between 2016-2019 and to 90 days between 2017 and 2019. Out of the 26,947 patients screened 1651 fulfilled inclusion criteria and were recruited. The full 'Sepsis Six' care bundle was completed on 223 (14.0%) occasions, with no significant difference between the years. On 190 (11.5%) occasions none of the bundle elements were completed. There was no significant correlation between bundle element compliance, NEWS or year of study. One hundred and seventy (10.7%) patients were seen by critical care outreach; the 'Sepsis Six' bundle was completed significantly more often in this group (54/170, 32.0%) than for patients who were not reviewed by critical care outreach (168/1385, 11.6%; p < 0.0001). Overall survival to 30 days was 81.7% (1349/1651), with a mean survival time of 26.5 days (95% CI 26.1–26.9) with no difference between each year of study. 90-day survival for years 2017-2019 was 74.7% (949/1271), with no difference between the years. In multivariate regression we identified older age, heart failure, recent chemotherapy, higher frailty score and do not attempt cardiopulmonary resuscitation orders as significantly associated with increased 30-day mortality. Our data suggests that despite efforts to increase sepsis awareness within the NHS, there is poor compliance with the sepsis care bundles and no change in the high mortality over the study period. Further research is needed to determine which ¹Salford Royal NHS Foundation Trust, Manchester, UK. ²Cardiff University School of Medicine, Cardiff, UK. ³Intensive Care Medicine Glan Clwyd Hospital, Betsi Cadwaladr University Health Board, Bodelwyddan, UK. ⁴Prince Charles Hospital, Cwm Taf Morgannwg University Health Board, Merthyr Tydfil, UK. ⁵The Grange University Hospital, Aneurin Bevan University Health Board, Cwmbran, Wales, UK. ⁶College of Medicine, Swansea University Medical School, Swansea, UK. ⁷Cardiff and Vale University Health Board, University Hospital of Wales, Cardiff, UK. 8Glangwili General Hospital, Hywel Dda University Health Board, Carmarthen, UK. 9Prince Charles Hospital, Cwm Taf Morgannwg University Health Board, Merthyr Tydfil, UK. ¹⁰Wrexham Maelor Hospital, Betsi Cadwaladr University Health Board, Wrexham, UK. 11West Suffolk NHS Foundation Trust, Bury St Edmunds, Suffolk, UK. 12 University Hospital of Wales, Cardiff and Vale University Health Board, Cardiff, UK. 13 Department of Anaesthesia, Intensive Care and Pain Medicine, Division of Population Medicine, Cardiff University, Cardiff, UK. 14Intensive Care Medicine, Critical Care Directorate, Grange University Hospital, Aneurin Bevan University Health Board, Cwmbran, UK. ²⁵These authors contributed equally: Maja Kopczynska and Harry Unwin. *A list of authors and their affiliations appears at the end of the paper. Memail: SzakmanyT1@cardiff.ac.uk time-sensitive ward-based interventions can reduce mortality in patients with sepsis and how can these results be embedded to routine clinical practice. *Trial registration* Defining Sepsis on the Wards ISRCTN 86502304 https://doi.org/10.1186/ISRCTN86502304 prospectively registered 09/05/2016. Sepsis is defined as dysregulated host response to infection with sequential organ failure. It is a complex disorder and is associated with high mortality¹. Despite increased awareness, sepsis remains a major challenge and economic burden to healthcare globally^{2–5}. To improve patient mortality, sepsis requires early recognition and urgent treatment⁶. Previously much attention was dedicated to the identification and treatment of patients at risk of poor outcomes within intensive care units (ICU)^{7,8}. However, it is now known that the majority of patients with sepsis present in the emergency department (ED) and on general wards, with associated high mortality^{9–11}. Since the inception of the sepsis resuscitation bundle by the Surviving Sepsis Campaign (SSC) over a decade ago, completion rates have been reportedly low^{12–14}. As the initial SSC bundle was heavily reliant on complex interventions, typically performed in a critical care environment, the 'Sepsis Six' bundle was promoted as a more deliverable tool outside of the critical care settings¹⁵. Although high-profile cases and systematic campaign from advocacy groups helped to increase awareness of the condition in the last decade, there is very little data available on the progress and change of sepsis care outside the critical care environment in the UK^{15,16}. While the use of sepsis screening tools and the delivery of the 'Sepsis Six' bundle is now a key performance indicator in many institutions, external scrutiny of such initiatives is lacking^{17,18}. The aim of our study was to examine the changes in care processes and outcomes over a four-year period, by utilising our yearly All Wales point-prevalence study on sepsis. #### Methods **Study design and participants.** We performed a secondary analysis on the patient populations recruited into four annual multi-centre 24-h point-prevalence studies conducted on the third Wednesday of October from 2016 to 2019. The study was conducted accordance with relevant guidelines and regulations including the Declaration of Helsinki. The Defining Sepsis on the Wards project was prospectively registered with an international trial registry (ISRCTN86502304). Patients were recruited from each of the 14 acute hospitals across Wales, all of which had 24-h consultant cover in the ED and non-selective intake. Participating hospitals were identified through local collaborators via the Welsh Intensive Care Society Audit and Research Group. We screened all patients presenting to the ED and on the general wards. At the start of the study days at 08:00, data collectors systematically screened every patient on the acute in-patient wards within 4 h, then continued screening for any potential new participants until 07:59 the next morning. In each hospitals dedicated data collectors were stationed in the ED during the 24 h periods. We approached all patients with NEWS \geq 3 in whom the treating clinical teams had a high degree of clinical suspicion of an infection (documented as such in the medical or nursing notes), and following the patients or their proxy, in cases of patients lacking capacity, gave written informed consent and were recruited to the study. Patients under 18 and those cared for in critical care or mental health units were excluded. Local investigators were identified and were supported by three national coordinators. Key study information was provided through e-mails, face-to-face training and online video tutorials, which included the protocol, answers to key questions and description of the electronic case report form (eCRF). The details of the digital data collection platform developed for this study have been published previously¹⁹. Medical students working in pairs to ensure data validity and appropriate clinical knowledge, acted as data