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Throughout history, pollution has become a part of our daily life with the

improvement of life quality and the advancement of industry and heavy

industry. In recent years, the adverse effects of heavy metals, such as

cadmium (Cd), on human health have been widely discussed, particularly on

the immune system. Here, this review summarizes the available evidence on

how Cd exposure may affect health. By analyzing the general manifestations of

inflammation caused by Cd exposure, we find that the role of omega-3 (n-3)

polyunsaturated fatty acids (PUFAs) in vivo can counteract Cd-induced harm.

Additionally, we elucidate the effects of n-3 PUFAs on the immune system, and

analyze their prophylactic and therapeutic effects on Cd exposure. Overall, this

review highlights the role of n-3 PUFAs in the pathological changes induced by

Cd exposure. Although n-3 PUFAs remain to be verified whether they can be

used as therapeutic agents, as rehabilitation therapy, supplementation with n-3

PUFAs is reliable and effective.
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Introduction

Heavy metals exist everywhere. It is dangerous to consume excessive amounts of any

metal, including those normally found in the environment, such as zinc, copper, and

iron, as well as discolored metals like lead, arsenic, mercury, and cadmium (1). Among

them, cadmium (Cd), upon entering the body, could cause huge damage to a series of

important organs, as well as the nervous system, reproductive system, immune system,

and other systems. Additionally, it has strong toxic effects on cells. Short-term exposure

to Cd can cause apoptosis and necrosis in cells, and the long-term exposure can induce

cancerous cells and lead to tumors. So far, only chelation therapy has proven to be

effective for Cd poisoning (2) (Table 1).
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In view of the fact that oxidative stress is one of the necessary

mechanisms of Cd-induced damage, the administration of some

antioxidants is expected to be a crucial therapeutic approach. In

rehabilitation therapy, omega-3 (n-3) polyunsaturated fatty

acids (PUFAs), which have been shown to respond to

oxidative stress in the body, are widely used as antioxidants

and anti-inflammatory agents. Besides, some existing studies

have pointed out n-3 PUFAs could be a possible treatment for

Cd exposure in the body (3–5), thus it is necessary to explain and

analyze their mechanisms for further advancement of

relevant research.
The protective function
of n-3 PUFAs

More than 15,000 studies have shown that n-3 PUFAs are

anti-inflammatory, regulating the immune system and showing

a wide range of beneficial benefits in mammals. Generally, fatty

acids (FAs) can be divided into short-chain, medium-chain,

long-chain, and very-long-chain FAs. According to the degree of

unsaturation on the carbon chain, they are also divided into

saturated FAs, monounsaturated FAs (containing one double

bond), and polyunsaturated FAs (containing multiple double

bonds) (6, 7). As nutrition has developed, studies have found

that FAs with double bonds in different positions have different

nutritional value. Thus, they are classified into n-3 PUFAs and

omega-6 (n-6) PUFAs according to the position of the last

double bond relative to the methyl terminal of the molecule.

Among them, n-3 PUFAs mainly include a-linolenic acid (ALA;

18:3 n-3), eicosapentaenoic acid (EPA; 20:5 n-3), and

docosahexaenoic acid (DHA; 22:6 n-3). In addition,

stearidonic acid (SDA, 18:4 n-3) and docosapentaenoic acid

(DPA, 22:5 n-3) are intermediates of n-3 PUFAs that have

attracted extensive attention. Among them, DPA is an

intermediate product between EPA and DHA, and SDA,
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derived from ALA, exists in the biosynthetic pathway of DPA

and DHA (Figure 1).
In vivo

EPA and DHA are two forms of n-3 PUFAs that are widely

distributed in mammals as essential FAs (8). In order to prolong

and transform, it is necessary for n-3 PUFAs to enter the

gastrointestinal tract and combine with chylomicrons before

being transferred into the liver as glycerol (9). The liver processes

ALA and EPA into docosapentaenoic acids (DPA, an n-3 fatty

acid) and DHA by desaturases and fatty acid chain elongases,

but they cannot be processed unlimitedly. Studies have shown

that platelet membranes are involved in regulating the

concentrations of DHA (10, 11). When DHA is saturated, they

even promote the reverse conversion of excess DHA to EPA and

DPA which are then bound to triglyceride in the form of very

low-density lipoprotein cholesterol and release it into the blood.

