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ABSTRACT

A generic DNA microarray design applicable to
any species would greatly benefit comparative
genomics. We have addressed the feasibility of
such a design by leveraging the great feature
densities and relatively unbiased nature of genomic
tiling microarrays. Specifically, we first divided each
Homo sapiens Refseq-derived gene’s spliced
nucleotide sequence into all of its possible contig-
uous 25nt subsequences. For each of these
25nt subsequences, we searched a recent human
transcript mapping experiment’s probe design for
the 25nt probe sequence having the fewest mis-
matches with the subsequence, but that did not
match the subsequence exactly. Signal intensities
measured with each gene’s nearest-neighbor fea-
tures were subsequently averaged to predict their
gene expression levels in each of the experiment’s
thirty-three hybridizations. We examined the fidelity
of this approach in terms of both sensitivity and
specificity for detecting actively transcribed genes,
for transcriptional consistency between exons of
the same gene, and for reproducibility between
tiling array designs. Taken together, our results
provide proof-of-principle for probing nucleic acid
targets with off-target, nearest-neighbor features.

INTRODUCTION

Today’s DNA microarray devices contain upwards of five
million features, each containing a unique probe sequence.
Technological advances have continually pushed this
feature density higher, ultimately allowing the construc-
tion of genomic tiling microarrays wherein large stretches
of genomic sequence are represented by probes targeting
it at regular intervals (1). These intervals are typically
100 nt or finer and allow the unbiased monitoring of

genomic functions such as DNA transcription (2,3) and
replication (4), among many other uses.
From a technological standpoint the tiling microarray’s

greatest achievement is in moving the DNA microarray
technology from an application-specific (gene expression
or genotyping) one that relies heavily on genomic
annotation to a more general purpose tool. For instance,
a single tiling microarray design can be used for transcript
mapping, transcription factor localization and DNA
replication timing, as evidenced by the recent ENCODE
consortium’s series of genomic experiments (5).
In this respect, it may be argued that the goals of DNA

microarray technology are coming full circle—a general
application tool for detecting nucleic acids. With this aim,
an initial vision for the DNA microarray was a matrix
of oligonucleotide containing features, each containing
unique n-mer probes (6). This matrix could, in theory,
be used to query a biological sample for the presence of
any nucleic acid sequence. A hindrance to the n-mer
construction is that such an array requires synthesizing 4n

features. Naturally, larger values of n infuse greater
specificity into the arrayed probes, but as n increases,
the number of required features grows rapidly. Despite
this limitation, generic n-mer microarrays were initially
conceptualized as a means to generate primary sequence
data for the human genome sequencing effort and
although this ‘sequencing by hybridization’ (7,8) approach
has been demonstrated in a number of test cases (6,8–10),
it has not enjoyed widespread use because of somewhat
unrealistic thermodynamic assumptions about microarray
hybridization. For the arguably simpler application of
measuring gene expression, theoretical studies have
suggested that universal arrays containing all possible
10-mers would be adequate (11) but this claim is yet to be
substantiated in a working system.
Although the n-mer approach has largely been aban-

doned with at least one notable exception (12),
we hypothesize that generic microarrays may be unin-
tentionally re-emerging with the development of tiling
arrays. Several contributing factors have led us to
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contemplate this hypothesis. First, in situ oligonucleotide
fabrication technology has improved microarray feature
density upwards to five million features per array.
This allows for the vast sequence coverage needed in a
universal array system. Second, in many tiling array
applications (e.g. transcript mapping and ChIP-chip
applications) only a very small fraction of the genome is
expected to be ‘active’. This would leave most of the
array’s features with very little target-specific activity,
if any. Third, it is well known that the short oligonucleo-
tides used in many tiling microarrays may be prone to
bind weakly with off-targets (13). These points, when
taken together, suggest that biologically active regions of a
genome not represented on a tiling microarray may still
leave weak signatures of their activity in the ‘inactive’
regions targeted by tiling array probes.
If this hypothesis were true, a consequence would be

that tiling microarrays targeting the human genome
(or random oligonucleotides, for that matter) could be
used to bridge the gap towards making DNA microarrays
generally applicable to any organism and/or application.
One would simply hybridize labeled nucleic acids to the
tiling (or random) array and then read off intensities
corresponding to probes that cross-hybridize to the targets
that they are interested in. The target specificity for a
single cross-hybridizing probe would, of course, be much
less than that of a perfectly complementary probe but one
could theoretically pool data from the M features that
might cross-hybridize to the M subsequences present
within the target sequence. In this way, the loss in
specificity may be made up for by greater coverage of
the region.
Should such data prove useful, this approach would