collectors, using tablets for electronic data collection and transfer. The tablets contained all supporting information needed for the study, including national formulary. Data collectors were supported by continuous online web-chat, which made the senior clinicians and the medical student national coordinators available throughout the study period. We referred patients to the clinical teams if the medical student data collectors felt they needed urgent medical attention due to their condition, in line with the requirements of the ethics approval. To facilitate linkage to national databases for the collection of follow-up data, we collected patient-identifiable data and entered it on to the secure data collection tool¹⁹. Further description of the methodology and performance of this platform is outlined in previous publications^{16,18–23}. We collected data from medical and nursing records on pre-admission patient characteristics, co-morbidities, physiological and laboratory values, Dalhousie clinical frailty score, and management actions such as the completion of the 'Sepsis Six' bundle and involvement of critical care outreach. In 2016, we conducted follow-up data collection for our primary outcome of all-cause mortality at 30 days from enrolment. In subsequent years (2017–2019) we conducted follow-up at 30 and 90 days. Policy content: During the study period all of the participating hospitals were actively engaged in the Rapid Response to Acute Illness Learning Set (RRAILS) programme led by 1000 Lives Improvement. In 2013, all hospitals in Wales implemented the use
of NEWS, with a score of six or above set to trigger the escalation of patients to senior decision makers or for consideration of referral to critical care outreach. RRAILS promoted the use of standardised sepsis screening tool across the hospital since 2008 (see Supplementary Figure 1). In 2018 the Welsh Government introduced a quality improvement performance indicator for the completion of 'Sepsis Six' in all acute hospitals based on the RRAILS tool. **Statistical analysis.** Categorical variables are described as proportions and are compared using Chi square test. Continuous variables are described as median and interquartile range (IQR) and compared using Mann–Whitney U test. We plotted Kaplan–Meier survival curves and compared time-to-event data using log-rank test- Figure 1. Study flow diagram and eventual study sample. ED; emergency department. ing. The starting point for the survival analysis was the data collection day. We estimated the respective hazard ratios (HRs) for the primary outcome within 30 days with a Cox proportional hazards model after adjustment for measured confounders. The model fit was assessed by the $-2 \log likelihood$ statistics and Chi-square test. To increase sample size and to enable the inclusion of patients from all four study years, the primary analysis was performed on 30-day follow up results only. However, we also performed a subgroup analysis using the 90-day survival data using the results from the 2017 to 2019 studies. A two-tailed p-value < 0.05 was considered statistically significant. All statistical tests were calculated using SPSS 25.0 (SPSS Inc., Chicago, IL). Data visualisation was performed in R (Version 1.2.1335) with packages: ggplot2 (v3.3.3), dplyr (v1.0.5), UpSetR (v1.4.0), ComplexHeatmap (v2.7.8.1000) and sunburstR (v2.1.5), utilising repositories from Github (hms-dbmi/UpSetR, jokergoo/ComplexHeatmap and timelyportfolio/sunburstR) 24,25 . **Ethical approval and consent to participate.** Ethical approval was granted by the South Wales Regional Ethics Committee (16/WA/0071, 15/04/2016) and patients or legal representatives gave written informed consent. # Results **Patient characteristics.** Over the four annual 24-h point-prevalence study periods, we screened a total of 26,947 patients, of whom 1651 met inclusion criteria and were subsequently recruited (Fig. 1). Patient demographics and clinical characteristics for each year of study are shown in Table 1. The median age (IQR [range]) of participants was 73 years (60–82 [18–103]) and more females 852 (51.6%) than males 799 (48.4%) were recruited. The median (IQR) frailty score was 5 (3–6). Age, gender, and frailty of participants did not vary between years (Table 1). **Sepsis management.** Overall, 289 (18.2%) patients were screened for sepsis using the 'All Wales sepsis screening tool'. The 'Sepsis Six' bundle was completed on 223 (14.0%) occasions. There were no significant trends in completion rates of the screening tools between 2016 and 2019, nor in the proportion of patients seen by critical care outreach (Table 2). The completion of overall, as well as individual elements of the 'Sepsis Six' bundle over time is further presented in Fig. 2. When examined individual bundle elements, lactate measurement and obtaining blood cultures improved over time; however all elements were completed well below 70% of occasions (Fig. 2). We found no differences between organisations in completing 'Sepsis Six' bundles (as displayed in Supplementary Figure 2). Regardless of the number of bundle elements completed, we did not find any difference in the mortality across the years (Supplementary Figure 3). No discernible trends or patterns were identified when we examined the completion of individual and combined bundle elements (Fig. 3 and further interactive visualisation in Supplementary Figure 4 plus summary of most frequent combinations shown in Supplementary Figure 5) or when this was plotted against the patients' NEWS across the study period (demonstrated in Supplementary Figure 6). | | Year | | | | | | |--|------------------------|------------------------|--------------------|--------------------|------------------------|---------| | | 2016 (n = 380) | 2017 (n=459) | 2018 (n=413) | 2019 (n=399) | All years (n = 1651) | P value | | Patient demograph | ics | ' | • | • | • | | | Age: median years | 74 (61–83
[18–100]) | 73 (62–84
[18–103]) | 73 (59–81 [19–99]) | 73 (60–81 [19–99]) | 73 (60–82
[18–103]) | 0.41 | | Sex: male | 180 (47.4%) | 231 (50.3%) | 213 (51.6%) | 175 (43.9%) | 799 (48.4%) | 0.12 | | Survival to 30 days | 380 (79.5%) | 372 (81.0%) | 343 (83.1%) | 332 (83.2%) | 1349 (81.7%) | 0.38 | | Mean survival in
30-day follow-up
(days) | 25.5 (24.5–26.4) | 26.6 (25.8–27.3) | 26.8 (26.0–27.6) | 26.9 (26.1–27.6–) | 26.5 (26.1–26.9) | 0.39 | | Clinical characteris | tics | | | | | | | COPD | 112 (30.9%) | 118 (26.2%) | 117 (30.1%) | 135 (34.8%) | 482 (30.3%) | 0.06 | | Diabetes | 75 (20.7%) | 98 (21.8%) | 89 (22.9%) | 71 (18.3%) | 333 (20.9%) | 0.44 | | Drugs of abuse | 5 (1.4%) | 8 (1.8%) | 11 (2.8%) | 7 (1.8%) | 31 (1.9%) | 0.51 | | Heart failure | 45 (12.4%) | 49 (10.9%) | 50 (12.9%) | 39 (10.1%) | 183 (11.5%) | 0.58 | | Hypertension | 107 (29.5%) | 165 (36.7%) | 145 (37.3%) | 140 (36.1%) | 557 (35.0%) | 0.09 | | Ischemic heart