Subsequent studies have shown that the DHA content in the

platelet membrane may be responsible for mechanism of n-3

PUFAs (12). In mice, highly purified DHA could significantly

increase DHA, DPA, and EPA contents in the platelet

membrane, while highly purified EPA could only increase EPA

and DPA contents (13). This again proves that DHA

supplementation is effective in rehabilitation therapy or

treatment. In addition, n-6 PUFAs also affect the metabolism

of n-3 PUFAs (14–16), since liver is the main site of

desaturations and elongations of n-3 PUFAs and n-6 PUFAs.

Their metabolisms are based on the same enzymes, which makes

them competitive. There is evidence that higher concentration of

n-6 PUFAs diet could result in lower conversion rate of ALA,

and conversely, high concentrations of ALA could also reduce

conversion of n-6 PUFAs (17–19). In light of this, numerous

studies have revealed that the ratio of n-3/n-6 is closely related to

body health, which again highlights the importance of the ratio

of healthy dietary intake.
TABLE 1 Common cadmium exposure treatment options.

Treatment Method Apply Defect
Chelating agents

Ethylenediaminetetraacetic acid
(EDTA)

Significantly increases the elimination of cadmium in
urine

May increase Cd levels in the kidneys and may increase the risk of
renal insufficiency

Dimercaprol Used as an antidote for heavy metal poisoning Must be administered within the first 4 hours of intoxication and
increases risk of nephrotoxicity

Dithiocarbamates Increased urobiliary excretion of cadmium There is currently no complete treatment plan

Meso 2, 3-dimercaptosuccinic acid
(Succimer, DMSA)

Water-soluble analogs of dithiocarbamates Non-intracellular chelating agent, the effect is not obvious

Combination therapy The combination of DMSA and MiADMSA can have a
good therapeutic effect

Increased risk of nephrotoxicity

Plasma exchange Helps with heavy metal toxicity Not recommended for use in non-emergency situations

Hemodialysis Relieve kidney burden and protect kidney function Almost ineffective for cadmium elimination
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In vitro

In the immune system, n-3 PUFAs are found in almost all

known immune cells, among which the macrophages are the

most commonly mentioned. To date, the effects of n-3 PUFAs

on the production and secretion of cytokines and chemokines by

macrophages have extensively been investigated, as well as the

regulatory mechanisms behind them. As part of the innate

immune system, macrophages have the function of locating

pathogens. Studies have found that n-3 PUFAs can participate

in regulating the production and secretion of cytokines and

chemokines in macrophages, thus having the phagocytic ability

of macrophages (20). In addition, some studies have also pointed

out that n-3 PUFAs could change the activation state of

macrophages (21–23). In the course of research, n-3 PUFAs

are found to play an important role in neutrophils, which is

related to the n-3/n-6 competition. When n-3 is heavily involved

in the phospholipid composition of neutrophil membrane, n-6

PUFAs will be metabolized to other fatty acid derivatives with

anti-inflammatory properties, such as prostaglandins and

protectins (24–26). In addition to this, neutrophils rich in n-3

PUFAs are able to migrate better, which has also been validated

in vivo (27–29). Interestingly, as metabolites derived from n-3

PUFAs appear to inhibit the migration ability of neutrophils, we

speculate that this is the result of their metabolism. It is worth

mentioning that when oxidative stress occurs in the body, there

will be inflammatory infiltration of neutrophils, increase of

proteases secretion, and the production of a large number of

oxidative intermediates.
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Moreover, n-3 PUFAs also seem to be present in oxidative

stress. Studies have shown that supplementation of n-3 PUFAs

could increase production of reactive oxygen species (ROS) in

neutrophils (30–32). Although this performance appears to be age-

related, we are more interested to know whether this phenomenon

simply supplements the missing ROS or unrestricted production,

which will have a substantial impact on our subsequent utilization

of n-3 PUFAs. For the main lymphocytes in the immune system,

many studies have demonstrated the role of n-3 PUFAs in T cells

(Table 2) and B cells (Table 3), but many conclusions are not

unified because they have different subgroups/populations. Thus,

in this article, we only list the references without further analysis.

Also, some other cells related to the immune system are regulated

by n-3 PUFAs, such as eosinophils and basophils (56–59).

