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We give the global homotopy classification of nematic
textures for a general domain with weak anchoring
boundary conditions and arbitrary defect set in
terms of twisted cohomology, and give an explicit
computation for the case of knotted and linked defects
in R

3, showing that the distinct homotopy classes
have a 1–1 correspondence with the first homology
group of the branched double cover, branched over
the disclination loops. We show further that the subset
of those classes corresponding to elements of order 2
in this group has representatives that are planar and
characterize the obstruction for other classes in terms
of merons. The planar textures are a feature of the
global defect topology that is not reflected in any local
characterization. Finally, we describe how the global
classification relates to recent experiments on nematic
droplets and how elements of order 4 relate to the
presence of τ lines in cholesterics.

1. Introduction
The textures of liquid crystals and other ordered
media have a long association with topology. This
arose initially through Frank’s introduction of the term
disinclination (now disclination) for the characteristic
lines, or threads, that give nematics their name,
together with a half-integer winding number to classify
them [1]. In the 1970s, the homotopy theory of
defects was developed, providing a description of
discontinuities in ordered media in terms of conjugacy
classes of the homotopy groups πn(G/H), where G
is the symmetry group of the high temperature-
disordered phase and H is the unbroken isotropy
subgroup of the ordered phase [2]. For nematic liquid
crystals, G = SO(3) may be taken to be the rotational
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symmetry group of Euclidean R
3 and H = D∞ the subgroup corresponding to the symmetries of

a cylinder, or rod. The ground state manifold G/H ∼= RP
2 is the real projective plane and it follows

that the line defects, or disclinations, correspond to elements of π1(RP
2) ∼= Z2 and the point defects

to the conjugacy classes of π2(RP
2) ∼= Z. These latter are simply the pairs (q, −q), so that nematic

point defects are classified by Z/(q ∼ −q) ∼= N.
Modern experiments allow for the controlled creation of defects and their manipulation

to produce textures that may serve as soft photonic elements [3,4], novel metamaterials [5–9]
or topologically stabilized memory devices [10,11]. In many cases, this is facilitated by the
immersion of colloidal particles in the liquid crystal, whose surface anchoring properties are used
to imprint features on the nematic director. Arrays of spherical particles allow the defect lines that
entangle them to be controllably reconfigured so as to form any knot or a link [12,13], providing
a practical realization of aspects of knot theory in soft materials [14]. Such particles can also be
dressed by Skyrmion-like excitations that modify and augment the topology [15]. In addition, the
topology of the colloids themselves can be controlled to produce handlebodies [16–18], Möbius
strips [19], knots [20] and even linked particles [21]. Complementary to this, it is also possible
to create handlebody droplets of liquid crystal with an interplay of surface defects with bulk
disclinations [22]. In all of these systems, it is the combined properties of the defects they engender
in the nematic order, and the global textures they create, that are of principal interest rather than
the localized characterization of individual defects that is the focus of the traditional homotopy
theory. Thus, in characterizing them, one would like to determine the global topology of the entire
nematic texture and how it relates to the domain. A feature here is that the region occupied by
the liquid crystal, or more correctly where the director is well defined, i.e. the region exterior
to any inclusions and also excluding the defects, is itself a non-trivial space. For a general set of
disclinations, it is the complement of a link and the topological properties of the liquid crystal will
depend on, and reflect, the topology of this domain. It is clear that the topological classification of
nematic textures in such a domain will correspond to a link invariant: in [23], we stated that
this is the first homology group of the double-branched cover of the link complement. This
group is presented by the Goeritz matrix or the Gordon–Litherland form [24,25] both of which
are readily computable from an ordinary knot diagram, facilitating the explicit calculation of
the homotopy classification for any case of interest. For instance, from this, one finds that there
are eight (pointed) homotopy classes of textures on the complement of the Whitehead link, but
only a single class on the complement of the Kinoshita–Terasaka knot. Here, we describe the
global topology of defects in nematics for a general domain, including a detailed account of the
classification of knotted disclinations, and develop a number of extensions and explicit worked
examples of direct relevance to currently realizable experiments and aimed at illustrating the
richness that is present in the global topology of nematics.