disease | 63 (17.4%) | 82 (18.2%) | 65 (16.7%) | 67 (17.3%) | 277 (17.4%) | 0.95 | | Liver disease | 11 (3.0%) | 13 (2.9%) | 19 (4.9%) | 16 (4.1%) | 59 (3.7%) | 0.39 | | Neuromuscular | 13 (3.6%) | 16 (3.6%) | 11 (2.8%) | 12 (3.1%) | 52 (3.3%) | 0.92 | | Recent chemo-
therapy | 14 (3.9%) | 21 (4.7%) | 15 (3.9%) | 24 (6.2%) | 74 (4.7%) | 0.37 | | Frailty score:
median* | 5 (3-6) | 5 (3-6) | 4 (3-6) | 5 (3-6) | 5 (3-6) | 0.26 | | DNA-CPR | 90 (24.1%) | 123 (27.5%) | 92 (24.5%) | 109 (27.9%) | 414 (26.1%) | 0.49 | | NEWS≥6 | 115 (30.3%) | 130 (28.3%) | 120 (29.1%) | 121 (30.3%) | 486 (29.4%) | 0.90 | **Table 1.** Demographics, clinical characteristics and survival of patients in each year of study. Values are median (IQR [range]), number (proportion) or mean (95%CI). *Frailty score range was from 1 ("very fit") to 9 ("terminally ill") in all years. Data was missing for frailty score for a total of 64 patients; 7 in 2016, 12 in 2017, 37 in 2018 and 8 in 2019. COPD, Chronic Obstructive Pulmonary Disease, DNA-CPR, Do Not Attempt Cardiopulmonary Resuscitation order, NEWS, National Early Warning Score, IQR, interquartile range, 95%CI, 95% confidence interval. | | Year | | | | | | |---|--------------|--------------|--------------|--------------|----------------------|---------| | | 2016 (n=373) | 2017 (n=446) | 2018 (n=380) | 2019 (n=391) | All years (n = 1590) | P value | | Completed 'Sepsis Six' bundle | 44 (11.8%) | 63 (14.1%) | 58 (15.3%) | 58 (14.8%) | 223 (14.0%) | 0.53 | | Completed All Wales screening tool | 59 (15.8%) | 100 (22.4%) | 62 (16.5%) | 68 (17.4%) | 289 (18.2%) | 0.06 | | Number of patients seen by critical care outreach | 33 (8.8%) | 56 (12.6%) | 32 (8.6%) | 49 (12.5%) | 170 (10.7%) | 0.11 | **Table 2.** Screening and management of patients in each year of study. Values are number (proportion). Data was missing for; Completed All Wales Screening tool for 4 patients in 2018; Data was also missing for number of patients seen by critical care outreach for 6 patients in 2018. Blood cultures were obtained from 632 (46.0%) patients, of which 89 (14.1%) were positive for growth. Sputum sampling had a substantially higher positivity rate (35.9%). Other microbiology samples were infrequently collected (Table 3). Antimicrobials were administered to 743 (64.3%) patients. Piperacillin-tazobactam, followed by co-amoxiclav and clarithromycin were the commonly used antibiotics used over the four-year period and are illustrated in Supplementary Figure 7. One hundred and seventy (10.7%) patients were seen by critical care outreach; the 'Sepsis Six' bundle was completed significantly more often in this group (54/170, 32.0%) than for patients who were not reviewed by critical care outreach (168/1385, 11.6%; p < 0.0001). However, when plotted as a patient pathway these effects became less pronounced (illustrated in the river-plot in Supplementary Figure 8). In planned sensitivity analysis we found that the percentage number of patients with NEWS 6 or above (overall n = 486, 29.4%) did not change significantly over the study period (Table 1). In this group, more patients had a ceiling of care (such as ward level care only or not for intubation decision) and also DNA-CPR orders in place (19.7% vs 9.5%, p < 0.0001 and 37.8% vs 21.2%, p < 0.0001, respectively) compared to the less acutely unwell population. The completion of the 'Sepsis Six' bundle was significantly higher for patients with NEWS 6 or above **Figure 2.** 'Sepsis Six' bundle completion rates during the study period. Data is presented for overall (dark blue line) and individual bundle elements: O_2 administration (blue line), IV fluids (orange line), antimicrobials (grey line), blood cultures (yellow line), lactate (purple line), urine output measurement (green line). **Figure 3.** 'Sepsis Six' bundle element completion rates. A sunburst plot illustrating the frequency of completion of each component of the Sepsis Six bundle for the total events from 2016 to 2019 (n = 1588, with missing values removed). The coloured areas denote the Sepsis Six component has been completed, the grey areas denote where a component has not been completed. Working from the center, the frequency of each combination of Sepsis Six bundle components is illustrated. Plot created using R software (Version 1.2.1335), utilising packages ggplot (v 3.3.3) and sunburstR (v2.1.5)^{24,25}. IV: intravenous. | Specimen | Collected (n=1651) | Positive culture | |----------|--------------------|------------------| | Blood | 632 (46.0%) | 89 (14.1%) | |
Sputum | 170 (13.9%) | 61 (35.9%) | | Urine | 455 (33.4%) | 86 (18.9%) | | Wound | 112 (8.2%) | 54 (48.2%) | | CSF | 8 (0.6%) | 0 (0%) | Table 3. Sepsis management—culture collection. CSF Cerebrospinal fluid. **Figure 4.** Survival difference of patients with sepsis presenting to emergency department or general wards in fourteen Welsh hospitals in the years; 2016 (blue line), 2017 (red line), 2018 (green line) and 2019 (orange line), p = 0.39. (20.9% vs 11.1%, p < 0.0001) but unchanged over the study period, as was the completion rate for individual bundle elements (shown in Supplementary Figure 9). **Survival analysis.** Overall, 1349 of 1651 patients (81.7%) survived to 30 days with a mean survival time of 26.5 days (95% CI 26.1–26.9). We found no difference in patient survival at 30 days between each year of study (Table 1 and Fig. 4). We observed significantly higher mortality in patients with NEWS 6 or above (23.5% vs 16.1%, p < 0.0001). Overall 90-day survival for years 2017 - 2019 was 74.7% (949/1271). There was no difference in patient survival at 90 days between each year (see Kaplan–Meier curve in Supplementary Figure 10). **Risk factors of mortality.** On multivariate regression analysis, we identified older age, heart failure, recent chemotherapy, higher frailty score and do not attempt cardiopulmonary resuscitation (DNA-CPR) orders as significantly associated with increased mortality in patients with sepsis (Table 4). #### Discussion We identified that sepsis management in Wales (according to sepsis screening tool application and 'Sepsis Six' bundle compliance) has not altered over the four-year study period and that mortality remain largely unchanged. We found the demographic of the study population remained the same for each year, consisting of predominately frail and elderly patients with significant comorbidities. Approximately a third of the patients had a high NEWS and this group had higher likelihood of care limitations and DNA-CPR orders in place. Over the study period, there was no change in the short or medium-term mortality in the cohort, with approximately three out of four patients alive at 90 days. Our data opposes beliefs expressed that within the last decade the implementation of resuscitation bundles has led to better recognition of sepsis, in turn increasing the reported incidence of sepsis and reducing its apparent