However, they will not be investigated here because current

research cannot form a complete system, instead we will discuss

the experimental methods on n-3 PUFAs. In the future, more

research will look at supplementation of EPA or DHA to observe

changes in the body, but at this point it is unknown whether single

or multiple PUFAs play a role. It may be necessary, therefore, to

improve the current commonly used experimental methods to be

supplemented alone or inhibited alone.
Clinical aspects

In what ways did n-3 PUFAs affect the harmful? There is

evidence that the n-3 PUFAs can inhibit the inflammation by

activating various genes and pathways including IL1, IL-2, IL-6,
FIGURE 1

Omega-3 PUFAs and their main sources. N-3 PUFAs mainly consist ALA, EPA, DHA and intermediate derivatives, among which only SDA and
DPA are listed in the table, but other derivatives, such as eicosatetraenoic acid (ETA), are not included, which means there is a lack of clarity
regarding these derivatives currently.
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IL-12, TNF- a, peroxisome proliferator-activated receptors

(PPARs), and so forth (60–64), through absorbing

supplemented n-3 PUFAs. Also, some studies have delved into

the pathway and found that n-3 PUFAs regulate these factors

through a number of master transcription factors, including

sterol regulatory element-binding protein (SREBP), PPAR,

nuclear factor-kappa B (NF-kB), and carbohydrate response

element-binding protein (ChREBP) (65–68) (Figure 2). In

addition, intermediates formed by oxidative synthesis of n-3

PUFAs are also important, and dietary n-3 PUFAs are stored in

the form of triacylglycerols and phospholipids. During the

resolution of acute inflammation, the organism promotes the

conversion of n-3 DHA into d-series resolvins and protectins/

neuroprotectins (69). In macrophages, DHA is also converted to

maresins (macrophage mediators in resolving inflammation) via

14-lipoxygenation (70). Moreover, these mediators are capable

of limiting neutrophil recruitment and potently stimulating

macrophage phagocytosis of apoptotic cells in a stereospecific

manner. Aside from that, neuronal transient receptor potential

vanilloid 1 (TRPV1) currents are also inhibited by them, which

regulates inflammation and chemotherapy-induced pain.

In conclusion, normally n-3 PUFAs have a regulatory effect

on immune cells of the innate and adaptive branches. Here, the

ability of n-3 PUFAs in controlling the inflammatory response
Frontiers in Immunology 04
and switching inflammation into a regressive state is

emphasized, which is the basis to combat inflammation caused

by Cd exposure. Additionally, many mechanisms have not been

fully elucidated, such as whether n-3 PUFAs play a role in

relation to cellular localization and metabolic inactivation

pathways. With the advent of new technologies such as

molecular imaging and lipidomics, it may not be too late to

reveal how these mechanisms work.
The possible harm of Cd exposure
to the body

Cd, a toxic metal, poses a health risk to both humans and

animals (Figure 3). In fact, Cd exposure occurs naturally in the

environment since Cd is a pollutant from agricultural and

industrial sources. In addition to inhalation by smoking and

pulmonary ingestion (71), studies have indicated that Cd can

also be ingested by food (72). Although only 5% of Cd in food is

absorbed into the human body through the gastrointestinal

tract, it is much lower than the absorption capacity of the lungs.

Ingestion through food, however, is the most significant route

of exposure for general non-occupational populations. In

addition, Cd can be ingested through skin contact (73).

Although this kind of penetration is not ideal, there is still

some risk.
Liver

After Cd enters the human body, it can cause damage to a

series of important organs such as liver, kidney, bone, brain

and lung, as well as nervous system, reproductive system,

immune system, and other systems, among which liver and

kidney are the most important target organs. It is reported that

the toxicity of Cd is obviously time-dependent and

concentration-dependent (74–77). The Cd-induced liver

injury is mainly due to the competitive replacement of Cd

with the metal prosthetic groups in the liver antioxidant
TABLE 3 Effects of n-3 PUFAs supplementation on B cells.

Type Role Reference Remark

The proportion of B cells Decreased numbers of naive B cells (46)

Decreased numbers of mature B cells (47)

The function of B cells Inhibit secretion of IL-6 (48)

Inhibit secretion of IL-10 (49)

Inhibit secretion of TNF-a (50)

Inhibit secretion of IFN-g (51)

Up-regulates the expression of activation markers (52) contradictory

Up-regulate the expression of IgM (53–55) contradictory
fro
TABLE 2 Effects of n-3 PUFAs supplementation on T cells.