An introductory example, illustrating the general classification problem we describe, is
provided by a pair of linked disclination loops forming the Hopf link, for which there are two
homotopically distinct nematic textures. The most direct way to see this is to observe that the
complement of the Hopf link in S3 has the homotopy type of a torus. Thus, the classification
is the same as that of maps T2 → RP

2 with the property that both the meridian and longitude
of the torus are sent to the non-trivial element of π1(RP

2), because each goes around one of the
two disclination lines making up the Hopf link. Such maps have been classified by Jänich [26],
who showed that there are only two. The result has been revisited several times in the light of
recent experimental advances. A geometrical construction developed by Čopar & Žumer [27]
tracks the local profile of each disclination loop along their contour length to define a self-
linking number, making direct use of the nature of the textures observed around defect lines
in experiments with spherical colloids. This self-linking number is shown to be invariant modulo
two. A complementary approach views the dichotomy in terms of a ‘hedgehog’ or ‘Skyrmion’
charge, analogous to the element of π2(RP

2) that classifies point defects, with the subtlety that
the non-orientability around the cycles of the torus allows it to be reduced modulo two [28,29].
The two Hopf link textures can be distinguished in experimental realizations by looking at
images taken under crossed polarizers; lighter (and darker) areas of the image form a surface
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whose boundary is the link, and the two homotopy classes differ in the linking number induced
by this surface [14,23]. This example of the Hopf link captures the general structure of the
classification for any link. The material domain has the homotopy type of a two-complex, X, so
that the classification is given by maps X → RP

2 with the property that around each disclination
line they induce the non-trivial element of π1(RP

2). A second type of data, the analogues
of degrees or elements of π2(RP

2), can be associated with each two-dimensional cell of the
complex, which, as for the Hopf link, is subject to a reduction coming from the non-orientable
behaviour of the director around the one-skeleton of the complex. This is an example of a twisted
cocycle, representing a cohomology class with local coefficients. A general strategy for computing
such invariants using obstruction theory was provided by Steenrod in his classic text on fibre
bundles [30] and is essentially the approach we employ here.

The pointed homotopy classes of nematic textures are in one-to-one correspondence with the
elements of an Abelian group, the first homology group of the double-branched cover, branched
over the disclination loops. However, there is, in general, no canonical way to identify the set of
homotopy classes with the group structure. For instance, in the example of the Hopf link, both
textures could equally be regarded as the zero element of Z2. Nonetheless, some elements of
the group structure do correspond to physical properties of the liquid crystal texture. Again,
in the example of the Hopf link, this is that both homotopy classes have representatives as
planar textures, i.e. in which the director lies everywhere in the xy-plane, having no component
along z. This is not a property exhibited by every homotopy class in the general case; we show
here that it is true only for those homotopy classes that correspond to elements of order 2.
Thus, for example, in the case of the Borromean rings where the group is Z4 ⊕ Z4, there are 16
homotopy classes of nematic textures,1 four of which have representatives that are planar. Part
of the physical significance of such planar textures may be conveyed as follows. Liquid crystals
reorient readily in response to applied electric or magnetic fields. For materials with negative
dielectric (or diamagnetic) anisotropy, the director reorients to lie orthogonal to the direction of
the applied field, so that if the field is applied in the z-direction, then the director will lie primarily,
and if possible exclusively, in the xy-plane. The homotopy classes with planar representatives
correspond to the low energy states when a material with negative dielectric anisotropy is placed
in a uniform electric field. In these conditions, the homotopy classes that do not possess planar
representatives will necessarily exhibit regions where the director is parallel (or anti-parallel) to
the field, though for energetic reasons such regions will be spatially localized, like the familiar
π -walls [31]. These regions of localized non-planarity are merons that can be thought of as a
fractionalization of Skyrmions. Where they cannot be eliminated to give a purely planar texture
they represent (in the sense of Poincaré duality), an obstruction and so reflect the non-trivial
topology of the texture.

The global approach to defect topology provides a classification of nematic textures in terms of
topological properties of the entire domain and can be contrasted against the homotopy groups
that reflect only the behaviour of the director field in the immediate vicinity of each defect.
It reveals an essential dichotomy between homotopy classes of textures on the complement
of knotted and linked disclination loops: that of planar and non-planar textures. While any
homotopy class can be related to any other through decoration with Skyrmion-like distortions,
in some cases, they can be removed by homotopy—the planar textures—and in some cases, they
cannot. This difference, as well as the more general homotopy classification, is fundamentally
global in nature and is not captured by local data on the boundary of each link component.
Algebraically, the planar textures associated with the link are enumerated by the order 2 subgroup
of the first homology of the double-branched cover. Geometrically, they are more subtle, and can
be associated with distinct spanning surfaces for the link. In the case of cholesterics, the Skyrmion-
like distortions that distinguish non-planar textures are realized as λ lines (defects in the pitch)
and the global theory gives constraints on their total number.

