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Abstract: Purpose To identify cerebral radiomic features related to the diagnosis of Internet gam-
ing disorder (IGD) and construct a radiomics-based machine-learning model for IGD diagnosis.
Methods A total of 59 treatment-naïve subjects with IGD and 69 age- and sex-matched healthy
controls (HCs) were recruited and underwent anatomic and diffusion-tensor magnetic resonance
imaging (MRI). The features of the morphometric properties of gray matter and diffusion prop-
erties of white matter were extracted for each participant. After excluding the noise feature with
single-factor analysis of variance, the remaining 179 features were included in an all-relevant feature
selection procedure within cross-validation loops to identify features with significant discrimina-
tive power. Random forest classifiers were constructed and evaluated based on the identified
features. Results No overall differences in the total brain volume (1,555,295.64 ± 152,316.31 mm3 vs.
154,491.19 ± 151,241.11 mm3), total gray (709,119.83 ± 59,534.46 mm3 vs. 751,018.21 ± 58,611.32 mm3)
and white (465,054.49 ± 51,862.65 mm3 vs. 470,600.22 ± 47,006.67 mm3) matter volumes, and subcor-
tical region volume (63,882.71 ± 5110.42 mm3 vs. 64,764.36 ± 4332.33 mm3) between the IGD and
HC groups were observed. The mean classification accuracy was 73%. An altered cortical shape in
the bilateral fusiform, left rostral middle frontal (rMFG), left cuneus, left parsopercularis (IFG), and
regions around the right uncinate fasciculus (UF) and left internal capsule (IC) contributed signif-
icantly to group discrimination. Conclusions: Our study found the brain morphology alterations
between IGD subjects and HCs through a radiomics-based machine-learning method, which may
help revealing underlying IGD-related neurobiology mechanisms.

Keywords: magnetic resonance imaging; diffusion tensor imaging; radiomics; internet gaming
disorder; random forest classifier

1. Introduction

While Internet use has made life easier, maladaptive Internet use can have unhealthy
consequences, including psychological problems [1]. A widely accepted definition of
Internet addiction is the excessive, uncontrolled, and harmful use of the Internet, and
Internet gaming disorder (IGD) has been included in Section III of the Fifth Edition of
Diagnostic and Statistical Manual of Mental Disorders (DSM-5) as a controversial term
in 2013 (American Psychiatric Association (APA) 2013) [2]. Although there is a debate
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regarding whether Internet gaming could produce a true clinical addiction, emerging
evidence shows that IGD subjects share similar neurobiological alternations with substance
use and other behavioral addiction diseases such as gambling, particularly in craving,
cognitive control, and reward systems. In 2019, IGD was included in the latest revision
of the International Classification of Diseases (ICD-11; World Health Organization, 2019).
Currently, the clinical diagnosis and evaluation of IGD are based on the integration of self-,
parent-, and teacher-behavioral reports and the assessment of behavioral problems [3–6].
Given the subjective nature of these scales and the overlap of IGD with other psychiatric
diseases, imaging-based parameters may provide a useful objective adjunct to the clinical
evaluation of IGD [7,8]. Thus, it is crucial to establish a diagnosis model comprising
biomarkers based on neuroimaging to accurately identify and characterize IGD. In the
context of the developing field of psycho-radiology, machine learning is concerned with
the automated discovery of regularities in brain imaging data through the use of pattern
recognition algorithms to develop classifiers that can be used to predict disorders in
individuals.

The radiomics approach is a medical image analysis framework that converts radio-
graphic images into a mineable dataset using a series of data characterization algorithms.
It has been applied to extract imaging features of solid tumors. Previous studies reported
a 93% accuracy for a T1-weighted imaging (T1WI)-based support vector machine (SVM)
algorithm for distinguishing between malignancy and benignity in soft-tissue lesions. An-
other study showed the high accuracy of a radiomics classifier based on fat-suppressed
T2-weighted imaging. The radiomics workflow for oncology includes the extraction of
quantitative imaging features from tumors to represent their intensity distribution, shape,
and texture. Similarly, features can be extracted from different brain regions, such as the
prefrontal cortex (PFC), anterior cingulate cortex (ACC), caudate, and internal and external
capsules (IC and EC) [6,9–12]. Therefore, the radiomics workflow has also been applied to
psychiatric disorders such as attention-deficit hyperactivity disorder (ADHD) [13,14].