mortality^{6,26,27}. Our observations are supported by recent analysis of studies identifying sepsis using direct clinical indicators of infection and organ dysfunction, suggesting that over the last decade the incidence and mortality of sepsis has in fact remained stable^{28,29}. Our findings that older age and higher frailty score are both associated with increased risk of mortality from sepsis, within an elderly population with high comorbidity burden, emphasise the threat of sepsis to patients | Demographics Age 1.04 (1.031.05) <0.0001 Male 1.30 (0.96-1.74) 0.09 Co-morbidities COPD 0.95 (0.70-1.30) 0.77 Diabetes 0.81 (0.55-1.18) 0.26 Drugs of abuse 0.46 (0.06-3.37) 0.45 HF 1.50 (1.03-2.20) 0.04 HTN 1.08 (0.80-1.46) 0.61 IHD 0.87 (0.60-1.27) 0.48 Liver disease 1.07 (0.49-2.32) 0.86 Neuromuscular 1.33 (0.61-2.89) 0.47 Recent chemotherapy 3.12 (1.86-5.21) <0.0001 Frailty score 1.17 (1.05-1.30) <0.01 DNA-CPR 1.47 (1.03-2.09) 0.03 NEWS ≥ 6 0.84 (0.59-1.20) 0.34 Management Complete sepsis six bundle 0.67 (0.42-1.08) 0.10 All Wales screening tool 0.86 (0.58-1.29) 0.48 | | | | |--|--------------------------------|------------------------|----------| | Age $1.04 (1.031.05)$ < 0.0001 Male $1.30 (0.96-1.74)$ 0.09 Co-morbidities COPD $0.95 (0.70-1.30)$ 0.77 Diabetes $0.81 (0.55-1.18)$ 0.26 Drugs of abuse $0.46 (0.06-3.37)$ 0.45 HF $1.50 (1.03-2.20)$ 0.04 HTN $1.08 (0.80-1.46)$ 0.61 IHD $0.87 (0.60-1.27)$ 0.48 Liver disease $1.07 (0.49-2.32)$ 0.86 Neuromuscular $1.33 (0.61-2.89)$ 0.47 Recent chemotherapy $3.12 (1.86-5.21)$ < 0.0001 Frailty score $1.17 (1.05-1.30)$ < 0.01 DNA-CPR $1.47 (1.03-2.09)$ 0.03 NEWS ≥ 6 $0.84 (0.59-1.20)$ 0.34 Management Complete sepsis six bundle $0.67 (0.42-1.08)$ 0.10 All Wales screening tool $0.86 (0.58-1.29)$ 0.48 | Variables | Hazards ratio (95% CI) | P value | | Male $1.30 (0.96-1.74)$ 0.09 Co-morbidities COPD $0.95 (0.70-1.30)$ 0.77 Diabetes $0.81 (0.55-1.18)$ 0.26 Drugs of abuse $0.46 (0.06-3.37)$ 0.45 HF $1.50 (1.03-2.20)$ 0.04 HTN $1.08 (0.80-1.46)$ 0.61 IHD $0.87 (0.60-1.27)$ 0.48 Liver disease $1.07 (0.49-2.32)$ 0.86 Neuromuscular $1.33 (0.61-2.89)$ 0.47 Recent chemotherapy $3.12 (1.86-5.21)$ <0.0001 Frailty score $1.17 (1.05-1.30)$ <0.01 DNA-CPR $1.47 (1.03-2.09)$ 0.03 NEWS ≥ 6 $0.84 (0.59-1.20)$ 0.34 Management Complete sepsis six bundle $0.67 (0.42-1.08)$ 0.10 All Wales screening tool $0.86 (0.58-1.29)$ 0.48 | Demographics | | | | Co-morbidities COPD 0.95 (0.70-1.30) 0.77 Diabetes 0.81 (0.55-1.18) 0.26 Drugs of abuse 0.46 (0.06-3.37) 0.45 HF 1.50 (1.03-2.20) 0.04 HTN 1.08 (0.80-1.46) 0.61 IHD 0.87 (0.60-1.27) 0.48 Liver disease 1.07 (0.49-2.32) 0.86 Neuromuscular 1.33 (0.61-2.89) 0.47 Recent chemotherapy 3.12 (1.86-5.21) <0.0001 | Age | 1.04 (1.031.05) | < 0.0001 | | COPD $0.95 (0.70-1.30)$ 0.77 Diabetes $0.81 (0.55-1.18)$ 0.26 Drugs of abuse $0.46 (0.06-3.37)$ 0.45 HF $1.50 (1.03-2.20)$ 0.04 HTN $1.08 (0.80-1.46)$ 0.61 IHD $0.87 (0.60-1.27)$ 0.48 Liver disease $1.07 (0.49-2.32)$ 0.86 Neuromuscular $1.33 (0.61-2.89)$ 0.47 Recent chemotherapy $3.12 (1.86-5.21)$ <0.0001 Frailty score $1.17 (1.05-1.30)$ <0.01 DNA-CPR $1.47 (1.03-2.09)$ 0.03 NEWS ≥ 6 $0.84 (0.59-1.20)$ 0.34 Management Complete sepsis six bundle $0.67 (0.42-1.08)$ 0.10 All Wales screening tool $0.86 (0.58-1.29)$ 0.48 | Male | 1.30 (0.96-1.74) | 0.09 | | Diabetes $0.81 (0.55-1.18)$ 0.26 Drugs of abuse $0.46 (0.06-3.37)$ 0.45 HF $1.50 (1.03-2.20)$ 0.04 HTN $1.08 (0.80-1.46)$ 0.61 IHD $0.87 (0.60-1.27)$ 0.48 Liver disease $1.07 (0.49-2.32)$ 0.86 Neuromuscular $1.33 (0.61-2.89)$ 0.47 Recent chemotherapy $3.12 (1.86-5.21)$ < 0.0001 Frailty score $1.17 (1.05-1.30)$ < 0.01 DNA-CPR $1.47 (1.03-2.09)$ 0.03 NEWS ≥ 6 $0.84 (0.59-1.20)$ 0.34 Management Complete sepsis six bundle $0.67 (0.42-1.08)$ 0.10 All Wales screening tool $0.86 (0.58-1.29)$ 0.48 | Co-morbidities | | | | Drugs of abuse 0.46 (0.06-3.37) 0.45 HF 1.50 (1.03-2.20) 0.04 HTN 1.08 (0.80-1.46) 0.61 IHD 0.87 (0.60-1.27) 0.48 Liver disease 1.07 (0.49-2.32) 0.86 Neuromuscular 1.33 (0.61-2.89) 0.47 Recent chemotherapy 3.12 (1.86-5.21) <0.0001 | COPD | 0.95 (0.70-1.30) | 0.77 | | HF 1.50 (1.03–2.20) 0.04 HTN 1.08 (0.80–1.46) 0.61 IHD 0.87 (0.60–1.27) 0.48 Liver disease 1.07 (0.49–2.32) 0.86 Neuromuscular 1.33 (0.61–2.89) 0.47 Recent chemotherapy 3.12 (1.86–5.21) <0.0001 Frailty score 1.17 (1.05–1.30) <0.01 DNA-CPR 1.47 (1.03–2.09) 0.03 NEWS≥6 0.84 (0.59–1.20) 0.34 Management Complete sepsis six bundle 0.67 (0.42–1.08) 0.10 All Wales screening tool 0.86 (0.58–1.29) 0.48 | Diabetes | 0.81 (0.55-1.18) | 0.26 | | HTN 1.08 (0.80–1.46) 0.61 IHD 0.87 (0.60–1.27) 0.48 Liver disease 1.07 (0.49–2.32) 0.86 Neuromuscular 1.33 (0.61–2.89) 0.47 Recent chemotherapy 3.12 (1.86–5.21) <0.0001 Frailty score 1.17 (1.05–1.30) <0.01 DNA-CPR 1.47 (1.03–2.09) 0.03 NEWS≥6 0.84 (0.59–1.20) 0.34 Management Complete sepsis six bundle 0.67 (0.42–1.08) 0.10 All Wales screening tool 0.86 (0.58–1.29) 0.48 | Drugs of abuse | 0.46 (0.06-3.37) | 0.45 | | IHD 0.87 (0.60-1.27) 0.48 Liver disease 1.07 (0.49-2.32) 0.86 Neuromuscular 1.33 (0.61-2.89) 0.47 Recent chemotherapy 3.12 (1.86-5.21) <0.0001 | HF | 1.50 (1.03-2.20) | 0.04 | | Liver disease 1.07 (0.49–2.32) 0.86 Neuromuscular 1.33 (0.61–2.89) 0.47 Recent chemotherapy 3.12 (1.86–5.21) <0.0001 Frailty score 1.17 (1.05–1.30) <0.01 DNA-CPR 1.47 (1.03–2.09) 0.03 NEWS≥6 0.84 (0.59–1.20) 0.34 Management Complete sepsis six bundle 0.67 (0.42–1.08) 0.10 All Wales screening tool 0.86 (0.58–1.29) 0.48 | HTN | 1.08 (0.80-1.46) | 0.61 | | Neuromuscular $1.33 (0.61-2.89)$ 0.47 Recent chemotherapy $3.12 (1.86-5.21)$ <0.0001 Frailty score $1.17 (1.05-1.30)$ <0.01 DNA-CPR $1.47 (1.03-2.09)$ 0.03 NEWS ≥ 6 $0.84 (0.59-1.20)$ 0.34 Management Complete sepsis six bundle $0.67 (0.42-1.08)$ 0.10 All Wales screening tool $0.86 (0.58-1.29)$ 0.48 | IHD | 0.87 (0.60-1.27) | 0.48 | | Recent chemotherapy $3.12 (1.86-5.21)$ < 0.0001 | Liver disease | 1.07 (0.49-2.32) | 0.86 | | Frailty score $1.17 (1.05-1.30)$ < 0.01 DNA-CPR $1.47 (1.03-2.09)$ 0.03 NEWS ≥ 6 $0.84 (0.59-1.20)$ 0.34 Management Complete sepsis six bundle $0.67 (0.42-1.08)$ 0.10 All Wales screening tool $0.86 (0.58-1.29)$ 0.48 | Neuromuscular | 1.33 (0.61-2.89) | 0.47 | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | Recent chemotherapy | 3.12 (1.86-5.21) | < 0.0001 | | NEWS≥6 0.84 (0.59–1.20) 0.34 Management Complete sepsis six bundle 0.67 (0.42–1.08) 0.10 All Wales screening tool 0.86 (0.58–1.29) 0.48 | Frailty score | 1.17 (1.05-1.30) | <