1There are 16 pointed homotopy classes, but only 10 free classes after accounting for the equivalence x ∼ −x. This does not
affect the number of planar textures.
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2. Homotopy classification of nematic textures
To study the defects from a global perspective, we consider homotopy classes of maps from a
material domain Ω into RP

2. The domain may incorporate inclusions such as colloidal particles
as well as defects so that, in general, Ω will be an open subset of R

3 from which a neighbourhood
of a collection of points and a collection of closed loops, representing both colloidal inclusions
and defects in the nematic director, has been removed. For example, for a single point defect
at the origin, the domain is R

3 − N(0) and for a knotted or linked defect, L, the domain is
R

3 − N(L), where N denotes an open neighbourhood. We impose free boundary conditions (up to
a topological class) on all defects and other boundaries (such as colloidal particles) in the system.
This corresponds to weak anchoring conditions on the colloidal inclusions. As a consequence
of this, our classification will not consider any phenomena associated with the Hopf invariant,
π3(RP

2) = Z, though we would expect that it may play a role in cases with fixed boundary
conditions and/or the case of a periodic domain.

By our assumptions, Ω will be homotopy equivalent to a two-complex [24] and the problem
becomes homotopy classes of maps from an orientable two-complex, X(Ω), into RP

2. We note that
this also includes closed surfaces as domains, for example, a torus enclosing a defect line, which
will serve as a simple example in the text. The homotopy classification of maps from a general
p-complex into p-projective space has been solved through the obstruction theory by Olum [32],
with accounts for the case of surfaces given by Eells & Lemaire [33], as well as by Adams [34].
The result is that free homotopy classes of maps from an oriented two-complex are given by two
invariants, associated with π1(RP

2) and π2(RP
2), respectively.

(a) First invariant
The first invariant of the texture describes its orientability. Associated with each closed loop, γ ,
in the domain is an element of π1(RP

2) = Z2 which records whether the nematic preserves or
reverses orientation around γ . One thus obtains a homomorphism of fundamental groups

θ : π1(Ω) → π1(RP
2). (2.1)

θ factors through the Abelianization of π1(Ω) to a map on the first homology H1(Ω) → Z2 and
thus defines a cocyle2

w1(n) ∈ H1(Ω ; Z2), (2.2)

which we will refer to as the first invariant for a nematic texture. From a physical perspective,
w1(n) can be thought of as a Z2 gauge field [35,36]. As an example, for a nematic in R

3 containing
N disclinations, H1(Ω ; Z2) = Z

N
2 . Because, by definition, n is non-orientable around disclination

lines, in this case, w1(n) = (1, 1, . . . , 1) ∈ Z
N
2 . If, instead, the first of these lines corresponds

to a toroidal colloidal particle [16], or another non-trivial structure in the material domain,
around which the liquid crystal is orientable, then w1(n) = (0, 1, . . . , 1) ∈ Z

N
2 . Note that the global

information about the orientability of the nematic is just the sum of the local information around
each loop.

(b) Skyrmion data
The second type of topological data characterizing a nematic texture is associated with Skyrmions:
to each surface in the domain, closed or with boundary contained in the boundary of the domain,
one can assign an element of π2(RP

2) = Z, which records the number of Skyrmions on that surface.
Thus, we obtain a cocycle in degree two. The Skyrmions can be moved around the sample under
homotopy and in doing so acquire a twisting coming from the non-trivial action of π1(RP

2) on
π2(RP

2). The general algebraic statement of this is that the topologically distinct ways of adding

2Given a map θ : π1(Ω) → Z2, there is a unique map w1, so that θ = w1h in the sequence of maps π1(Ω)
h−−−−−−→

H1(Ω)
w1−−−−−−→ Z2, where h, the Hurewicz map, is the Abelianization of π1(Ω).
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Skyrmion-like distortions to a nematic texture are in one-to-one correspondence with elements in
the set

H2(Ω ; Zw1 )/(x ∼ −x), (2.3)

where H2(Ω ; Zw1 ) is the twisted cohomology group with the local coefficient system Z
w1 given by

the group of integers along with the homomorphism θ : π1(Ω) → Z2, where Z2 is now thought of
as the automorphism group of Z and acts through multiplication by −1 around a non-orientable
loop, describing the reversal of Skyrmion charge under the antipodal map. The global equivalence
x ∼ −x accounts for the passage from pointed to free homotopy classes of maps, the generalization
of the well-known Z → N reduction in the case of a single point defect.