In the current study, we applied a machine-learning method to construct an effective
model to characterize IGD-related brain morphological changes.

2. Materials and Methods
2.1. Participants

The current study was approved by the Research Ethics Committee of Ren Ji Hospital
and School of Medicine, Shanghai Jiao Tong University, China No. [2016]079k(2). All par-
ticipants were informed of the aims of our study before MRI examination. Each participant
submitted a written informed consent.

Between October 2016 and July 2017, 128 native Chinese-speaking right-handed young
participants aged 13–28 years, including 59 participants with IGD and 69 HCs, were re-
cruited for this study. All participants with IGD were recruited from the psychological
outpatient clinic at the Shanghai Mental Health Center and were interviewed by two
experienced psychiatrists. The criteria were assessed according to Young’s Diagnostic Ques-
tionnaire for Internet Addiction (YDQ) test, as modified by Beard [3]. The questionnaire
consisted of eight “yes” or “no” questions, which were translated into Chinese. It included
the following eight questions: (1) Do you feel absorbed in the Internet (remember previous
online activity or the desired next online session)? (2) Do you feel satisfied with Internet
use if you increase your amount of online time? (3) Have you failed to control, reduce,
or quit Internet use repeatedly? (4) Do you feel nervous, temperamental, depressed, or
sensitive when trying to reduce or quit Internet use repeatedly? (5) Do you stay online
longer than originally intended? (6) Have you taken the risk of losing a significant job,
relationship, educational, or career opportunity because of the Internet? (7) Have you lied
to your family members or others to hide the truth of your involvement with the Internet?
(8) Do you use the Internet as a way to escape from problems or relieve an anxious mood?
Respondents who answered “yes” to questions 1 through 5 and at least one of the remaining
three questions were classified as having Internet addiction. For a more controlled and ho-
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mogenous IGD sample, only those participants who reported playing massive multiplayer
online role-playing games, such as World of Warcraft, as their main use of the Internet
were selected. We confirmed the reliability of the self-reports by talking with participants’
parents. In addition, we evaluated the severity of IGD using the Chen Internet Addiction
Scale (CIAS), which is a self-reported scale with good reliability and validity that has been
used to measure the severity of Internet addiction [15]. The questionnaire contains 26 items
answered on a four-point scale for which a diagnostic cutoff point (63/64) exhibited the
best diagnostic accuracy. The HC participants were recruited through advertisements in the
community. These participants were also tested using the modified YDQ criteria and none
met the diagnostic criteria for IGD. We also used the Behavioral Impulsive scale-11 (BIS-11)
to assess behavioral inhibition. The BIS-11 is a questionnaire consisting of 30 items designed
to assess the personality/behavioral construct of impulsiveness [16]. The self-rating anxiety
scale (SAS) and self-rating depression scale (SDS) were used to show that all the subjects
met the inclusion criteria during the research period. All the questionnaires were initially
written in English and then translated to Chinese.

None of the participants had (1) previous hospitalization for psychiatric disorders or a
history of psychiatric disorders such as anxiety, depression, or attention-deficit hyperac-
tivity disorder; (2) substance use disorders; (3) mental retardation; (4) neurological illness
or injury; and (5) intolerance to magnetic resonance imaging (MRI). All participants were
evaluated using brain MRI.