0.01 | | Management Complete sepsis six bundle 0.67 (0.42–1.08) 0.10 All Wales screening tool 0.86 (0.58–1.29) 0.48 | DNA-CPR | 1.47 (1.03-2.09) | 0.03 | | Complete sepsis six bundle 0.67 (0.42–1.08) 0.10 All Wales screening tool 0.86 (0.58–1.29) 0.48 | NEWS≥6 | 0.84 (0.59-1.20) | 0.34 | | All Wales screening tool 0.86 (0.58–1.29) 0.48 | Management | | | | | Complete sepsis six bundle | 0.67 (0.42-1.08) | 0.10 | | Seen by critical care outreach 113 (0.72-1.77) 0.60 | All Wales screening tool | 0.86 (0.58-1.29) | 0.48 | | 0.00 0, critical care outreach 1.13 (0.72-1.77) | Seen by critical care outreach | 1.13 (0.72-1.77) | 0.60 | **Table 4.** Multivariate Cox regression analysis of the risk factors for mortality in sepsis patients. Values are Hazards Ratio (95%CI). COPD chronic obstructive pulmonary disease, HF heart failure, HTN hypertension, IHD ischemic heart disease, DNA-CPR do not attempt cardiopulmonary resuscitation order. NEWS National Early Warning Score. throughout our hospitals^{3,30–32}. The observations that heart failure and previous chemotherapy are associated with higher mortality from sepsis, are not new and are supported by results from large international cohorts^{11,33,34}. 'Sepsis Six' bundle completion remained low with a mean of 14.0% over four years. The lack of improvement in completion of bundles probably underlines the significant problem of sepsis recognition outside of the ICU³⁵. Our results support previously published UK and international data and highlight a significant concern in the real-world operationalising of response, which show significantly lower compliance in comparison to the sepsis performance measure (SEP-1) initiative or the resuscitation bundle promoted by the SCC^{13,36}. Alarmingly, only one in five patients received the full bundle in a group with higher risk of deterioration, i.e. NEWS 6 or above, whilst only one out of ten patients received the full bundle in the lower acuity group, with no change over the four years. However, we found that patients who were reviewed by critical care outreach were more often treated with the full 'Sepsis Six' bundle and had antibiotics administered. This result is in line with previous experiences, where introduction of a dedicated team has improved compliance with the bundle³⁷. Whilst our study did not find any association between critical care outreach involvement and mortality, it is possible that illness severity is a confounding factor here. It's important to note that critical care outreach provision was variable across Wales during the study period³⁸. Not every organisation had these services available and none of the hospitals had 24/7 critical care outreach on site. Furthermore, the existing critical care outreach services were nurse-led and delivered and at the time of the study, they did not have appropriate privileges for drug prescription and in some cases ordering tests either. Taking this into account, the associated three-fold increase in the 'Sepsis Six' bundle completion is remarkable. Our results point towards system failure to respond to sepsis as a medical emergency and highlight the need for policy change in the Welsh NHS in response to sepsis. Despite the introduction of the quality improvement target for 'Sepsis Six' bundle completion in 2017/2018 by the Welsh Government, we have seen little change across the study years¹⁷. This quality improvement target was not accompanied by financial incentives or any additional funding. Importantly, there is no publicly available report about the baseline measured by this methodology and any potential improvement attained since 2017/2018 in the Welsh NHS organisations. The implementation of care bundles have been shown to have significant institutional barriers, which may not be overcome by traditional plan-do-study-act quality improvement cycles^{39,40}. Importantly, neither the 'Sepsis Six' bundle, nor the SEP-1 bundle has been tested in a robust randomised controlled trial (RCT) and their perceived effectiveness has been derived from observational before and after studies with high risk of bias⁴¹. We believe, based on the individual bundle element compliance figures, that our data may show the presence of clinical equipoise for an RCT to test whether a bundle approach indeed improves outcomes compared to the current apparent standard care of administering supplemental oxygen and antibiotics to the majority of the patients with NEWS above 6. RECOVERY and REMAP-CAP have demonstrated the potential efficiency and effectiveness of adaptive platform trials^{42–44}, and the recently funded Sepsis Trials in Critical Care (SEPTIC) platform (NIHR 17/136/02) illustrates such an approach in sepsis management. Adaptive platform trials create opportunities for 'learning health care systems' which promote efficient knowledge generation and transfer, use simple and purposeful data systems with transparent quality metrics, and integrate these into clinical, academic and commissioning structures^{45–47}. Considering the significant evidence gap in the ward based sepsis care demonstrated in our study, we propose that a similar platform trial is necessary to delineate which timely, ward-based interventions can reduce mortality in patients with sepsis at the highest risk of adverse outcomes^{46,48}. There are certain limitations to our study. Firstly, the dataset was designed to enable a sufficiently comprehensive list of clinical and laboratory parameters while being small enough to maintain data reliability. Data collection was performed by medical students at different stages of training, introducing potential bias. To counter this, robust online and in-person training was cascaded, and we ensured that medical student hospital leads in subsequent years had participated as data collectors 16,20,21. We also maintained the core clinical leadership of the group throughout the study. Secondly, we have only collected longer-term outcome data and cause of death on a subset of patients and our long-term follow-up data is yet to be linked with the Welsh Secure Anonymous Information Linkage (SAIL) databank^{31,49}. The true human cost of sepsis in terms of re-hospitalisation and patient reported outcomes cannot be estimated from our results. Thirdly, although one of the largest in-depth sepsis studies in the UK, the sample-size is relatively small. However, we could not see any differences in sepsis incidence or outcomes based on geographical area, hospital status or size and we ensured that all acute hospitals in Wales participated in each year of the study 16,20,21. Lastly, the point-prevalence design might have led to a systematic underestimate of compliance with 'Sepsis Six' completion; however, despite being mandated in the NHS Wales Delivery Framework in 2017¹⁷, there is no publicly available data generated by Welsh Health Boards to provide a comparison on longer-term longitudinal changes of this quality improvement index. Moreover, engagement of participating hospitals with our point-prevalence study has remained high and our results have been consistent across the study period. ### **Conclusions** In summary, our data suggests that despite efforts to increase sepsis awareness within the NHS, there is poor compliance with the sepsis care bundles and there has been no change in outcomes over the study period. Our results highlight the ongoing need