Type Role Reference

General Effect Suppressive effect (33, 34)

CD4 Prevent differentiation (35, 36)

Inhibit secretion of IFN-g (37)

Inhibit secretion of IL-2 (38)

Inhibit secretion of IL-17 (39)

Reduce cell proliferation (40)

CD8 Suppressive effect (41, 42)

Inhibit secretion of TNF-a (43)

Inhibit secretion of IFN-g (44)

Inhibit secretion of IL-2 (45)

Reduce cell proliferation (44)
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enzymes, which inactivates the antioxidant enzymes and

reduces the scavenging ability of free radicals, thereby

causing cellular lipid peroxidation and oxidative stress (78,

79). In addition, the entry of Cd can also cause cells to secrete

pro-inflammatory factors and chemokines, resulting in
Frontiers in Immunology 05
apoptosis and pathological changes, and eventually the

formation of tumors. A study found that acute Cd poisoning

could bring about an increase in the level of a series of

proteases related to liver in the blood, which in turn results

in the incidence of non-alcoholic hepatitis and fatty liver (80).
FIGURE 3

Hazards from Cd exposure. Cd can enter the body through air, tobacco, seafood, grain, water, vegetable, and damage different organs.
FIGURE 2

The mechanism of action of n-3 in cells when subjected to external inflammatory stimuli. When cells encounter external inflammatory stimuli,
n-3 PUFAs will be activated. On the one hand, more extracellular n-3 PUFAs enter the cell by changing the fluidity of the cell membrane. On
the other hand, free intracellular n-3 PUFAs inhibit the expression of intracellular inflammatory factors by combing with other factors. Among
them, GPR120: free fatty acid receptor 4 (FFA4). In the figure, the red line indicates the inhibitory effect.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1023999
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Chen et al. 10.3389/fimmu.2022.1023999
Kidney

Low concentrations or chronic Cd poisoning mainly cause

kidney damage. In clinical manifestations, renal tubular

reabsorption dysfunction occurs in the early stage of Cd

poisoning, and low molecular weight proteins appear in the

urine (81–83). With the aggravation of Cd damage to the kidney,

macromolecular proteinuria would occur in the body. At the

same time, a large quantity of proximal convoluted tubule cells

undergo apoptosis, and the activities of Na/K-ATPase and other

proteins decrease significantly. In addition, the glomerulus and

distal convoluted tubules are found to be affected in different

degrees. It is worth noting that the damage caused by Cd to the

kidney tissue is extremely difficult to repair on account of

urinary physiology (84, 85). The Cd would travel to the

kidneys with the blood and filter through the glomeruli, and

then almost all of Cd would be reabsorbed by the proximal

convoluted tubule with only trace amounts of them could be

excreted. And Cd in excess of the treatment range will severely

damage the function of the glomerulus, bringing about a series of

health problems. Studies have pointed out that the kidneys will

undergo fibrosis and even necrosis if glomeruli fail to function

(86, 87).
Bone

In addition, patients in incident of Cd-contaminated water

source in Japan in the 1960s suffered from some pathological

injuries, including bone pain, susceptibility to fractures,

developmental deformities of long bones, osteoporosis,

osteomalacia, and so on (88). It is reported that these damages

are related to kidney disease with a large number of calcium ions

being excreted from urine, thus affecting the growth and

development of bones (89, 90). Aside from that, Cd can

directly damage bones by inhibiting the differentiation of

osteoblasts and promoting the formation and function of

osteoclasts, leading to disorder in the normal bone formation

and pathological damage of bones (91).
Other organs

In addition to liver, kidney and bones, exposure to Cd can

also cause serious damage to other organs. As a result of Cd’s

serious neurotoxicity, it can cause a series of neuropathy

throughout the body. A study found that the lesions are

mainly caused by embryonic transmission and respiratory

pathways (92–95). Similarly, in addition to contributing to

toxic effects on the peripheral nervous system, the absorbed

Cd also damages olfactory neurons, central nervous cells, and

oligodendrocytes through competitive replacement, as well as

generates a large number of free radicals after entering the brain,
Frontiers in Immunology 06
which can induce many diseases including headache, dizziness,

olfactory dysfunction, Parkinson-like symptoms, vasomotor

control impairment, and learning impairment. Notably, this

mode of transmission could bring more damage to babies

whose immune systems are not yet fully developed. Numerous

studies have shown that Cd damages the central nervous system

in infants at lower doses than in adults, which is also related to a

weaker blood-brain barrier in infants (96, 97).