certainly be attractive to researchers studying organisms
poorly supported by array manufacturers. A similar
method suggested for coping with this reality is to perform
so-called cross-species hybridizations (14). As the name
implies, this procedure calls for the hybridization of RNA
(or reverse-transcribed cDNA) obtained from one species
to a microarray designed to target another species’ genetic
material. Cross-species strategies have yielded many
meaningful results (14–17), indicating that useful informa-
tion can be measured from cross-hybridization signals
alone.
To investigate whether the concept of a species-non-

specific universal array may be re-emerging with tiling
arrays, we have simulated the scenario of using nearest-
neighbor features to measure transcript abundances by
using tiling microarray data that targets one part of the
human genome to predict expression levels genome-wide.
We have adopted an intensity prediction strategy for gene
expression profiling and while we believe that this
approach would not replace existing microarray strategies
currently in use for studying human and other model
organisms’ gene expression patterns, we do offer the
technique as a theoretically viable option for someone
studying RNA expression in a species for which no
commercial arrays exist or for someone wishing to assay
non-genic regions in an organism for which no tiling
arrays are available. While our results do not indicate
perfect concordance with signals that might be obtained

via traditional means, we do demonstrate very significant
trends that can certainly be useful in a hypothesis-
generating setting, where DNA microarrays are typically
employed (18).

MATERIALS AND METHODS

Microarray data

The data set we studied uses 98 unique microarray designs
to tile ten human chromosomes at a five base pair
resolution (19). Each array probes approximately
760 000 unique genomic tiles with one perfectly matching
25 nt oligo and one 25 nt oligo identical to the perfect
match, save the 13th nucleotide; this nucleotide is replaced
by the complement nucleotide of the perfect match probe’s
13th nucleotide. With these arrays, eleven different RNA
populations isolated from nine different cell lines
were probed. Samples were probed an average of three
times. Nine samples contained polyA-selected RNA and
two contained total RNA. Nine of the eleven
samples contained cytosolic RNA while two contained
nuclear RNA.

In our work, we focused primarily on data gathered
using just two of the 98 designs. Arbitrarily, we con-
centrated on the array designs named ‘chip01’ and ‘chip02’
in the original experiment which target different regions of
human chromosome 6.

Data normalization

Microarray data were normalized as follows. First, the
minimum feature intensity was computed for each array
and decremented by one intensity unit. This value was
then subtracted from every measurement in every array
such that each array subsequently had a minimum signal
intensity of one. This subtraction approximates the
removal of optical background noise (20). Each array’s
signals were then log2 transformed and the entire data set
was subsequently quantile normalized (21) to remove
any array-specific effects such as differences in cDNA
concentration hybridized to the arrays.

Nearest-neighbor queries

To find features that are close in sequence to a desired
nucleic acid target, we first divided the target’s nucleotide
string into all of its length 25 substrings. Then each of
these substrings was used as a query to the database of
probe sequences that exist in a given microarray design
(e.g. chip01). The nearest-neighbor feature for a substring
was then defined such that its probe sequence had fewer
mismatches to the query substring than any other probe
sequence present on the array. If multiple features had
probes with an identical maximal number of matches to
the query substring, then one is chosen at random to be
the nearest-neighbor feature. This procedure is schema-
tized in Figure 1. Unless otherwise noted, we ignored
features whose probes were an exact match to a query
substring.
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Target genes

The Refseq database of well-curated human genes, based
on the March 2006 build of the human genome, was
downloaded on 6 February from the UCSC table
browser (22). As of this download date, Refseq con-
tained 25 319 nucleotide sequences for which our
nearest-neighbor queries were conducted.

Transcript detection

In determining whether or not a gene is transcribed, we
first found all n of its nearest-neighbor features as
described above. For each of these identified features,
we sampled an additional feature from the same array
whose probe sequence had identical GC content. We then
counted the number of times the nearest-neighbor feature
had signal greater than the GC-content matched feature’s
signal and added to this quantity half the number of times
these two quantities were equal. Dividing this value by n
gave us the observed proportion, P0, of nearest-neighbor
features exhibiting signal greater than their GC-content
matched control features. The significance of this propor-
tion under the null hypothesis of P0=0.5 can be
computed directly via summing the tail of the binomial
probability distribution function. Since we had a very
large number of nearest-neighbor features per gene,

we simplified this computation by converting P0 to a
standardized z-score:

z ¼ ðP0 � 0:5Þð0:25=nÞ�1=2
ð1Þ

with variance estimated by the central limit theorem
applied to binomial random variables. Specifically, the
0.25 in the denominator follows from the formulation of a
Bernouli random variable’s variance as its expected value
multiplied by one minus its expected value. Since our
expected value under the null hypothesis is 0.5, our
variable’s variance is 0.5(1�0.5)=0.25. The z-score was
then converted to a P-value using the standard normal
curve.