for clinical trials to determine which time-sensitive ward-based interventions are most likely to reduce mortality in patients with highest risk of death and which should be adopted by learning healthcare systems. # Data availability The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request. Received: 31 March 2021; Accepted: 22 July 2021 Published online: 10 August 2021 #### References - 1. Reinhart, K. et al. Recognizing sepsis as a global health priority—A WHO resolution. N. Engl. J. Med. 377, 414-417 (2017). - 2. Fleischmann, C. et al. Assessment of global incidence and mortality of hospital-treated sepsis. Current estimates and limitations. Am. J. Respir. Crit. Care Med. 193, 259–272 (2016). - 3. Buchman, T. G. et al. Sepsis among medicare beneficiaries: 1. The burdens of sepsis, 2012–2018. Crit. Care Med. 48, 276–288 (2020). - 4. Rudd, K. E. et al. Global, regional, and national sepsis incidence and mortality, 1990–2017: Analysis for the Global Burden of Disease Study. Lancet 395, 200–211 (2020). - 5. Buchman, T. G. *et al.* Sepsis among medicare beneficiaries: 3. The methods, models, and forecasts of sepsis, 2012–2018. *Crit. Care Med.* 48, 302–318 (2020). - 6. Seymour, C. W. et al. Time to treatment and mortality during mandated emergency care for sepsis. N. Engl. J. Med. 376, 2235–2244 (2017). - Bone, R. C. et al. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The ACCP/ SCCM Consensus Conference Committee. American College of Chest Physicians/Society of Critical Care Medicine. Chest 101, 1644–1655 (1992). - 8. Singer, M. et al. The third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA 315, 801-810 (2016). - 9. Mearelli, F. et al. Sepsis outside intensive care unit: The other side of the coin. Infection 43, 1-11 (2014). - Esteban, A. et al. Sepsis incidence and outcome: Contrasting the intensive care unit with the hospital ward. Crit. Care Med. 35, 1284–1289 (2007). - 11. Buchman, T. G. et al. Sepsis Among medicare beneficiaries: 2. The trajectories of sepsis, 2012–2018. Crit. Care Med. 48, 289–301 (2020) - Dellinger, R. P. et al. Surviving sepsis campaign: International guidelines for management of severe sepsis and septic shock, 2012. Intensive Care Med. 39, 165–228 (2013). - 13. Baghdadi, J. D. *et al.* Association of a care bundle for early sepsis management with mortality among patients with hospital-onset or community-onset sepsis. *JAMA Intern. Med.* **180**, 707–716
(2020). - Rhodes, A. et al. The surviving sepsis campaign bundles and outcome: Results from the International Multicentre Prevalence Study on Sepsis (the IMPreSS study). Intensive Care Med. 41, 1620–1628 (2015). - 15. Daniels, R., Nutbeam, T., McNamara, G. & Galvin, C. The sepsis six and the severe sepsis resuscitation bundle: A prospective observational cohort study. *Emerg. Med. J.* 28, 507–512 (2011). - Szakmany, T. et al. Defining sepsis on the wards: Results of a multi-centre point-prevalence study comparing two sepsis definitions. Anaesthesia 73, 195–204 (2018). - NHSWalesDeliveryFramework2017_18.pdf [Internet]. [cited 2021 Mar 7]. Available from: https://ruralhealthandcare.wales/wp-content/uploads/2017/07/NHSWalesDeliveryFramework2017_18.pdf. - 18. Frankling, C. et al. A Snapshot of compliance with the sepsis six care bundle in two acute hospitals in the West Midlands, UK. *Indian J. Crit. Care Med.* 23, 310–315 (2019). - Sharif, B. et al. Developing a digital data collection platform to measure the prevalence of sepsis in Wales. J. Am. Med. Inform. Assoc. 23, 1185–1189 (2016). - 20. Kopczynska, M. et al. Red-flag sepsis and SOFA identifies different patient population at risk of sepsis-related deaths on the general ward. Medicine (Baltimore) 97, e13238 (2018). - 21. Kopczynska, M. et al. Real world patterns of antimicrobial use and microbiology investigations in patients with sepsis outside the critical care unit: Secondary analysis of three nation-wide point prevalence studies. J. Clin. Med. 8, 1337 (2019). - Wong, A. V. et al. Insertion rates and complications of central lines in the UK population: A pilot study. J. Intensive Care Soc. 19, 19–25 (2018). - 23. Kopczynska, M. et al. Prevalence and outcomes of acute hypoxaemic respiratory failure in wales: The PANDORA-WALES study. J. Clin. Med. 9, 3521 (2020). - 24. R Core Team. R: A Language and Environment for Statistical Computing. R Foudnation for Statistical Computing, Vienna, Austria. 2019; available at: https://www.R-project.org. - Wickham H. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York. ISBN 978-3-319-24277-4 (2016). https://ggplot2.tidyverse.org. - Levy, M. M. et al. Outcomes of the surviving sepsis campaign in intensive care units in the USA and Europe: A prospective cohort study. Lancet Infect. Dis. 12, 919–924 (2012). - 27. Miller, R. R. et al. Multicenter implementation of a severe sepsis and septic shock treatment bundle. Am. J. Respir. Crit. Care Med. 188, 77–82 (2013). - 28. Rhee, C., Murphy, M. V., Li, L., Platt, R. & Klompas, M. Centers for disease control and prevention epicenters program. Comparison of trends in sepsis incidence and coding using administrative claims versus objective clinical data. *Clin. Infect. Dis.* **60**, 88–95 (2015) - 29. Rhee, C. et al. Incidence and trends of sepsis in US hospitals using clinical vs claims data, 2009-2014. JAMA 318, 1241 (2017). - Rhee, C. et al. Prevalence, underlying causes, and preventability of sepsis-associated mortality in us acute care hospitals. JAMA Netw. Open 2, e187571 (2019). - 31. Kopczynska, M. et al. Sepsis-related deaths in the at-risk population on the wards: Attributable fraction of mortality in a large point-prevalence study. BMC Res. Notes 11, 720 (2018). - 32. Szakmany, T. et al. Frailty assessed by administrative tools and mortality in patients with pneumonia admitted to the hospital and ICU in Wales. Sci. Rep. 11, 3407 (2021). - 33. Martin, G. S., Mannino, D. M. & Moss, M. The effect of age on the development and outcome of adult sepsis. *Crit. Care Med.* 34, 15–21 (2006). - 34. Knoop, S. T., Skrede, S., Langeland, N. & Flaatten, H. K. Epidemiology and impact on all-cause mortality of sepsis in Norwegian hospitals: A national retrospective study. *PLoS ONE* **12**, e0187990-e188013 (2017). - 35. Yealy, D. M. et al. Recognizing and managing sepsis: What needs to be done?. BMC Med. 13, 98 (2015). - 36. Deis, A. S., Whiles, B. B., Brown, A. R., Satterwhite, C. L. & Simpson, S. Q. Three-hour bundle compliance and outcomes in patients with undiagnosed severe sepsis. *Chest* **153**, 39–45 (2018). - 37. Burke, J., Wood, S., Hermon, A. & Szakmany, T. Improving outcome of sepsis on the ward: Introducing the "Sepsis Six" bundle. *Nurs. Crit. Care* 24, 33–39 (2019). - 38. Task and FInish Group on Critical Care Final Report 2019 [cited 10 July 2021] available from https://gov.wales/task-and-finish-group-critical-care-final-report. - 39. Green, S. A., Bell, D. & Mays, N. Identification of factors that support successful implementation of care bundles in the acute medical setting: A qualitative study. *BMC Health Serv. Res.