In addition, people involved in the Cd industry frequently

suffer from respiratory and lung diseases, such as chronic

rhinitis, pharyngitis, pneumonia, pulmonary fibrosis, and

emphysema (98–100). As another target of Cd, the

gastrointestinal tract is also affected, and Cd exposure could

cause gastrointestinal cell apoptosis, intestinal tissue villi

damage, and changes in the structure of the intestinal

microbiome (101–103). In the cardiovascular aspect, contrary

to previous studies that did not attribute to Cd on this aspect,

recent studies have shown that Cd poisoning can cause vascular

inflammation, promote vascular arteriosclerosis, damage the

structural integrity of blood vessels, and diminish myocardial

contractility and cardiac conduction excitation (104–107). A

series of conditions can also occur, such as the decline in libido

and coronary blood flow. Although mechanism of Cd action has

not been fully elucidated, there is no doubt that it causes damage

to cardiovascular system.

Also, certain pathological changes, including cancer and

other chronic diseases, can be associated with Cd exposure

(108). Several studies examining Cd exposure suggest that Cd

is responsible for some malignancies, such as pancreatic cancer

(109), and both human and mouse models have indicated a link

between Cd and pancreatic cancer (110, 111). Another cancer

thought to be induced by Cd is kidney cancer (112), which is

associated with kidney damage as previously described, as Cd

can cause a wide range of pathologies in renal tissue from renal

insufficiency to renal cancer. In addition, despite several studies

suggesting that heavy metals are involved in the development of

breast cancer (113), more research is needed to prove whether

Cd is involved. According to studies, breast cancer tissues

accumulate large amount of Cd after Cd exposure, and DNA

methylation levels correlate positively with cadmium exposure

(114), whereas in a study on humans, Cd levels in diet and urine

do not appear to be correlated with breast cancer incidence and

mortality (115). Aside from that, research has determined that

Cd contributes to diabetes occurrence (116, 117). By acting on

islet b cells, up-regulation of inflammatory factors (such as TNF-

a,IL-1,IL-6) significantly increases the incidence of diabetes by

inducing intracellular lipid accumulation and affecting its insulin

secretion function.

As an immunotoxic inhibitor, Cd interacts with almost all

immune cells, impairing the immune system in a time- and

dose-dependent manner (Figure 4). In summary, its toxic effects

are achieved by competitive replacement of proteases (essentially

replacing essential metals in proteases), thereby inducing
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apoptosis or oxidative stress. So far, most studies on Cd exposure

have focused on exploring the effects of Cd ions on the body, but

few have examined its toxic mechanism and corresponding

potential detoxification mechanism. An urgent need is to

unravel the toxic effects and mechanisms of Cd in immune

cells and develop effective immunotherapies to mitigate its

toxic effects.
The role of n-3 PUFAs
in Cd exposure

As mentioned previously, it is well known that Cd poisoning

is extremely harmful to the body. Research on its treatment was

initiated as early as the 20th century, and a wide variety of

measures were adopted. As a result of in-depth research in

recent years, the exploration of a wide range of antidotes to Cd

poisoning has become a hot spot, including metal ion

supplements, microorganisms, antioxidants, and so on (118–

121). As new experimental advances continue to emerge,

although more and more studies have proven that these

methods can counteract Cd poisoning, problems such as

inability to use them in practice or causing side effects of

treatment inevitably arise. Therefore, n-3 PUFAs, a possible

natural product as a potential treatment for Cd poisoning, is

proposed here.

The earliest research on the interaction between n-3

PUFAs and Cd was conducted in 1997, when Howlett et al.
Frontiers in Immunology 07
explored the relationship between Cd and n-3 PUFAs in