RESULTS

We sought to determine whether existing tiling microarray
platforms might be converging towards general-purpose
nucleic acid detecting devices with their higher feature
densities. To assess this hypothesis, we simulated the
scenario by ‘measuring’ Refseq transcript abundances
with existing tiling microarray data for which these
transcripts were not the intended target.

Choice of data set

We began by downloading tiling microarray data from
the ten chromosome Affymetrix transcript mapping

Figure 1. Outline of nearest-neighbor microarray analysis. (A) A gene with several exons is merged into a single transcriptional unit, from which
all 25nt tiles are extracted. (B) In parallel, a database is constructed such that each entry represents a single feature’s expression profile across n cell
types and/or conditions, C1, . . . , Cn. Each of these entries is indexed by its feature’s probe sequence. (C) For each query tile, a nearest-neighbor query
is performed against this database. (D) When the nearest-neighbor probe is found, its expression profile is assigned to the query tile.
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project (19). This work consists of 98 unique microarray
designs, each targeting a distinct region of the human
genome. Of available tiling data sets, this one comes
closest to representing a universal array platform. This is
because its arrays have high feature densities and the
probe sequences come from a very fine tiling resolution
(5 nt). The fine resolution ensures that there is very little
room for probe selection, and therefore the sequences are
unbiased, relative to other tiling designs. Since this data
set has the additional advantage of probing multiple
different RNA samples, we were not limited to checking if
nearest-neighbor features gave similar intensities as their
perfectly matching counterparts on a single array; we were
able to check for correlations across cellular conditions, a
much stronger indicator of the suggested method’s
efficacy.
For simplicity in our work, we focused on just two of

the data set’s designs, designated ‘chip01’ and ‘chip02’ by
the study’s authors. To microarrays actualizing these
designs, researchers at Affymetrix hybridized 11 different
cDNA samples, each derived from a different population
of RNA transcripts. All hybridizations were done in
triplicate. There are, therefore, 33 hybridizations worth of
data for each chip design. The 33 hybridizations provided
adequate sample size for computing meaningful correla-
tion coefficients in our analyses.

Cross-hybridization increases with probe similarity

We next investigated the extent to which non-exact match
microarray probes might hybridize to off-targets. For each
perfect match feature in the chip01 design, we aligned its
probe sequence to that of every other perfect match
feature present in the design and recorded the number of
mismatches that exist between the two. We simultaneously
computed the correlation coefficient (Pearson’s) between
this pairs’ normalized array signals across samples. For
each of the possible mismatch counts (0 . . . 25), we
averaged those correlation coefficients between features
whose probes have that many mismatches and plotted
these averages in Figure 2. It can be seen from
this figure that correlation between features with similar
sequences increases with their degree of similarity. From a
data set (human transcription) for which we might not
expect an abundance of activity at most features, this
result is striking. It suggests that there is variable activity
being observed at a large number of features.

Detection of transcription from known genes

Assuming that the observed positive correlations were at
least partly due to features binding one or many common
cDNA species relatively specifically, we sought to exploit
the weak predictive power illustrated in Figure 2 for aiding
transcript detection. For each transcript of length M
curated into Refseq, we first identified those having >75%
of their length covered by transcribed fragments, or
‘transfrags’, identified in the original Affymetrix study.
These sequences were then divided up into all M-24 25 nt
tiles computationally. Each of these tiles was then used as
a query into the chip01 design, identifying the feature
whose probe sequence most closely matches that of the

query (Figure 1). We subsequently called this feature the
tile’s nearest-neighbor feature and assumed that, based on
our observations from Figure 2, that this feature might
have a small capacity for indicating transcription from this
tile’s corresponding genomic DNA.

We then focused on a single hybridization of polyA-
selected RNA from A375 cells and tested if the signals
from nearest-neighbor features were higher than randomly
selected features having the same GC content. At a
significance threshold of P< 0.05, we were able to detect
transcription at 71% of all Refseq genes with transfrag
support, where we expected 5% simply by chance
(Figure 3A). In Figure 3C, we plot the percent detected
for a variety of thresholds. We also investigated the trade
off that exists between the specificity of nearest-neighbor
features with few mismatches and the rate at which such
specific probe sequences occur (Figure 3B). We found that
if we only accept nearest-neighbor features having seven
or fewer mismatches, our method performed better than if
we accepted nine of fewer mismatches. But when we
further restricted our nearest-neighbors to five or fewer
mismatches, the method performed much more poorly.
Presumably, this is due to the paucity of nearest-neighbors
that exist with so few mismatches. There clearly exists a
tradeoff here that could be compensated for with greater
array feature densities.