* 17, 120 (2017). - 40. Smith, D. J. & Aitken, L. M. Use of a single parameter track and trigger chart and the perceived barriers and facilitators to escalation of a deteriorating ward patient: A mixed methods study. J. Clin. Nurs. 25, 175–185 (2016). - 41. Wang, J. et al. Driving blind: Instituting SEP-1 without high quality outcomes data. J. Thorac. Dis. https://doi.org/10.21037/jtd. 2019.12.100 (2020). - Angus, D. C. et al. Adaptive platform trials: Definition, design, conduct and reporting considerations. Nat. Rev. Drug Discov. 18, 797–807 (2019). - Huang, D. T. et al. Implementation of the Randomized Embedded Multifactorial Adaptive Platform for COVID-19 (REMAP-COVID) trial in a US health system—Lessons learned and recommendations. Trials 22, 100 (2021). - 44. Wilkinson E. RECOVERY trial: the UK covid-19 study resetting expectations for clinical trials. BMJ. 2020;369:m1626. - 45. RECOVERY Collaborative Group. Dexamethasone in hospitalized patients with covid-19. N. Engl. J. Med. 384, 693-704 (2021). - 46. Yusuf, S., Collins, R. & Peto, R. Why do we need some large, simple randomized trials? Stat. Med. 3, 409-420 (1984). - The REMAP-CAP Investigators. Interleukin-6 receptor antagonists in critically Ill patients with covid-19. N. Engl. J. Med. https://doi.org/10.1056/NEJMoa2100433 (2021). - 48. Morain, S. R., Kass, N. E. & Grossmann, C. What allows a health care system to become a learning health care system: Results from interviews with health system leaders. *Learn. Health Syst.* 1, e10015 (2017). - 49. Lyons, R. A. et al. The SAIL databank: Linking multiple health and social care datasets. BMC Med. Inform. Decis. Mak. 9, 3 (2009). #### **Acknowledgements** The Authors would like to acknowledge the help of the Critical Care Outreach teams of the participating hospitals. The full list of collaborators is provided under the Welsh Digital Data Collection Platform Collaborators. #### **Author contributions** Conceptualization, M.K., B.S., T.Sz.; formal analysis, M.K., T.Sz.; investigation, M.K., H.U., B.S., R.J.P., T.C., D.D., M.S., D.P., S.T., A.P., L.O., S.W., I.R., J.N.C.H., B.P., E.W., F.A., H.M.P.C., J.B., J.H., J.H., J.N., L.W., L.H.T., M.W., P.M., T.R., U.H.A., V.M., Z.A., Z.N., Z.X.Tan, T.Sz.; methodology, M.K., H.U., B.S., T.Sz.; project administration, M.K., H.U., B.S., T.Sz.; resources, T.Sz.; supervision, T.Sz.; visualization, M.K., L.J.P.T.; writing – original draft, M.K., H.U., T.Sz.; writing – review & editing, all authors. All authors read and approved the final manuscript. #### Funding This work was supported by the Fiona Elizabeth Agnew Trust and the Welsh Intensive Care Society, and they had no access to the data and no role in study design, conduct, analysis or drafting this report. #### Competing interests The authors declare no competing interests. ### Additional information **Supplementary Information** The online version contains supplementary material available at https://doi.org/10.1038/s41598-021-95648-6. Correspondence and requests for materials should be addressed to T.S. Reprints and permissions information is available at www.nature.com/reprints. **Publisher's note** Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. © The Author(s) 2021 # The Welsh Digital Data Collection Platform collaborators Maria Hobrok¹⁵, Moriah Thomas¹⁵, Annie Burden¹⁵, Nadia Youssef¹⁵, Katherine Carnegie¹⁵, Helena Colling-Sylvester¹⁵, Natasha Logier¹⁵, Meshari Alsaeed¹⁵, Hannah Williams¹⁵, Arfa Ayob¹⁵, Nor Farzana¹⁵, Sweta Parida¹⁵, David Lawson¹⁵, Emily Evans¹⁵, Laura Jane Davis¹⁵, Billie Atkins¹⁵, Llywela Wyn Davies¹⁵, Lee Sanders-Crook¹⁵, Steffan Treharne Seal¹⁵, Alice Cains¹⁵, Katy Crisp³, Sarah Venning³, Ella Sykes³, Stephanie Narine³, Georgia Parry³, Emily Angela Dillon3, Qi Zhuang Siah3, Ting Yang3, Tyler Jones3, Parvathi Thara3, Emma Wood3, Georgina St Pier³, Richard Betts³, Kyriaki Mitsaki³, Mari Tachweed Pierce³, Sioned Davies³, Yakeen Hafouda³, Erin Ifan³, Grace Lacey³, Francesca Mitchell³, John Lynch³, Michal Mazur³, Lezia D'Souza³, Bethan Ponting³, Terrance Lau³, Ruairidh Kerrigan³, Lucy Morgan³, Roshan Vindla3, Claudia Zeicu3, Becky James3, Amirah Amin Ariff3, Wan Binti Wan Azzlan3, Charlotte Collins³, Elizabeth Wickens³, Alisa Norbee³, Aliya Zulkefli³, Thomas Haddock³, Megan Thomas³, Matthew Lee³, Miriam Cynan³, Nik-Syakirah Nik Azis³, Imogen Hay³, Catherine Russell³, Margriet Vreugdenhil³, Mustafa Abdimalik³,
Joseph Davies³, Peter Havalda⁸, Angharad Evans⁸, Kate Robertson⁸, Grace Gitau⁸, Mei-yin Gruber⁸, Thomas Telford⁸, Anas Qarout8, Naomi Nandra8, Hannah Garrard8, James Cutler8, Rhiannon Tammy Jones8, Amy Prideaux8, Timothy Spence8, Sarah Hardie8, Harriet Seymour8, Matthew Warlow8, Shanali Thanthilla⁸, Thomas Downs⁸, Nina Foley⁸, Chad McKeown⁸, Akshita Dandawate⁸, Holleh Shayan-Arani⁸, Ellie Taylor⁸, Oliver Kyriakides⁸, Rachel Price⁸, Ffion Haf Mackey⁸, Emily Haines⁸, Samuel Chun⁸, Nilarnti Vignarajah⁸, Tessa Chamberlain⁸, Dongying Zhao⁸, Nayanatara Nadeesha T. Tantirige⁸, Naomi Dennehey⁸, Georgina Evans⁸, John Watts⁸, Ceri Battle¹⁶, Ryan Jones¹⁶, Selina Jones¹⁶, Charlotte James¹⁶, James O'Hanlon¹⁶, Isabella Bridges¹⁶, Bethany Hughes¹⁶, Leo Polchar¹⁶, Elise Bisson¹⁶, Charlotte Mykura¹⁶, Lara Money¹⁶, Joshua McKenna¹⁶, Sarah Kinsman⁴, Demiana Hanna¹⁶, Emily Baker¹⁶, Harrison Sprague¹⁶, Liam Sharma¹⁶, Tom Pontin¹⁶, Emma Shore¹⁶, Tamara Hughes¹⁶, Sam Nightingale¹⁶, Philby Baby¹⁶, Matthew Shield¹⁶, Alice Cross¹⁶, Jenna Boss¹⁶, Olivia Ross¹⁶, George Ashton¹⁶, Kimaya Pandit¹⁶, Daniel Davies¹⁶, Cameron Garbutt¹⁶, Charlotte Johnston¹⁶, Marcus Cox¹⁶, Chantal Roberts¹⁶, Alessia Waller¹⁶, Laura Heekin¹⁶, Kathy Wang¹⁶, Rhianna Church¹⁶, Shrina Patel¹⁶, Marianne Broderick¹⁶, Hannah Whillis¹⁶, Daniel Craig Hathaway¹⁶, Emel Yildirim¹⁶, Caitlin Atkins¹⁶, Elin Walters¹⁶, Carys Durie¹⁶, Robert James Hamilton Sinnerton¹⁶, Benjamin Tanner¹⁶, Julimar Abreu¹⁶, Kiran Bashir¹⁶, Vincent Hamlyn¹⁷, Amelia Tee¹⁷, Zoe Ann Hinchcliffe¹⁷, Rita Otto¹⁷, Georgie Covell¹⁷, Megan Stone¹⁷, Katherine Godfray¹⁷, Rhidian Caradine¹⁷, Hannah Beetham¹⁷, Adanna Nicole Anomneze-Collins¹⁷, Jeanette Tan¹⁷, Yasmina Abdelrazik¹⁷, Azizah Khan¹⁷, Nabihah Malik¹⁷, Aidan Clack¹⁷, Tyler Thomas¹⁷, Adam George Mounce¹⁷, Anoopama Ramjeeawon¹⁷, Ndaba Mtunzi¹⁷, Duncan Soppitt17, Jack Wellington17, Robert Buchanan Ross17, Danielle Lis17, Rebecca Parsonson17, Jude Joseph-Gubral¹⁷, Ajitha Arunthavarajah¹⁷, Aaron Harris¹⁷, Henry Atkinson¹⁷, Jessica Webster¹⁷, Tim Burnett¹⁷, Josephine Raffan Gowar¹⁷, Sam DeFriend¹⁷, Jasmine Whitaker¹⁷, Elizabeth Beasant¹⁷, Luis Macchiavello⁴, Danyal Usman⁴, Abdullah Mahdi⁴, Tiffany Ye Tze Shan⁴, Nick Savill⁴, Jennifer Gee⁴, Lizzie Hodges⁴, Ami Desai⁴, Hannah Rossiter⁴, Matthew Taylor⁴, Kevin Pinto⁴, Eleanor Hartley⁴, Oscar Emanuel⁴, Rhiannon Long⁴, Megan