Saccharomyces cerevisiae (122). Their results showed that the

cellular fatty acid unsaturation and plasma membrane would

increase significantly when Cd enters Saccharomyces

cerevisiae, especially DHA and EPA. In addition, compared

with cells enriched in n-3 PUFAs, cells with low levels of n-3

PUFAs shows a more pronounced decrease in their cell

viability. Interestingly, the study also found that potassium

efflux is much higher in cells enriched in n-3 PUFAs than in

cells with lower levels. Although the author failed to make a

reasonable analysis of this phenomenon, in light of recent

research, we believe that protective effects of Cd ions may be

responsible, and they also have a protective effect on the

cardiovascular system. Unfortunately, limited by species and

technology, the study did not address the doubt, but for sure,

the study demonstrated some kind of interaction between n-3

PUFAs and Cd. There were few studies exploring this

relationship after that. It was not until 2007 when another

related study mentioned this relationship again that

researchers began to look at its implications (123). The study

sheds light on the permeability of the gut through DHA

supplementation at different concentrations and finds a

significant increase in the accumulation of Cd in DHA-

supplemented cells compared with the normal human colon

carcinoma cell line. Further research found that Cd is absorbed

and processed through the paracellular pathway, which

reconfirms the previous conclusion that the role of n-3

PUFAs may be closely related to the Na-K-Ca ATP channel.
FIGURE 4

The mechanism of Cd exposure on cells. Cd exposure damages most of the immune cells in the immune system, including decreased vitality
and increased apoptosis rate. Oxidative stress in cells occurs mainly through damage to the endoplasmic reticulum and mitochondria.
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In vivo

Among all body organs, the brain is most susceptible

to oxidative stress. As previously mentioned, Cd induces

oxidative stress by enhancing ROS production and damages

mitochondria as a result of various factors. A more serious

concern is that elevated ROS levels can cause antioxidant

systems to malfunction and lead to neurodegenerative

diseases, including Alzheimer’s and Parkinson’s (124–127).

In the face of this damage, can n-3 PUFAs play a role?

According to many studies, Cd may entry the brain and

exerts its effects through the blood-brain barrier as an

enzyme protein that protects this barrier (128, 129). A study

showed that supplementation with n-3 PUFAs could increase

monoamine oxidase and acetylcholinesterase levels in the

body, and these indicators even return to near-normal levels

in Cd-exposed mice, demonstrating that n-3 PUFAs have the

potential to counteract Cd exposure (130). In addition, a study

showed that, by supplementing ALA in Cd poisoned mice, the

originally elevated ROS levels in the brain are alleviated, and n-

3 PUFAs are found to further reduce neuroinflammation and

neurodegeneration through regulated Nrf2/HO-1/JNK

signaling pathway (131). It should be added that another

study reported similar findings, albeit not for the

damage caused by Cd, specifically demonstrating that ALA

has an anti-apoptotic effect (132). Therefore, further studies

are necessary to gain a deeper understanding of the

mechanistic effects of ALA on Cd-induced oxidative stress

and neurodegeneration.

As for the hippocampus, a part of the limbic system and

located in the medial temporal lobe of the brain, has been shown

to play an important role in learning and memory (133, 134). A

study in rats showed that after Cd exposure, the number of

neurons near the hippocampus would significantly reduce with

the appearance of edema around the nerve, and training

memory would significantly diminish, and after DHA

supplementation, the memory function and hippocampal

structure of the rats are improved (135). Interestingly, the

study also found that the content of DHA decreases

significantly as Cd enters the brain, but does not make

quantitative tests to fully explain the whole process of this

phenomenon. We suppose that this phenomenon may be

explained by indirect involvement of n-3 PUFAs in pro-

oxidative, pro-inflammatory, and memory-disrupting effects.

In addition to this, several studies have been conducted on a

range of antioxidant enzymes with positive results, showing

significant decreases in the levels of SOD, CAT, and GST after

exposure to Cd (136, 137). However, after supplementation with

n-3 PUFAs, they all recover to varying degrees. Overall, based

on the available studies, it is conceivable to consider

supplementation of n-3 PUFAs as a possible medical adjunct

in the suppression of inflammatory brain injury caused by

Cd exposure.
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In the liver, different studies have reported the effects of Cd

exposure on oxidative stress and fatty acid composition, and the

results consistently show changes across different animals, with

the most important change in FAs composition being the

reduction in the percentage of DHA in the body. Although the

antioxidant system apparently responds to ROS generation

under Cd exposure, it appears that the body’s own antioxidant

capacity is insufficient to counteract cellular damage.

Supplementation of n-3 PUFAs has a positive effect on the

body’s antioxidant defense system, lipid peroxidation, and

oxidative damage. It is pivotal to emphasize here that a study

evaluating therapeutic concentrations showed that, n-3

supplementation could reduce liver tissue and cell damage

from Cd exposure only for Cd exposure below 1 mM, whereas

the antagonistic effect of supplementation with n-3 PUFAs is not

obvious after Cd exposure above 1 mM (138). Therefore,

although some studies have suggested that n-3 PUFAs can be

used as a primary treatment for fatty liver disease, n-3 PUFAs

may not be a primary treatment for liver disease caused by acute

Cd exposure. However, we suggest exploiting preventive and

rehabilitative therapeutic roles of n-3 PUFAs in the liver.