Nearest-neighbor estimates are biologically relevant

Beyond simple transcript identification, we expected that
any gene expression platform would exhibit correlation
between exons of the same gene since, when spliced
together, they form a single transcriptional unit. We tested
for this by first computing the average signal (as reported
by nearest-neighbor features) for each exon within each
hybridization. We then filtered the exons by testing
whether they exhibit any cell line effects (P< 0.05,
Kruskal–Wallis test). Correlation coefficients computed
across all hybridizations were then recorded for randomly
sampled pairs of exons from this filtered set and that
belong to the same gene. Coefficients were also computed
for randomly selected exons from the original set. These
two sets of correlation coefficients were then binned and
plotted in Figure 4. The observed differences between
these two distributions suggest that exons within the same
gene tend to be up- and down-regulated in unison as one
would expect. This result furthered our conjecture that
biologically relevant results can be seen in signals obtained
through nearest-neighbor signal mapping.

Nearest-neighbor estimates generally agree with PM
estimates of signal

Going further, we expected that signals obtained from
nearest-neighbor signals should correlate with signals
obtained from perfect-match-derived signals obtained for
the same gene. For all genes tiled by the Cheng et al. (19)
data set, we computed the average signal obtained from
their perfect matching features across each hybridization.
We did the same for their nearest-neighbor features
derived from chip01. Correlation coefficients were then
computed for each gene between its perfect match and
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nearest-neighbor-derived signals. The distribution is sum-
marized in Figure 5. We observed much greater correla-
tion coefficients across samples than we expected by
random chance but also that the coefficients were still
relatively low. As expected, we also found that genes with
higher expression levels led to higher correlation between
perfect-match-derived signals and nearest-neighbor-
derived signals.

Given the above noted variability in the efficacy of our
method, we next investigated the effect that various
genomic properties have on our nearest-neighbor strategy
(Figure 6). In each of the following three analyses,

we again focused on correlations observed between perfect
match and nearest-neighbor-derived gene profiles.
First, we hypothesized that longer genes might work

better than shorter ones in our nearest-neighbor strategy
since these transcripts have a larger number of measure-
ments to average over, and therefore better smooth over
noise potentially present in nearest-neighbor signals.
A coarse comparison between long and short genes is
depicted in Figure 6A. No striking relationship seemed to
exist. However, we did find a statistically significant
(P< 0.0004, Spearman’s correlation) negative relationship
between gene length and correlation but that the

Figure 2. Properties of the nearest-neighbor strategy. (A) Feature pairs with several mismatches are weak predictors of signal. All possible pairs of
features from a single tiling microarray design were analyzed. The average correlation coefficients (blue circles, left axis) and number of pairs
contributing to those averages (orange bars, right axis) are plotted for all possible number of mismatches. (B) Expected number of mismatches
between a tile and its nearest-neighbor probe sequence. For a number of mismatches, k, the expected number of features having k or fewer
mismatches to any 25nt tile is plotted. These expectations are plotted for array designs having 105, 106, 107 and 108 features. The value of k for which
a series crosses unity on the y-axis represents the expected number of mismatches between a tile and its nearest-neighbor probe sequence. (C) Detail
of this cross-section.
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magnitude of this relationship (Spearman’s �=�0.045)
was extremely marginal. The relationship observed was
probably obtained due to an unknown factor correlated
with gene length, such as the increased likelihood of
alternative splicing in longer transcripts, which is known
to impact measurements in Affymetrix GeneChip brand
microarrays (23).
Our second hypothesis considered a gene’s presence

within an annotated duplicated region of the genome. We,
therefore, downloaded the Segmental Duplication

Database (24) and divided the Refseq genes into those
that are present within a duplication, and those that are
not. Our hypothesis was that genes within duplicated
regions might be more difficult to assay with nearest-
neighbor features but we found no such relationship
(Figure 6B).