2.2. MRI Acquisition

Images were obtained using a 3.0 T MRI scanner (Signa HDxt 3T, GE Healthcare, Mil-
waukee, WI, USA). Restraining foam pads were used to reduce head motion, and earplugs
were used to reduce scanner noise. 3D Fast spoiled Gradient Recalled sequence (3D-
FSPGR) images (TR = 5.6 ms, TE = 1.8 ms, slice thickness = 1 mm, gap = 0, flip angle = 15◦,
FOV = 256 mm × 256 mm, number of slices = 156, 1 × 1 × 1 mm voxel wise) and DTI data
(TR = 17,000 ms, TE = 89.8 ms, slice thickness = 2 mm, gap = 0, FOV = 256 mm × 256 mm,
number of slices = 66, matrix = 128 × 128, and 20 diffusion-weighted directions with b value
= 1000 s/mm2) were acquired; a reference image with no diffusion gradients applied (B0
scan) was also acquired.

The following sequences were also performed to confirm the absence of structural
lesions: (1) axial T1-weighted fast field echo sequences (TR = 331 ms, TE = 4.6 ms,
FOV = 256 × 256 mm2, matrix = 512 × 512, thickness = 4 mm, gap = 0, slices = 34); (2) axial
T2-weighted turbo spin-echo sequences (TR = 3013 ms, TE = 80 ms, FOV = 256 × 256 mm2,
matrix = 512 × 512, thickness = 4 mm, gap = 0, slices = 34). All images were evaluated by
two experienced neuroradiologists and no participants were excluded on this basis.

2.3. MRI Data Pre-Processing and Feature Extraction

The flowchart for this study is described in Figure 1.
The T1-weighted anatomical images were first processed by Freesurfer software (Ver-

sion 6.0) with the “recon-all” processing pipeline, which included skull stripping, image
registration, subcortical segmentation, cortical surface reconstruction, cortical segmentation,
and cortical thickness estimation. All processed images were visually inspected to avoid
skull strip failure, segmentation errors, and topology failure. The images were labeled
using the Desikan–Killiany–Tourville atlas [17]. For extraction of gray matter features, the
labeled T1-weighted images were first converted to a surface mesh; the shape properties
were then calculated on each vertex and the distribution metrics were generated (mean,
standard deviation, kurtosis, skewness). A total of 1316 features related to gray matter
morphometry were calculated using Mindboggle. The feature types included volume,
surface cortical thickness, geodesic depth, convexity, and travel depth.
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Figure 1. Flowchart of this study. IGD = Internet gaming disorder; CIAS = Chen Internet Addiction
Scale; BIS-11 = Behavior impulsive scale-11; SAS = Self-rating anxiety scale; SDS = Self-rating
depression scale.

Diffusion tensor images were implemented using a pipeline toolbox, PANDA v1.3.1
(https://www.nitrc.org/projects/panda, accessed on 23 May 2020), which is based on FSL
tools [18]. In the pipeline, skull stripping with the brain extraction tool (BET) was performed
to extract brain tissue from the B0 images in each subject. Eddy current-induced distortion
and head motion artifacts were corrected by registering each raw diffusion image to the
B0 image with an affine transformation. Four calculated parameters, namely fractional
anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD), and axial diffusivity (AD),
were created. The JHU-ICBM-81 atlas was warped to each individual space and the
distribution metrics were generated (mean, standard deviation, kurtosis, skewness) for
each label. Finally, 768 features representing the diffusion properties were extracted.

2.4. Feature Selection and Assessment of the Relevance of the Selected Features

The set of features represented both the gray and white matter profiles of each brain
(1316 Gy matter and 768 diffusion features, for a total of 2084 features). All of the extracted
features were normalized by z-score. The “Boruta” (https://www.rproject.org/, accessed
on 17 July 2019) algorithm was used to extend the given dataset by appending shuffled
copies of all features, which are called shadow features. Then, a random forest (RF) classifier
was trained in the extended dataset and the relevance of real features was evaluated by
comparing the importance measure provided by RF between the real and shadow features.
Before feature selection, one-way analysis of variance was used to exclude the noise
feature. A total of 179 features eventually remained after the coarse filter. At each iteration,
the algorithm checked whether a real feature had a higher relevance to classification
than the best of its shadow features and removed features that were deemed irrelevant

https://www.nitrc.org/projects/panda
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to classification. The algorithm terminated when the relevance of all the features was
established. The features were grouped into two categories: relevant and irrelevant.