Existing studies have shown that n-3 PUFAs supplementation

can effectively resist oxidative damage caused by long-term

chronic Cd exposure and have anti-inflammatory and anti-

apoptotic effects (139–141). Studies have shown that

pretreatment with n-3 PUFAs in stressed mice can

significantly reduce subsequent stress-induced liver injury

(142). Therefore, supplementing n-3 PUFAs in daily life is a

good preventive measure. In addition, conventional drugs in the

treatment of liver disease may have adverse effects, and their

efficacy and safety are also questionable, while as natural

products, n-3 PUFAs can be safely used. At the moment, we

are predominantly concerned about the ratio and dosage, which

do not appear to have a unified answer. In addition, it would be

worthwhile to explore the possibility to gain a deeper

understanding of the specific mechanisms of n-3 PUFAs in

response to Cd exposure from genomic, proteomic, and

metabolomic analysis.

In terms of the reproductive system, identification of factors

that affect fertility has important clinical and public health

implications. Many studies have pointed out that Cd exposure

affects fertility (143–145), and FAs, as important substrates for

early reproductive events, have received much attention. Human

and animal studies have shown that ingestion of n-3 PUFAs

through diet or dietary supplements can be effective in reducing

the risk of early preterm birth, and n-3 PUFAs supplementation

during pregnancy could also reduce the risk of allergic disease in

childhood (146, 147). At the same time, supplementation of n-3

PUFAs in men also has a protective effect on their reproductive

systems (148–150). In response to damage from Cd exposure, n-

3 PUFAs are found to have positive effects on hormones that

control reproduction (151–153). Serum testosterone and LH

concentrations significantly go up after adding n-3 PUFAs to the
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diet of male model animals, thus we reckon the mechanisms

behind these effects are related to the antioxidant properties of n-

3 PUFAs. Therefore, it is reasonable to believe that n-3 PUFAs

have ameliorating effects on Cd exposure-induced reproductive

impairment. Indeed, significant reductions in sperm count,

sperm motility, and the percentage of sperm with normal

morphology were studied in Cd exposure-induced mice, and

supplementation with n-3 PUFAs could largely alleviate the

effects of Cd on semen quality (154). Researchers in another

study thought that this improvement might be mediated by the

antioxidant properties of n-3 PUFAs (155). As observed in all

results, Cd exposure in both sexes decreased n-3 PUFAs levels in

the gonads. Unfortunately, few studies have specifically

investigated the effects of n-3 PUFAs on Cd exposure in the

female reproductive system (156), which we think may be related

to different metabolic demands during the reproductive period.

However, a study pointed out that the concentration of n-3

PUFAs in the maternal placenta is significantly lower than the

normal tissue level, which may explain why Cd can be

transmitted through the placenta (157). In summary, although

the reproductive system is not the primary target of Cd toxicity,

n-3 PUFAs do counteract it to a certain extent, but the use of it as

primary therapy requires further research, including specific

action mechanisms in the male and female reproductive system.

The process of fat metabolism is greatly affected by Cd

exposure which greatly increases the incidence of diabetes. Do

n-3 PUFAs play a role here? This is a long-standing

controversial issue. Some studies have indicated that

supplementation with n-3 PUFAs increases fasting blood

glucose, but changing the intake of n-3 PUFAs does not alter

diabetes prevalence or have a therapeutic effect (158, 159). In

addition, n-3 PUFAs do not appear to provide any protection to

the renal function of diabetic patients. The use of n-3 PUFAs

supplements is therefore unsupported by many studies.

However, there is convincing evidence that n-3 PUFAs can

lower triglyceride levels in vivo (160). A long-term study suggests

that n-3 PUFAs supplementation can reduce triglyceride

concentrations in people at risk for diabetes (158), confirming

their preventive role in Cd exposure-mediated diabetes.