Finally, we investigated the effect of GC content on our
method’s performance. This was pursued since one might
expect that higher GC content within probes would lead
to greater affinity for off-targets. We carried out this

Figure 3. Many genes are detected using nearest-neighbor features’ signals. (A) Significance was computed for every Refseq gene with at least 75%
transfrag coverage using their nearest-neighbor features. These features were compared with features whose probes have identical GC content to
compute their significance, or P-value (‘Methods’ section). (B) A tradeoff exists between the specificity of nearest-neighbor features and their
coverage. We restricted the analysis depicted in panel (A) to nearest-neighbor features having at least 9, 8, 7, 6, or 5 mismatches. The ‘8 Mismatches’
series cannot be seen because it is nearly identical to that of ‘9 Mismatches’. Restricting to seven or fewer mismatches increases power because these
probes are more specific to the nearest-neighbor target. Restricting further to six and to five mismatches decreases power because there are fewer
probes that meet these criteria. (C) A set of known positives was defined as the Refseq genes with at least 75% transfrag coverage. A set of known
negatives was constructed by permuting the sequences in the set of known positives. For various thresholds, sensitivity and specificity were computed
and then plotted. Here, we have defined sensitivity as TP/(TP+FN) and specificity as TN/(TN+FP) where TP, TN, FP and FN stand for counts of
true positives, true negatives, false positives and false negatives, respectively.
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investigation with two related studies. First, we simply
looked for any connection between correlation coefficients
and the genes’ overall GC content. This was done by
binning genes into those with more or less GC content

than the median of all genes’ GC content (Figure 6C).
Second, we restricted our calculation of GC content to
those nucleotides which form perfect matches with their
target subsequence (Figure 6D). The motivation for this
latter examination is that the only nucleotides that might
have provided any specificity are those that are comple-
mentary to their target. That is, if a guanine or cytosine is
aligned with an adenine or a thymine, we would
expect that any GC effect on correlation would be
minimal. In both examinations, we found that genes
with high GC-content tended to work better within our
analysis scheme.

Choice of k

Our lookup scheme is essentially a k-nearest-neighbors
query where we have set k=1. We simply looked for the
most similar probe sequence to each query. We also
investigated whether setting k to larger values might
boost nearest-neighbor-derived gene summaries’ cor-
relation with their perfect-match-derived counterparts.
Specifically, we re-submitted nearest-neighbor queries for
50 randomly selected genes and recorded the k nearest-
neighbors for each subsequence where we varied k from
1 to 100. In Figure 7, we plot the average correlation
coefficient obtained for the varying values of k. We found
that we achieved peak mean correlation at k=4, where
after correlation dropped steadily. The overall improve-
ment from k=1 was small and, in our opinion, not
significant enough to warrant the corresponding added
complexity in our gene length, GC content and segmental
duplication analyses.

Figure 4. Nearest-neighbor-derived exon expression levels are
correlated within genes. Nearest-neighbor features’ signals were
averaged within each exon and hybridization. Correlation coefficients
across the 33 hybridizations were computed between pairs of randomly
selected exons and between exons from the same gene. The
coefficients were binned and the differences plotted. Only exons
exhibiting significant change across cell lines were included in the
analysis (P< 0.05, Kruskal–Wallis test).

Figure 5. Agreement between perfect match and nearest-neighbor-derived gene summaries. Average signals were computed for each gene and
for each hybridization. These summaries were computed using (1) only the nearest-neighbor probes from chip01 and (2) only perfect match
probes from the entire experiment. Correlation coefficients between these summaries were computed for each gene across all hybridizations.
(A) A histogram of these coefficients is shown. Genes having at least twenty perfect match features were included in this analysis. (B) Box plots of
these coefficients are shown for different average logged intensity bins.
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Nearest-neighbor estimates agree between array designs

Finally, we wished to see if there exists agreement between
nearest-neighbor-derived gene summaries derived from
two different array designs and their corresponding
hybridizations. In Figure 8, we plot a histogram that
summarizes correlation coefficients between gene profiles
derived from the two different nearest-neighbor lookups
(from chip01 and chip02). We see reasonably good
reproducibility despite the fact that we derived gene
expression estimates from completely different datasets
using unique array designs. This is a strong indicator of
the robustness of the technique and for the ability of
random probes to measure transcript abundances with
good reproducibility.

DISCUSSION

Tiling microarrays allow for unbiased analysis of genome
function. This is achieved by allocating a microarray’s
features to probes that target genomic sequence at
regularly spaced intervals. These intervals of genomic
DNA are largely inactive in transcript mapping experi-
ments. We sought to exploit these voids and the fact that
short oligonucleotides can cross-hybridize to unintended
sequences to measure gene expression solely with

Figure 6. Correlations between nearest-neighbor-derived gene summaries and perfect-match-derived gene summaries were binned on various criteria.
(A) Genes were divided into ‘short’ and ‘long’ genes based on their length being less or greater than the median gene length. (B) Genes were
binned based on whether or not they are present in known segmental duplications. (C) Genes were binned based on whether or not their GC
content is less than or greater than the median GC content. (D) Genes were binned on their GC content (excluding nucleotides that mismatch
with their nearest-neighbor probe). GC-contents greater than 50% were defined as ‘high’.