In our study, features were selected for the different subsets in each cross-validation
iteration. Features that were selected in more iterations than would be expected to occur at
random were identified as significantly relevant selections. To determine the relevance of
the selected features, 1000 datasets with a random permuting label column were created.
The expected distribution of the selection frequency (defined as the number of iterations in
which a feature was selected divided by the total number of iterations performed in one data
set) of each feature throughout the cross-validation iterations was modeled as a binomial
distribution, with the parameter estimated as the mean selection frequency in all random
data sets. This distribution was then used to identify features in the original dataset with
selection frequencies significantly higher than expected by chance, with adjusted p values
of 0.05 (Bonferroni correction). To control for the influence of low selection frequency in the
original datasets, we further applied a threshold on the original feature selection frequency.
Selected features lower than half of the total iterations in the original dataset were excluded.

2.5. Construction of the RF Classifier

RF was used to build classifiers in our study because it has demonstrated superior
performance on high-dimensional, low sample size problems and requires little feature
processing and parameter tuning [19]. The all-relevant feature selection step was embedded
in a repeated k-fold (k = 5) cross-validation framework to obtain unbiased estimates of
the classification error. The R package “caret” (classification and regression training) was
used to implement this procedure [20]. In each cross-validation loop, the entire dataset was
randomly partitioned into five non-overlapping five-folds of equal size. Four folds were en-
tered into the all-relevant feature selection procedure and the reduced dataset with selected
features was used to train an RF classifier. We considered the default parameter configura-
tion for the value of ntrees (number of trees) equal to 1000 and the mtry (number of features
randomly selected at each tree node) equal to the root of the number of input features. The
remaining fold, simplified with selected features, was used to evaluate the performance of
the model. The selection–training–testing cycle was repeated for different left-out portions.
This entire loop was repeated 100 times with different partitioning schemes to achieve
stable performance estimation. The overall accuracy, sensitivity, specificity, and k score
were used to characterize the performance of the classifier.

2.6. Statistical Analysis

All data analyses and statistics were performed using R-3.6.0 (https://www.r-project.
org, accessed on 8 October 2020). Kolmogorov–Smirnov tests were used to test the distribu-
tions of age, education, and identified features. Normally distributed data were compared
using t-tests, while nonparametric tests were used for non-normally distributed data. Chi-
square tests were used to compare sex between the two groups. Statistical significance was
set at a two-tailed p-value of 0.05.

3. Results
3.1. Demographic and Volumetric Comparison

The demographic variables and macroscopic cerebral volume are shown in Table 1.
No significant differences in sex, age, years of education, total gray matter volume, total
white matter volume, total subcortical volume, and total brain volume were found. The
IGD group scored higher on BIS-11, CIAS, SAS, and SDS (all p < 0.0001) (Table 2).

https://www.r-project.org
https://www.r-project.org
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Table 1. Demographic statistics.

IGD HC Statistic Degree of Freedom p Value

Age 21.39 ± 3.06 (15–28) 20.34 ± 3.98 (13–28) 1.639 126 0.104
Gender 0.417 χ2 1 0.518

Male 47 58
Female 12 11

Total gray matter
volume (mm3) 709,119.83 ± 59,534.46 751,018.21 ± 58,611.32 −0.563 126 0.574

Total white matter
volume (mm3) 465,054.49 ± 51,862.65 470,600.22 ± 47,006.67 0.634 126 0.527

Subcortical region
volume (mm3) 63,882.71 ± 5110.42 64,764.36 ± 4332.33 −1.056 126 0.293

Total brain
volume (mm3) 1,555,295.64 ± 152,316.31 15,4491.19 ± 151,241.11 0.03 126 0.976

IGD: Internet gaming disorder; HC: Healthy control.

Table 2. Scales.