In cancer, n-3 PUFAs have been confirmed to exert

anticancer effects by regulating the expression levels of

transcription factors such as NF-kB, p53, and cyclooxygenase-

2 (COX2) (161). Among the Cd exposure, the role of n-3 PUFAs

in colorectal cancer is of great concern, as Cd toxicity is strongly

associated with colorectal cancer. Studies have shown that Cd

exposure leads to abnormal COX-2 expression in HT-29 cells

(162), which is consistent with the signaling pathway of n-3

PUFAs against carcinogenesis. In both human and animal

models, n-3 PUFAs have also been shown to effectively reduce

the development of colorectal cancer (163).
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In vitro

More research has focused on in vitro. The first is the

composition of the plasma membrane. Different studies have

found changes in plasma membrane permeability and the

increasing sensitivity to Cd when cells are supplemented with

n-3 PUFAs. A study noted that with the addition of Cd, cell

membrane order would significantly dwindle, especially the

contents of n-3 PUFAs as well as levels of antioxidant

enzymes (164). We consider that this can be counteracted by

n-3 PUFAs, since glutathione peroxidase activity can block the

production of antioxidant enzymes during normal cellular

metabolism, and glutathione has been found to be the main

cellular target or sequestration site of Cd. Therefore, the

decreased levels of antioxidant enzymes in cells after Cd

exposure partly reflect the depletion of glutathione in cells.

Combined with existing research, it is evident that n-3 PUFAs

can participate in the regulation of glutathione levels in cells,

thereby repairing oxidative damage. Cellular sensitivity is similar

to plasma membrane permeability, with one study suggesting

that fish daily supplemented with n-3 PUFAs are more sensitive

to Cd exposure (165). After Cd exposure, the ROS in

macrophages, granulocytes, and lymphocytes would change

significantly, which apparently comes from the effects of n-3

PUFAs on the immune system. Studies show that a DHA-rich

diet enhances the expression of the immunoglobulin M (IgM)

gene, while an EPA-rich diet induces transcriptional down-

regulation of genes involved in the Toll/NF-kB pathway,

which in turn suppresses pro-inflammatory cytokines and

induces detrimental damage to cells (166–168). By

supplementing n-3 PUFAs to respond more efficiently to

pathogen infections, the body benefits in the context of Cd

contamination. In conclusion, we re-emphasize that the best

response to long-term chronic Cd exposure might be daily

supplementation with n-3 PUFAs.
Discussion and outlook

It is always a priority for scientists to find ways to reduce the

toxic effects of Cd, many of which are determined by its physical

and chemical properties. Typically, Cd expresses pro-

inflammatory activity, causing primary and secondary tissue

damage by infiltrating innate immune cells (neutrophils,

monocytes, and macrophages). The best defenses against Cd

toxicity may be to inhibit ROS production, reduce oxidative

stress levels, maintain redox balance, and inhibit abnormal

immune signaling activation. Here we found that n-3 PUFAs

are perfect for these tasks (Figure 5). It is worth noted that the

relationship between n-3 PUFAs and Cd exposure is still
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complex from the current research. If bodyself has low levels of

n-3 PUFAs, it would likely to fall into a vicious cycle of Cd

exposure, producing less n-3 PUFAs but consuming more n-3

PUFAs. On the other hand, at present, most studies agree it is

unreasonable to supplement n-3 PUFAs in related inflammatory

diseases, and mainly because of the inability to adjust the

internal ratio of n-3 PUFAs, the external ratio of n-3/n-6, and

the possible lipid peroxidation. Recently, more research has

begun to focus on this problem and provide a solution, along

with the administration of other nutrients and drugs that may

have oxidative or antioxidant effects. It is unfortunate that this

solution is not yet perfect, and reducing the impact of these

variables would possibly be one of the future research directions.

However, n-3 PUFAs have been shown to play a significant role

in rehabilitation therapy. Among the different research findings,

we recommend the selection of supplemental doses up to 4.4 g/d.

Current research shows, n-3 PUFAs control the expression

of a great variety of genes through different transcriptional

factors, such as SREBP (169), PPARs (170), ChREBP (171),

and NF-kB (172), which mainly regulate target gene

transcription that encodes proteins involved in lipid and

carbohydrate metabolism, thermogenesis, and inflammatory

processes. However, it is important to point out that further

studies are needed to elucidate these roles and to better

understand the beneficial role of n-3 PUFAs in the mechanism

of Cd exposure-induced disease, and to probe into their function

as protective nutrients, aiming to prevent or treat the

development of Cd exposure-related diseases.
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FIGURE 5

What n-3 PUFAs can do when Cd exposure harms bodies. In this figure, the red line represents the damage to various organs of the body
caused by Cd exposure. The solid blue line represents the organ that has been studied so far with n-3 PUFAs that can resist damage from Cd
exposure. The blue dashed line indicates that n-3 PUFAs are known to have a positive effect on the organ’s immune system.
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