Figure 7. Correlations between k-nearest-neighbor-derived gene sum-
maries and perfect-match-derived gene summaries are plotted for
k=1 . . . 100. For a given k, the k probe sequences closest to each tile
were identified. A gene’s expression summary is the average over all k
probes’ signals for all tiles within the gene.
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off-target nearest-neighbor features. Specifically, we have
shown that these potentially cross-hybridizing features can
detect the transcription of a large number of known genes.
We complemented this analysis by showing that nearest-
neighbor-derived summaries of exon expression correlate
within genes, that nearest-neighbor-derived gene summa-
ries correlate with perfect-match-derived gene summaries,
and that nearest-neighbor summaries derived from differ-
ent array designs agree with one another. Together, these
findings provide evidence that a tiling microarray can
function as a ‘universal’ array that could be applied to the
study of any query nucleic acid sequence. This approach
differs from the complete n-mer complement of oligos that
traditionally define universal microarrays and is poten-
tially useful for multi-species studies such as those being
carried out by the ENCODE consortium.

In addition to our proof-of-principle work, we
have quantified the main limitation of using our tech-
nique. This limitation manifests as a fair amount of gene-
to-gene variation in how our nearest-neighbor strategy
performs with respect to correlation with signals from
traditional microarray measurements (Figure 5A).
Therefore, we would urge that results obtained with
our method be taken as suggestive and warranting of
follow-up study with traditional, lower-throughput experi-
ments. This suggestion is generally true for almost any
microarray technology and is why these platforms are
usually deemed hypothesis-generating ones. In our current
work, we have extended this ability for hypothesis
generation to a wider spectrum of applications and for a
more inclusive list of species. While a greater fraction of
the generated hypotheses are probably false, the technique
still whittles down the large space of putative hypotheses
to a more manageable list suitable for further
experimentation.

The statistically significant trends present in our
analyses further suggest that our approach could enable
genomic-scale hypotheses to be investigated in non-model
systems, where higher error rates are easily accommodated
by large sample sizes (e.g. 20 000 genes). Such hypotheses
might involve biological network prediction, sample
clustering and classification or ontological analyses.
Many valuable conclusions have been made by pursuing
these questions in model organisms with traditional DNA
microarrays, even when they were in their infancy and
contained very high levels of gene-to-gene variability in
their performance.
Again, the work that we have presented is largely a

proof-of-principle. There are several extensions that could
broaden the approach’s usefulness. In the current work,
we have used a very simple function for assessing
tile:probe similarity, namely the number of mismatches
between the two short oligonucleotide sequences.
Functions based on their dinucleotide mismatch distance,
Gibbs free energy, or length of longest common substring
could be explored. Beyond changing the similarity
function for finding a single nearest-neighbor probe, one
can imagine using several nearest-neighbor probes’
expression profiles to predict the query’s in a weighted
fashion. For example, we have explored using different
values for k in our k-nearest-neighbor lookups but found
increasing k beyond k=4 steadily decreased performance.
We have not only concentrated on using k=1 for
simplicity in our analyses and discussion, but also because
the increase in correlations with perfect match probes
proved to be quite small (Figure 7). There are a plethora
of further directions research in this area could go,
especially when one considers various weighting functions.
Here, we have limited ourselves to just the simplest of
models for probe: target similarity to demonstrate
feasibility.
Another area that might benefit from further research is

the algorithm’s runtime. As we have implemented our
strategy, we compare a query sequence to each probe
sequence within the database. Since there are upwards of
five million probe sequences in the database, and query
transcripts consist of thousands of queries, finding
expression summaries for all of Refseq can be a time-
consuming task (several days to lookup all of Refseq).
Currently, we have used a brute-force parallelization to
perform our lookups, but more elegant strategies may be
applicable. One obvious approach would be to use short
sub-sequence hashing to accelerate lookups. This could be
achieved by splitting up a query into all of its component
8-mers, for example, and using these as keys into a data
structure (such as a hash table or suffix tree) that records
the identities of probes having all possible 8-mer sub-
sequences. Such an approach would enable fast lookups
and would find similar probe sequences but would not
guarantee the identification of the nearest-neighbor probe.
This is analogous to the ability of BLAST to identify very
similar sequences to a query despite not guaranteeing the
identification of the closest sequence within a nucleic acid
database (25).
Our work has similar aims as those where one