IGD HC Statistic Degree of Freedom p Value

CIAS 78.27 ± 10.31 44.38 ± 11.34 17.57 126 <0.0001 *

BIS-11 63.02 ± 7.72 53.81 ± 7.42 6.87 126 <0.0001 *

SAS 50.51 ± 8.19 42.65 ± 6.39 6.09 126 <0.0001 *

SDS 51.97 ± 7.09 45.74 ± 8.92 4.32 126 <0.0001 *
IGD: Internet gaming disorder; HC: Healthy control; CIAS: Chen Internet Addiction Scale; BIS-11: Behavior
impulsive scale-11; SAS: Self-rating anxiety scale; SDS: Self-rating depression scale; * p < 0.05.

3.2. Classification Performance and Significantly Relevant Features

After Boruta selection in the training set, eight features were identified as significantly
relevant for a selection frequency in the real data that was significantly higher than that
in the random data (Table 3, Figures 2 and 3). The classification accuracy and k values
were 0.73 ± 0.08 and 0.45 ± 0.16, respectively, with features from the all-relevant feature
selection step. The sensitivity and specificity were 0.77 ± 0.11 and 0.68 ± 0.13, respectively.

Table 3. Significant features for discriminating IGD and HC.

Selection
Frequency (%) Hemisphere Label Feature Type Statistic IGD * HC *

99.6 Left Rostral middle
frontal Local thickness Standard

deviation 0.66 ± 0.05 0.62 ± 0.06

96.8 Left Internal capsule Mean
diffusivity

Standard
deviation

0.000089 ±
0.000013

0.000095 ±
0.000010

84.0 Right Fusiform Mean curvature Mean −3.83 ± 0.26 −4.00 ± 0.23

83.8 Left Fusiform Local thickness Skewness 0.70 ± 0.22 0.86 ± 0.26

83.2 Left Cuneus Local thickness Mean 1.99 ± 0.17 1.88 ± 0.16

77.8 Right Uncinate
fasciculus

Mean
diffusivity Skewness 0.25 ± 0.33 0.03 ± 0.32

74.4 Left Rostral middle
frontal Travel depth Skewness 0.21 ± 0.02 0.22 ± 0.01

72.6 Left Parsorbitalis Local thickness Standard
deviation 0.52 ± 0.05 0.49 ± 0.06

* Data are means ± standard deviation; IGD: Internet gaming disorder; HC: Healthy control.



Brain Sci. 2022, 12, 44 7 of 11

Figure 2. Identified features that discriminated IGD subjects and HCs. IGD = internet gaming
disorder; HC = healthy control; (A) left cuneus; (B) left fusiform; (C) left parsopercularis; (D) right
rostral middle frontal; (E) right uncinate fasciculus; (F) right fusiform; (G) left internal capsule; (H) left
rostral middle frontal.

Figure 3. Identified features that discriminated IGD subjects and HCs. IGD = internet gaming
disorder; HC = healthy control; std = standard deviation.

4. Discussion

In this study, we employed RF to discriminate between subjects with IGD and HCs
with a 73% accuracy. More importantly, alterations in rMFG, fusiform, cuneus, IFG, IC, and
UC were identified, contributing to the models during the all-relevant feature selection
process. Previous studies have constructed machine learning models to discriminate
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between IGDs and HCs using neuroimaging data. Song et al. employed a modified
connectome-based predictive model (CPM) to identify resting-state connections associated
with IGD [1]. Although they achieved higher accuracy (78.76%), the lack of diffusion-
weighted MR imaging data may have limited the efficiency of the constructed classifier
because many previous studies have reported white matter abnormalities. Our study
is the first attempt to characterize brain morphological changes of IGD subjects using a
radiomics-based classification model considering the properties of both gray and white
matter, providing a more comprehensive understanding of the neuroanatomical alterations
related to IGD. The same analysis approach has been successfully applied for the diagnosis
of attention-deficit hyperactivity (ADHD) [14].