In general, the particular element of H2(Ω ; Zw1 ) that a given pointed homotopy class
corresponds to cannot be identified; as we will show in §4, all elements of order 2 serve as
equivalent choices for the null map. However, by choosing a reference map on the one-skeleton of
X(Ω), (as is done, in [32,33]), one may identify pointed homotopy classes of textures with elements
in H2(Ω ; Zw1 ).

3. Computation
To give an effective computation of the group H2(Ω ; Zw1 ), we will make use of a double cover for
the domain Ω , denoted Ωw1 , defined3 so that n is orientable along the projection of any loop in
Ωw1 . By construction, one can then lift the director field on Ω to an orientable field on the double
cover to create a map n̂ : Ωw1 → S2. Associated with Ωw1 is the deck transformation t, t2 = 1, which
permutes the sheets of the cover, and consistency of the lift demands that n̂ reverses orientation
on switching between corresponding points on the two sheets, Ω1 and Ω2, of the cover. This can
be phrased as the Z2 equivariance condition n̂(x) = −n̂(tx), or equivalently demanding that the
following diagram commutes

Ωw1
n̂−−−−−→ S2

p1

⏐⏐� p2

⏐⏐�
Ω

n−−−−−→ RP
2

(3.1)

where p1 and p2 are the projection maps associated with the two covering spaces Ωw1 and S2.
Homotopy classes of nematic textures can then be classified by Z2 equivariant maps Ωw1 → S2,
denoted [Ωw1 , S2]∗eq. Arbitrary maps, not necessarily equivariant, are classified by the second
cohomology group, H2(Ωw1 ; Z), and the equivariant maps are correspondingly classified by the
equivariant cohomology4 H2(Ωw1 ; Z)eq, equivalently, the twisted cohomology of Ω . Taking into
account, the ambiguity of sign in the lift from n to n̂ gives an equivalence relation between x and
−x in H2(Ω ; Zw1 ).

For computational purposes, it is useful to describe the covering space Ωw1 in terms of
branch sets, illustrated in figure 1, whose topology is determined by the Poincaré dual of
w1(n), PD[w1] ∈ H2(Ω , ∂Ω ; Z2). For our purposes, a branch set B will be a connected properly
embedded orientable5 codimension 1 submanifold of Ω such that [B] = PD[w1(n)]. The geometric
interpretation of B is an orientable submanifold of Ω chosen such that if γ is an oriented loop in

3More generally, consider the sequence of maps π1(Ωw1 )
p∗

−−−−−−→ π1(Ω)
θ−−−−−−→ Z2

, where p∗ is the map on the
fundamental group induced by the projection map, p, of the cover. Then, the cover is defined, so that Image(p∗) = Ker(θ).
4The equivariant cohomology H•(Ωw1 )eq is the cohomology of the chain complex C•(Ωw1 )eq ⊂ C•(Ωw1 ) consisting of cochains
of the form c − t	c, where t	 is the map induced by the deck transformation of Ωw1 .
5Note that, in general, one does not have to choose B to be orientable, we demand this only for convenience. If we relax the
assumption of orientability, then a class of branch sets can be obtained through the Pontryagin–Thom construction [37]. If α

is an equatorial RP
1 ⊂ RP

2, then n−1(α) gives a codimension 1 set Bα in Ω . Any loop γ with θ(γ ) = 1 must intersect Bα an
odd number of times, because α represents a non-trivial cycle in π1(RP

2), and any two non-trivial cycles on RP
2 generically

intersect an odd number of times, so Bα defines a branch set.
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W1

B
(a) (b)

B1 B2

W1W2

Figure 1. (a) Branch set for a trefoil knot disclination line, equivalent to a Seifert surface. (b) Schematic of the covering space
Ωw1 , the two sheets,Ω1 andΩ2 are glued together along two copies of the branch set.