species’ genetic material is hybridized to arrays

Figure 8. Nearest-neighbor features yield results comparable between
array designs. Nearest-neighbor lookups were performed for two
different tiling array designs. Each design was used for 33 hybridiza-
tions. Histograms of between-gene correlations are shown.
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targeting that of another, closely related species. Both this
strategy, and that described here, seek to obtain functional
genomic data for unintended nucleic acid targets. Data
obtained in this fashion can be used in comparative geno-
mics and other evolution-based studies of gene expression,
a currently very exciting field of study (26,27). It is likely
that gene expression summaries derived from arrays
targeting phylogenetic neighbors will yield better estimates
of gene expression since the arrays’ probes would have few
mismatches with their cross-species targets. However,
the approach outlined in this article might be better
suited for studies probing material from a number of
different species since a random array would contain
probes equally dissimilar to any of the target species
sequences being studied. No biases can arise from platform
selection with a random array.
Finally, the main conclusion we wish to make is

that short oligonucleotide cross-hybridization is not
necessarily a bad thing. In this work, we have exploited
its presence to use a microarray for an unintended
purpose. In doing so, we have demonstrated that
microarrays need not consist completely of probe
sequences that are perfect complements to the target
nucleic acid. We believe that moving forward, the design
of species-specific microarrays may want to take advan-
tage of this fact as well.

ACKNOWLEDGEMENTS

Funding for this research and payment of Open Access
publication charges was provided by the NIH under grant
P50 HG02357-01. Many calculations in this work were
made possible by the Yale Center for High Performance
Computation in Biology and Biomedicine and NIH
grant: RR19895-02, which funded the instrumentation.
We thank Nick Carriero for assistance with streamlining
our nearest neighbor code and Rob Bjornson for helping
parallelizing the application.

Conflict of interest statement. None declared.

REFERENCES

1. Selinger,D.W., Cheung,K.J., Mei,R., Johansson,E.M.,
Richmond,C.S., Blattner,F.R., Lockhart,D.J. and Church,G.M.
(2000) RNA expression analysis using a 30 base pair resolution
Escherichia coli genome array. Nat. Biotechnol., 18, 1262–1268.

2. Bertone,P., Stolc,V., Royce,T.E., Rozowsky,J.S., Urban,A.E.,
Zhu,X., Rinn,J.L., Tongprasit,W., Samanta,M. et al. (2004) Global
identification of human transcribed sequences with genome tiling
arrays. Science, 306, 2242–2246.

3. Kapranov,P., Cawley,S.E., Drenkow,J., Bekiranov,S.,
Strausberg,R.L., Fodor,S.P.A. and Gingeras,T.R. (2002) Large-
scale transcriptional activity in chromosomes 21 and 22. Science,
296, 916–919.

4. Jeon,Y., Bekiranov,S., Karnani,N., Kapranov,P., Ghosh,S.,
MacAlpine,D., Lee,C., Hwang,D.S., Gingeras,T.R. et al. (2005)
Temporal profile of replication of human chromosomes. Proc. Natl
Acad. Sci. USA, 102, 6419–6424.

5. ENCODE Project Consortium (2007) Identification and analysis of
funtional elements in 1% of the human geneome by the ENCODE
pilot project. Nature, 447, 799–816.

6. Pease,A.C., Solas,D., Sullivan,E.J., Cronin,M.T., Holmes,C.P.
and Fodor,S.P. (1994) Light-generated oligonucleotide arrays

for rapid DNA sequence analysis. Proc. Natl Acad. Sci. USA, 91,
5022–5026.

7. Drmanac,R., Labat,I., Brukner,I. and Crkvenjakov,R. (1989)
Sequencing of megabase plus DNA by hybridization: theory of the
method. Genomics, 4, 114–128.

8. Drmanac,R., Drmanac,S., Strezoska,Z., Paunesku,T., Labat,I.,
Zeremski,M., Snoddy,J., Funkhouser,W.K., Koop,B. et al. (1993)
DNA sequence determination by hybridization: a strategy for
efficient large-scale sequencing. Science, 260, 1649–1652.

9. Drmanac,S., Kita,D., Labat,I., Hauser,B., Schmidt,C., Burczak,J.D.
and Drmanac,R. (1998) Accurate sequencing by hybridization for
DNAdiagnostics and individual genomics.Nat. Biotechnol., 16, 54–58.