Our findings demonstrate that gray matter abnormalities in individuals with IGD
were most frequently located in the MFG, IFG, cuneus, and fusiform regions, which are
reportedly related to cognitive control, decision making, and reward processing [6,11,21].
Curvature, local thickness, and depth are measures frequently used to characterize cortical
folding patterns. Bilateral fusiform was important in the present classifier. Previous neu-
roimaging studies [22–24] have reported similar findings and indicated that the activated
fusiform gyrus is associated with game craving, semantic processing, disembodiment, and
working memory [22]. Local alterations in thickness may further reflect inner impaired
function. In the human brain, the morphologies of the cortical gyri and sulci are complex
and variable among individuals, which may cause and reflect abnormal function. Local
cortical thickness, convexity, curvature, and depth are frequently used shape analysis
features for characterizing cortical folding patterns. In the present study, we also found that
IGD was strongly associated with morphometric features in regions of the MFG and IFG,
which play vital roles in frontal-striatal circuits [11,25,26]. In particular, the frontal lobe is
involved in inhibitory control [27–29], which can be easily affected by the long-term use of
Internet games [30]. Abnormal resting-state functional connectivity within frontal-striatum
circuits was observed in IGD in our previous studies, which supports the results of the
present study [26]. Moreover, this study proposed an automated, convenient workflow to
provide a potentially useful method for revealing the brain morphological alternations in
individuals with IGD. The cuneus is considered a visual processing and inhibitory control
center [31]. Previous neuroimaging studies in substance-dependent individuals have ob-
served abnormalities in the cuneus [32]. Pezawas et al. also reported decreased regional
cerebral blood flow in the occipital cortex, including the bilateral cuneus, in heroin-addicted
subjects [33]. Thus, we postulate that structural abnormalities in the cuneus may be partly
responsible for the deficits in the inhibitory control in IGD.

The IC runs from the thalamus to the frontal cortex [34] and is reportedly involved in
reward circuits. However, this association remains speculative and warrants further inves-
tigation [35]. Previous studies have reported abnormalities in IC integrity in individuals
with addiction, while our study results indicated that the standard deviation of the MD
changed in the IC [36]. MD is the mean extent of the three-directional diffusion, which
measures the average diffusion of water molecules within tissues, whereas the trace is the
sum of the three directional diffusions. Thus, an increased MD in white matter generally
indicates disruption of white matter microstructures [37]. Moreover, the standard deviation
can reflect the degree of dispersion of a dataset, and the dispersion of the MD may further
influence the function across the entire IC fiber tract. We also found abnormal MD in the UF,
a white matter tract critical for frontal-temporal lobe functional integration; moreover, the
results of the current study suggested that this circuit involving the frontal, temporal lobe,
and UF may be linked to the cerebral dysregulation associated with IGD [38]. Assuming
that greater white matter consistency promotes the transmission of functional information,
higher consistency might regulate brain activity in projection target regions and even their
functional couplings associated with IGD.

Several limitations of this study should be considered when interpreting the data.
First, our sample size was relatively small, which might have limited the generalizability
of our results. Additional studies with larger, independent, and multicenter datasets
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are needed to confirm our findings. Second, our study used the JHU and DKT atlas.
However, previous studies have demonstrated that different parcellation schemes or spatial
scales generate different results. Further studies should determine which brain atlas is
appropriate for classifying IGD and HCs. Besides, DTI measurement is limited by the
linearity of the diffusion sensitizing gradient. The deviation between the real and measured
orientation of fibers is directionally dependent, what was confirmed in MRI measurement.
The deviation errors can be effectively corrected by preceding the DTI measurement with
the b-matrix Spatial Distribution in DTI (BSD-DTI) calibration [39]; however, we have
missed consideration of the potential systematic errors. In the future, we will try the
BSD-DTI. Moreover, we only recruited subjects aged 13–28 years; although this population
is particularly at risk for IGD, the current results are specific to younger individuals with
IGDs, and additional studies are needed to verify our findings in other age groups.

5. Conclusions

Our study found the brain morphology alterations in the regions of rMFG, fusiform,
cuneus, IFG, IC and UC between IGD subjects and HCs through a radiomics-based machine-
learning method, which may help revealing underlying IGD-related neurobiology mecha-
nisms.
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