Ω , then the intersection number of γ and B is even if n is orientable around γ and odd if n is
non-orientable around γ , or

Int(B, γ ) ≡ θ (γ ) mod 2. (3.2)

An example of relevance is the case Ω = R
3 − N(L), where N(L) is a neighbourhood of a set of

disclination lines L. Because n is non-orientable around the line defects, B forms a Seifert surface
for L, illustrated in figure 1. In terms of this branch set, the double cover Ωw1 is formed by taking
two copies of Ω , Ω1 and Ω2, each cut along B, and then gluing the pieces together, so that the top
side of B in Ω1 is glued to the bottom side of B in Ω2 and vice versa, illustrated in figure 1.6

To compute H2(Ω ; Zw1 ) when the map θ is non-trivial, we will pass through Poincaré–
Lefschetz duality and instead compute the isomorphic-twisted relative homology group,
H1(Ω , ∂Ω ; Zw1 ), and equivalently, the equivariant homology group on the cover Ωw1 . The
decomposition of Ωw1 through the branch set B allows one to write down a Mayer–Vietoris
sequence

→ Hn(Bw1 , ∂Bw1 )eq
i−−−−−→ (Hn(Ω1, ∂1) ⊕ Hn(Ω2, ∂2))eq −−−−−→ Hn(Ω , ∂Ω ; Zw1 ) → (3.3)

where ∂i = ∂Ωi ∩ ∂Ωw1 . As Bw1 has two components, B1 and B2, the homology splits H•(B, ∂B) ∼=
H•(B1, ∂B1) ⊕ H•(B2, ∂B2). The equivariant homology of Bw1 then consists of elements of
H•(B, ∂B) that are of the form (x, −x). Similarly, (H1(Ω1, ∂1) ⊕ H1(Ω2, ∂2))eq consists of elements
of the form (y, −y). The equivariance condition means that the behaviour in one sheet of the
cover determines the behaviour on both. As such, if H0(Bw1 , ∂Bw1 ) = 0, as will be the case in our
examples, then the twisted cohomology may be computed from information on one sheet as

H2(Ω ; Zw1 ) = H1(Ω − B, ∂Ω)/R, (3.4)

where R are the set of relations determined by the inclusion map i in (3.3), restricted to Ω1.
To define the relations R, we write i as i = i1 + i2, corresponding to inclusions from B1 and B2,
respectively. Giving Bw1 an orientation invariant under the deck transformation, we can further
split i as i+1 − i−1 + i+2 − i−2 , where ± denotes the inclusion in the positive (negative) direction as
defined by the orientations. The restriction to Ω1 gives i|Ω1 = i+2 − i−1 and taking into account the
equivariant form of (3.3) allows the relations R to be written as

i+x + i−x = 0, (3.5)

where x ∈ H1(B, ∂B) is now a relative homology cycle in the downstairs branch set.

(a) Nematic textures on the torus and other surfaces
As a first illustration, we give the computation of homotopy classes of nematic textures on
a toroidal domain, Ω = T2, using the formalism we have just described. This is a classic

6If θ is trivial and n is orientable, then B is the empty set. In this case, Ωw1 is two disjoint copies of Ω , with t swapping
between sheets. Correspondingly, the coefficient system Z

w1 is trivial, and we need only compute the regular cohomology
of Ω . In the case of N point defects, Ω = ∨NS2 and H2(Ω ; Z) = Z

N , with free homotopy classes, then given by Z
N/x ∼ −x.

This demonstrates the known fact that taking into account global information removes the ambiguity in adding point defect
charges. One can fix the sign of only one point defect, with the charge of the others full integers in comparison.
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e2
e1

q1

q2

B

e2
e1

q1

–q2

B

Figure 2. Schematic of twisted homology on the torus. e1 and e2 label the longitude and meridian, respectively. We assume
the nematic is non-orientable along e2, so θ (e1)= 0 and θ (e2)= 1. A branch setBmust intersect e2 an odd number of times,
which can be achieved by setting it equal (homologous) to e1. Elements in the twisted homology H0(Ω ;Zw1 ) can then be
described by the total charge of a set of point charges on the torus whose sign flips upon passing throughB. This establishes an
equivalence between q1 + q2 and q1 − q2, for any q1, q2 ∈ Z, and so gives the topological classification asZ2. (Online version
in colour.)