Selby⁴, Alexandra Urquhart⁴, Matthew Ashman⁴, Elizabeth Adcock⁴, Amelia Dickinson⁴, Rebecca Jordache⁴, Rym Chafai El Alaoui⁴, Sophie Stovold⁴, Sam Vickery⁴, Nia Jones⁴, Alice O'Donnell⁴, Monty Cuthbert⁴, Osa Eghosa⁴, Muhammad Karim⁴, Lowri Williams⁴, Louise Tucker4, Tom Downs4, Rebecca Walford4, Annabelle Hook4, Adam Mounce4, Emily Eccles4, Ross Edwards⁴, Kirtika Ramesh⁴, Charlie Hall⁴, Maria Lazarou⁴, Rhidian Jones¹⁸, Katy McGillian¹⁸, Hari Singh Bhachoo¹⁸, Zoe Teh¹⁸, Vithusha Inpahas¹⁸, Ruchi Desai¹⁸, Yusuf Cheema¹⁸, Andrew Hughes¹⁸, Olivia Cranage¹⁸, Felicity Bee¹⁸, Khalid Osman¹⁸, Humza Khan¹⁸, Jennifer Pitt¹⁸, Charlotte Pickwick¹⁸, Jorge Carter¹⁸, Fiona Andrew¹⁸, Naseera Seedat¹⁸, Roshni Patel¹⁸, Alicia Boam¹⁸, Jessica Randall¹⁸, Beth Bowyer¹⁸, Josh Edwards¹⁸, Natasha Jones¹⁸, Emma Walker¹⁸, Ailsa MacNaught¹⁸, Swagath Balachandran¹⁸, Abbie Shipley¹⁸, Jennifer Louise Kent¹⁸, Bethany Davies¹⁸, Emma Withers¹⁸, Krishna Parmar¹⁸, Lucie Webber¹⁸, Angelica Sharma¹⁸, Amy Handley¹⁸, Alexandra Gordon¹⁸, Lucy Allen¹⁸, Rebecca Paddock¹⁸, Harriet Penney¹⁸, Lopa Banerjee¹⁸, Chloe Victoria Vanderpump¹⁸, Kate Harding¹⁸, John Burke¹⁹, Orsolya Minik¹⁹, Nia Jarrett¹⁹, Ellie Rowe¹⁹, Adanna Anomneze-Collins¹⁹, Harry Griffiths¹⁹, Sarah Pengelly¹⁹, Ffion Bennett¹⁹, Ahmed Bilal¹⁹, Abdullah El-badawey¹⁹, Bethan Ellis¹⁹, Luke Cook¹⁹, Harriet Elizabeth Valentine Maine¹⁹, Kiri Armstronq19, Hannah Beresford19, Timia Raven-Greqq19, Tom Liddell-Lowe19, Caitlin Onq19, Harriet Reed¹⁹, Frederika Alice St John¹⁹, Weronika Julia Kozuch¹⁹, Irukshi Anuprabha Silva¹⁹, Sin Ting Natalie Cheng¹⁹, Umme-Laila Ali¹⁹, Noreena Syed¹⁹, Luke Murphy¹⁹, Thomas Grother¹⁹, Harry Smith¹⁹, Rachel Watson¹⁹, Omar Marei¹⁹, Emma Kirby¹⁹, Anna Gilfedder¹⁹, Lydia Maw¹⁹, Sarah O'Connor¹⁹, Charlotte Maden¹⁹, Helena Jones¹⁹, Hazel Preston¹⁹, Nur Amirah Binti Maliki¹⁹, Mark Zimmerman¹⁹, Jessica Webber¹⁹, Llewelyn Jones¹⁹, Rebecca Phillips¹⁹, Lauren McCarthy¹⁹, Emily Hubbard¹⁹, Leo Duffy¹⁹, Abigail Guerrier Sadler¹⁹, Owen Richards²⁰, Charles King²⁰, Charlotte Killick²⁰, Yusuf Chema²⁰, Kavita Shergill²⁰, Yi Huen Lillian Lau²⁰, Hannah Mustafa Ali²⁰, Lucas Wilcock²⁰, Molly Timlin²⁰, Ayeesha Rela²⁰, Daniel Smith²⁰, Sarah Ireland²⁰, Jennifer Evans²⁰, Nayanatara Poobalan²⁰, Jessica Pearce²⁰, Thivya V. Vadiveloo²⁰, Zoe Black²⁰, Daniel Elis Samuel²⁰, Humaira Hussain²⁰, Rebecca Creamer²⁰, Maham Zafar²⁰, Ahmad Almazeedi²⁰, Hannah Brunnock²⁰, Mekha Jeyanthi²⁰, Poorya Moghbel²⁰, Katie Kwan²⁰, Isobel Sutherland²⁰, Frank Davis²⁰, Abigail Rogers²⁰, Clare Chantrill²⁰, Amal Robertson²⁰, Jonathan Foulkes²⁰, Rahana Khanam²⁰, Jomcy John²⁰, Sarah Hannah Meehan²⁰, Huria Metezai²⁰, Hannah Dawson²⁰, Navrhinaa Vadivale²⁰, Camilla Lee²⁰, Amrit Dhadda²⁰, Sian Cleaver²⁰, Genna Logue²⁰, Joy Inns²⁰, Isabel Jones²⁰, Robyn Howcroft²⁰, Carys Gilbert²⁰, Matthew Bradley²⁰, Louise Pike²⁰, Rachel Keeling²⁰, Charldré Banks²⁰, Eleanor Cochrane²¹, James McFadyen²¹, Matthew Mo²¹, Emily Ireland²¹, Esme Brittain²¹, Ihssen Laid²¹, Charlotte Green²¹, Adriel Mcforrester²¹, Tu Xuong Michelle Ly²¹, Mariana Nalbanti²¹, Raven Joseph²¹, Jack Tagg²¹, Ayako Niina²¹, Tyler Joshua Jones²¹, Natalie Hoyle²¹, Patrick Benc²¹, Ellen Davies²¹, Meng-Chieh Wu²¹, David Fellows²¹, Eloise Baxendale²¹, Karishma Khan²¹, Andrew Forrester²¹, Oliver Moore²¹, Hse Juinn Lim²¹, Aimee Owen²¹, Faris Hussain²¹, Nima-banu Allybocus²¹, Maneha Sethi²¹, Harry Waring²¹, Adeel Khan²¹, Claire Smith²¹, Nicholas Doyle²¹, Mohammad Yahya Amjad²¹, Luke Galloway²¹, Paul Morgan⁷, Gemma Ellis⁷, Robert Lundin⁷, Haamed Al Hassan⁷, Bethan Markall⁷, Namratha Kaur⁷, Emmanuel Onyango⁷, Heather Beard⁷, Elliot Field⁷, Ellen Nelson-Rowe⁷, Lizzie Adcock⁷, Amelia Stoddart⁷, Frederika St John⁷, Mathoorika Sivananthan⁷, Rhys Jones⁷, Sung Yeon Kwak⁷, Lily Farakish⁷, Holly Rhys-Ellis⁷, Kate Moss⁷, Tessa David⁷, Talea Roberts⁷, Annie Quy⁷, Aniket Paranjape⁷, Felicity Bee⁷, Nutchanun Poolworaluk⁷, Mary Keast⁷, Si Liang Yao⁷, Dion Manning⁷, Isobel Irwin⁷, Emelia Boggon⁷, Ibrahim Alkurd⁷, Genevieve Lawerece⁷, Jade Brown⁷, Emily Murphy⁷, Evie Lambert⁷, Jeremy Guilford⁷, Mariam Almulaifi⁷, Sashiananthan Ganesananthan⁷, Berenice Cunningham-Walker⁷, Chloe Spooner⁷, Akanksha Kiran⁷, Nabeegh Nadeem⁷, Vidhi Unadkat⁷, Esme Sparey⁷, David Li⁷, Jessica Smith⁷, India Corrin⁷, Amit Kurani⁷, Paul McNulty⁷, Ceri Brown²², Wojciech Groblewski²², Szilvia Szoke²², Amelia Redman²², Esther McKeag²², Anastasia Donnir²², Gaautham Ravishangar²², Emanuela Howard²², Charlotte Salmon²², Sara Tanatova²², Jasmine Kew²², Megan Eilis Clark²², Ellen Hannay²², Olesya Godsafe²², Christina Houghton²², Francesca Lavric²², Rachel Mallinson²², Chris Littler¹⁰, Harsha Reddy¹⁰, Andrew Campbell¹⁰, Benedict Soo¹⁰, Rachel Evans¹⁰, Georgina Donowho¹⁰, Alexandra Cawthra¹⁰, Maddison Davies¹⁰, Matthew Lawrence Ashman¹⁰, Jamie Scriven¹⁰, James Vautrey¹⁰, Shannon Seet¹⁰, Imogen Britton¹⁰, Abigail Hodgson¹⁰, Emma Twohey¹⁰, Joseph Robbins¹⁰, Vanessa Yeo Yung Ling¹⁰, Kimiya Asjadi¹⁰, Carven Chin Yee Shean¹⁰, Zoe McCarroll¹⁰, Oritseweyimi Amatotsero¹⁰, Antonia Ashaye¹⁰, Josephine Acheampong¹⁰, Ayowade Adeleye¹⁰, Saber Ahmed¹⁰, Alexandra Chrysostomou¹⁰, Eshen Ang¹⁰, Niamh McSwiney¹⁰, Yin Yin Lim¹⁰, Zong Xuan Lee¹⁰, Svetlana Kulikouskaya¹⁰, Nur Zulkifili¹⁰, Sheryl Lim¹⁰, Lim Xin¹⁰, Adiya Urazbayeva¹⁰, Nur Haslina Ahmad Hanif¹⁰, Yau Ke Ying¹⁰, Alice Coleclough¹⁰, Eilis Higgins¹⁰, Naomi Spencer¹⁰, Tze Gee Ng¹⁰, Sam Booth¹⁰, Stephanie Wai Yee Ng¹⁰, Christian P. Subbe²³, Isabella Patterson²³, Wen Li Chia²³, Abdullah Mukit²³, Hei Yi Vivian Pak²³, Felicity Lock²³, Mariana Nalmpanti²³, Shôn Alun Thomas²³, Tanisha Burgher²³, Alfred Wei Zhen Yeo²³, Siwan Powell Jones²³, Charlie Miles²³, Millicent Perry²³, Holly Burton²³, Katharine Powell²³, Luthfun Nessa²³, Aalaa Fadlalla²³, Rhian Morgan²³, Elizabeth Hodges²³, Amelia Heal²³, Chloe Scott²³, Alice Tayler²³, Abduahad Taufik²³, James Cochrane²³, Sieh Yen Heng²³, Alex Cooper²³, Henrik Graf von der Pahlen²³, Isabella Talbot²³, Robin Gwyn Roberts²³, Jessica Sharma Smith²³, Aisling Sweeney²³, Cerian Roberts²³, Laura Bausor²³, Chania Lambirnudi²³, Daniah Thomas²³, Elen Wyn Puw²³, Ronan A. Lyons²⁴ & Judith E. Hall¹³ ¹⁵Bronglais General Hospital, Hywel Dda University Health Board, Aberystwth, UK. ¹⁶Morriston Hospityal, Swansea Bay University Health Board, Swansea, UK. ¹⁷Nevil Hall Hospital, Aneurin Bevan University Health Board, Abergavenny, UK. ¹⁸Princess of Wales Hospital, Cwm Taf Morgannwg University Health Board, Bridgend, UK. ¹⁹Royal Glamorgan Hospital, Cwm Taf Morgannwg University Health Board, Llantrisant, UK. ²⁰Royal Gwent Hospital, Aneurin Bevan University Health Board, Newport, UK. ²¹University Hospital Llandough, Cardiff and Vale University Health Board, Cardiff, UK. ²²Withybush General Hospital, Hywel Dda University Health Board, Haverfordwest, UK. ²³Ysbyty Gwynedd, Betsi Cadwaladr University Health Board, Bangor, UK. ²⁴Health Data Research UK, Swansea University, Swansea, UK.