10. Yershov,G., Barsky,V., Belgovskiy,A., Kirillov,E., Kreindlin,E.,
Ivanov,I., Parinov,S., Guschin,D., Drobishev,A. et al. (1996) DNA
analysis and diagnostics on oligonucleotide microchips. Proc. Natl
Acad. Sci. USA, 93, 4913–4918.

11. van Dam,R.M. and Quake,S.R. (2002) Gene expression analysis
with universal n-mer arrays. Genome Res., 12, 145–152.

12. Roth,M.E., Feng,L., McConnell,K.J., Schaffer,P.J., Guerra,C.E.,
Affourtit,J.P., Piper,K.R., Guccione,L., Hariharan,J. et al. (2004)
Expression profiling using a hexamer-based universal microarray.
Nat. Biotechnol., 22, 418–426.

13. Kane,M.D., Jatkoe,T.A., Stumpf,C.R., Lu,J., Thomas,J.D.
and Madore,S.J. (2000) Assessment of the sensitivity and specificity
of oligonucleotide (50mer) microarrays. Nucleic Acids Res., 28,
4552–4557.

14. Bar-Or,C., Bar-Eyal,M., Gal,T.Z., Kapulnik,Y., Czosnek,H.
and Koltai,H. (2006) Derivation of species-specific hybridization-
like knowledge out of cross-species hybridization results. BMC
Genomics, 7, 110.

15. Brodsky,L.I., Jacob-Hirsch,J., Avivi,A., Trakhtenbrot,L.,
Zeligson,S., Amariglio,N., Paz,A., Korol,A.B., Band,M. et al.
(2005) Evolutionary regulation of the blind subterranean mole rat,
Spalax, revealed by genome-wide gene expression. Proc. Natl Acad.
Sci. USA, 102, 17047–17052.

16. Gilad,Y., Rifkin,S.A., Bertone,P., Gerstein,M. and White,K.P.
(2005) Multi-species microarrays reveal the effect of sequence
divergence on gene expression profiles. Genome Res., 15, 674–680.

17. Grigoryev,D.N., Ma,S., Simon,B.A., Irizarry,R.A., Ye,S.Q.
and Garcia,J.G.N. (2005) In vitro identification and in silico
utilization of interspecies sequence similarities using GeneChip
technology. BMC Genomics, 6, 62.

18. Gibson,G. (2003) Microarray analysis: genome-scale hypothesis
scanning. PLoS Biol., 1, E15.

19. Cheng,J., Kapranov,P., Drenkow,J., Dike,S., Brubaker,S., Patel,S.,
Long,J., Stern,D., Tammana,H. et al. (2005) Transcriptional maps
of 10 human chromosomes at 5-nucleotide resolution. Science, 308,
1149–1154.

20. Wu,Z. and Irizarry,R.A. (2005) Stochastic models inspired by
hybridization theory for short oligonucleotide arrays. J. Comput.
Biol., 12, 882–893.

21. Bolstad,B.M., Irizarry,R.A., Astrand,M. and Speed,T.P. (2003)
A comparison of normalization methods for high density oligonu-
cleotide array data based on variance and bias. Bioinformatics, 19,
185–193.

22. Karolchik,D., Hinrichs,A.S., Furey,T.S., Roskin,K.M.,
Sugnet,C.W., Haussler,D. and Kent,W.J. (2004) The UCSC
table browser data retrieval tool. Nucleic Acids Res., 32, 493–496.

23. Wang,H., Hubbell,E., Hu,J., Mei,G., Cline,M., Lu,G., Clark,T.,
Siani-Rose,M.A., Ares,M. et al. (2003) Gene structure-based splice
variant deconvolution using a microarray platform. Bioinformatics,
19(Suppl. 1), i315–i322.

24. She,X., Jiang,Z., Clark,R.A., Liu,G., Cheng,Z., Tuzun,E.,
Church,D.M., Sutton,G., Halpern,A.L. et al. (2004) Shotgun
sequence assembly and recent segmental duplications within the
human genome. Nature, 431, 927–930.

25. Kent,W.J. (2002) BLAT–the BLAST-like alignment tool.
Genome Res., 12, 656–664.

26. Khaitovich,P., Hellmann,I., Enard,W., Nowick,K., Leinweber,M.,
Franz,H., Weiss,G., Lachmann,M. and Paabo,S. (2005) Parallel
patterns of evolution in the genomes and transcriptomes of humans
and chimpanzees. Science, 309, 1850–1854.

27. Khaitovich,P., Enard,W., Lachmann,M. and Paabo,S. (2006)
Evolution of primate gene expression. Nat. Rev. Genet., 7, 693–702.

e99 Nucleic Acids Research, 2007, Vol. 35, No. 15 PAGE 10 OF 10