calculation [26] that is used to model the neighbourhood of a defect line by setting n to be non-
orientable around the meridian of the torus. It is also homotopy equivalent to the complement of
the Hopf link in S3 and so models a domain corresponding to the complement of linked defects,
by setting n to be non-orientable around both the meridian and longitude of the torus. It is easy to
see that (3.4) and (3.5) continue to apply, except that the relative homology groups are in degree 0
rather than degree 1.7

The first step in the classification is to give the possible first invariants, or maps π1(T2) → Z2.
The fundamental group of the torus is π1(T2) = Z

2, generated by the meridian and a longitude,
and so the maps are specified by whether n is orientable or not along each of the meridian and
longitude of the torus. If w1(n) is trivial, then the texture is orientable, and one can immediately
lift to a map T2 → S2, which is classified by degree. Taking into account the relation x ∼ −x, one
finds that the classification of textures is given by the natural numbers, N, as in the case of the
sphere.

In the non-orientable case, w1(n) non-trivial, we need to compute the twisted homology
group H0(T2; Zw1 ). We first construct a branch set B. If e1 and e2 are a longitude and meridian,
respectively, then the intersection form on the first homology is given in terms of Pauli matrices
by iσy, which determines the homology class of possible branch sets. In the example shown in
figure 2, n is non-orientable along e2, and so B is chosen as an embedded circle homologous to e1.
In this case, we have H0(T2 − B) = Z, the inclusion maps, i+ and i−, are just inclusions of points,
so (3.4) tells us that the twisted cohomology is given by x ∈ Z with the relation 2x = 0, and thus
is isomorphic to Z2. It is clear that this result is the same for each choice of non-trivial θ . As an
immediate extension, we get the equivalent result for any closed orientable surface, Σg, of genus

g. Free homotopy classes of maps, n : Σg → RP
2, are given by an element w1(n) ∈ H1(Σg; Z2) = Z

2g
2 ;

if this is trivial, then they are distinguished by an unsigned degree (N), whereas if it is non-trivial,
then there are only two distinct classes (Z2).

Figure 2 shows a diagrammatic version of this computation. Elements in the twisted homology
H0(Ω ; Zw1 ) can be described by the total charge of a set of point charges on the torus whose
sign flips upon passing through B. As shown in figure 2, this establishes an equivalence between
q1 + q2 and q1 − q2, for any q1, q2 ∈ Z, and so gives the topological classification as Z2.

(b) Computation for an arbitrary set of defects
Now, we will compute the homotopy classes of nematic textures on the complement of an
arbitrary defect set. We first consider a nematic texture in R

3 with a prescribed set of line defects, L,

7They come from applying Poincaré–Lefschetz duality to H2(Ω ; Zw1 ) and so are in co-degree 2.
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c1

b1 b2

e1

a1

c2g+1

p+ e1 = a1

p– e1

b2g+1

c2

(b)

(a)

c2g + 1

Figure 3. (a) Various cycles relating to B and L. B is represented as a surface with g sets of double handles along the top
and |L| − 1 sets of loops along the bottom. The basis a gives a set of tethers that connect the link components. The cycles b
gives a basis for H1(B), and the cycles {bi} ∪ {ej} for i ∈ [1, 2g] and j ∈ [1, |L| − 1] give a basis for H1(B, ∂B). The basis c
generates H1(S3 − L). {ai} ∪ {ci} gives an overcomplete basis for H1(S3 − B, ∂B). The bases {bi} and {ci} are chosen such
that Lk(ci , bj)= δij . (b) The relationship 2ai = c2g+i .

and no other singularities, so that n is non-orientable around each component of L. Furthermore,
we will assume that lim|x|→∞ n(x) = n0, a constant—we will relax this assumption later. Our
assumption that n is uniform at infinity allows us to compactify the domain and consider the
domain Ω = S3 − N(L). A branch set, B, for this domain, is a Seifert surface for L, as shown in
figure 1. The double cover Ω̂ is now the double cyclic cover [24]. Because B is a surface with
boundary, H0(B, ∂B) = 0, and so we use (3.4). We are thus required to compute H1(Ω − B, ∂Ω)/R.

To do so, we make use of the cycles shown in figure 3. The cycles {bi}, i = 1, . . . , 2g + |L| − 1,
give a basis for the homology of the branch set H1(B; Z), whereas the cycles {bi} ∪ {ej} for i =
1, . . . , 2g and j = 1, . . . , |L| − 1 give a basis for the relative homology H1(B, ∂B; Z). The cycles {ci},
for i = 1, . . . , 2g + |L| − 1, give a basis for the first homology of the complement H1(Ω − B; Z), dual
to the {bi}. Finally, the relative cycles {ai}, for i = 1, . . . , |L| − 1, may be thought of as positive push-
offs of the {ei}, ai = p+ei, which together with the {cj} give an overcomplete basis for the relative
homology of the complement H1(Ω − B, ∂Ω ; Z). The redundancy in the description is removed by
the set of relations, denoted B, obtained by setting cycles corresponding to each of the longitudes
of the link components to zero. These can be written in terms of cycles on the surface as p+bi = 0
(equivalently p−bi = 0), where 2g + 1 ≤ i ≤ 2g + |L| − 1.

We obtain the additional relations R in (3.4) by taking into account the push-off of cycles in
H1(B, ∂B). H1(B, ∂B) = Z

2g ⊕ Z
|L|−1, where the first factor is generated by the first 2g bi in figure 3,

and the second factor is generated by the ei. Correspondingly, there are two sets of relations,
denoted A and C. The relations of type A come from setting p+bi + p−bi = 0. Relations of type
C are written as p+ei + p−ei = 0. From figure 3, we conclude that these relations take the form
2ai = c2g+i.

We have 2g relations of type A, and |L| − 1 relations of type B and C, which can be written as

Ai := b+
i + b−

i =
2g+|L|−1∑

j=1

Lk(bj, b+
i ) + Lk(bj, b−

i ) = 0 (3.6)

Bi := b+
2g+i =

2g+|L|−1∑
j=1

Lk(bj, b+
2g+i) = 0 (3.7)

and Ci := 2ai − c2g+i = 0 (3.8)



9

rspa.royalsocietypublishing.org
Proc.R.Soc.A472:20160265

...................................................

and combined into a block matrix presenting H2(Ω ; Zw1 ), where the horizontal blocks correspond
to the first 2g {ci}, the last |L| − 1 {ci} and the {ai} and the vertical blocks correspond to relationships
of type A, B and C, as ⎛

⎜⎝A(1) A(2) 0
B(1) B(2) 0

0 1 −2

⎞
⎟⎠ . (3.9)

By taking into account relationships of type C, it is clear that an equivalent group is presented
by the matrix

M1 =
(

A(1) 2A(2)

B(1) 2B(2)

)
. (3.10)

Now, let S be the Seifert matrix for the link L, then, in our notation, the matrix

M2 = S + ST =
(

A(1) A(2)

2B(1) 2B(2)

)
(3.11)

is a presentation matrix for the first homology of the double-branched cover of S3 − L [24], which
we denote H1(Σ(L)). M1 and M2 are similar matrices with identical diagonal elements and it
follows that they present the same group. From this, we observe that the number of topologically
distinct nematic textures associated with the defect set L is given by elements of H1(Σ(L))/x ∼ −x,
where the equivalence relation comes, as usual, from the lack of orientation of the director. If L is
a split link, then it is a standard result [24,38] that for a link L with N split components Li

H1(Σ(L)) = Z
N−1 ⊕

⊕
i

H1(Σ(Li)). (3.12)

The factors of Z at the front can be thought of as corresponding to the point-defect charges of
the split components. There are N − 1 of them rather than N, because our uniform boundary
conditions demand that the total charge is zero, which reduces the degrees of freedom by one.
We can lift this condition by supposing that there is a point defect ‘at infinity’ in S3, the charge
of this point defect compensates for the charges of all the other defects. Finally, we can also add
an arbitrary number of point defects into our system. Doing this, we obtain the following result.
Let n be a director field for a nematic liquid crystal in R

3 with a defect set D =P ∪ L, where P is
the set of point defects and L= ∪iLi is the set of line defects, with each Li a non-split link or knot.
Then, the topology of the texture n is given by an element of the set⎛

⎝⊕
pi∈P

Z

⎞
⎠⊕

⎛
⎝⊕

Lj∈L
(Z ⊕ H1(Σ(Lj)))

⎞
⎠/ x ∼ −x. (3.13)

The group H1(Σ(L)), and consequently, the homotopy classes of textures on the complement
of knots and links, holds a considerable amount of richness. It can be computed in a variety
of ways [24,38], with perhaps the simplest being through the Goeritz matrix associated with
any regular projection. For a knot K, the order of the group |H1(Σ(K))| is always a finite odd
integer, known as the determinant of the knot. For a link, there is a richer set of phenomena,
where |H1(Σ(L))| is either even or infinite. This is illustrated in table 1 which shows H1(Σ(L)) for
the (p, q) torus links with p, q ≤ 12 (which is a knot if gcd(p, q) = 1), counting pointed homotopy
classes of nematic textures on the complement of the link. There are three properties of these
groups one should observe: there are complex knots for which |H1(Σ(K))| = 1; there are some
links for which |H1(Σ(L))| = ∞ and in the case that |H1(Σ(L))| is finite, it is even rather than odd
as in the case of knots. Links for which |H1(Σ(L))| = ∞ have the interesting geometric property
of admitting disconnected spanning surfaces [24]. This is trivially true in the case of a split
link, but less obvious in general.8 To see this note that if a link supports disconnected spanning
surfaces, then these may serve as a branch set for a nematic texture. As such, n will be orientable

8The authors realized this during an experiment with soap films. A soap film on the (4, 4) torus link, for which |H1(Σ(L))| = ∞,
will collapse until it forms two linked Hopf links.
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Table 1. H1(Σ (L)) for (p, q) torus links with 2≤ (p, q)≤ 12. xn implies a group (Zx )n, integer summands are given as usual.
When gcd(p, q)= 1, one obtains a knot and |H1(Σ (L))| is given by the Alexander polynomial (tpq − 1)(t − 1)/(tp − 1)(tq −
1) evaluated at−1.

p \ q 2 3 4 5 6 7 8 9 10 11 12

2 2 3 4 5 6 7 8 9 10 11 12
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3 3 22 3 1 Z
2 1 3 22 3 1 Z

2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4 4 3 2 × Z
2 5 12 7 4 × Z

2 9 20 11 6 × Z
2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5 5 1 5 24 5 1 5 1 Z
4 1 5

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6 6 Z
2 12 5 2 × Z

4 7 24 3 × Z
2 30 11 4 × Z

4
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7 7 1 7 1 7 26 7 1 7 1 7
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

8 8 3 4 × Z
2 5 24 7 2 × Z

6 9 40 11 12 × Z
2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

9 9 22 9 1 3 × Z
2 1 9 28 9 1 3 × Z

2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

10 10 3 20 Z
4 30 7 40 9 2 × Z

8 11 60
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

11 11 1 11 1 11 1 11 1 11 210 11
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

12 12 Z
2 6 × Z

2 5 4 × Z
4 7 12 × Z

2 3 × Z
2 60 11 2 × Z

10
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

when restricted to the boundary of a thickened copy of one spanning surface component, Ba.
n|Ba will then be orientable, and one may compute a degree for this map (up to a sign). These
degrees correspond to the integer summands. The last property, that for links |H1(Σ(L))| may be
even, is the most physically relevant for nematic textures. As we have discussed previously [23],
the distinct homotopy classes of nematic textures on the complement of knots correspond to
entangling the knot with a ‘Skyrmion tube’ in a non-trivial way, or equivalently creating a tether
with a double twist cylinder cross section that connects two parts of the knot. For links, not all
the textures have this interpretation. Links with elements of order 2 in H1(Σ(L)) possess multiple
topologically distinct planar textures.

4. Planar textures
Nematic textures on the complement of the Hopf link have the property that they may all be
brought into a planar form, with the director lying everywhere in the xy-plane. Explicitly, there
are two distinct homotopy classes, representatives for which may be given in the form

n =
(

cos
(

φ

2

)
, sin

(
φ

2

)
, 0
)

, (4.1)

where φ is the argument of a simple polynomial function, for instance

φ = Arg((x + i)2 + (y − 1)2 + (z − i)2)((x − i)2 + (y + 1)2 + (z − i)2) (4.2)

and

φ = Arg((x + i)2 + (y − 1)2 + (z − i)2)((x + i)2 + (y + 1)2 + (z + i)2), (4.3)

which come from the Milnor fibration of the Hopf link complement [23,39,40]. The two functions
differ only by conjugation of the second factor. In this example, the two components of the Hopf
link correspond to the curves (± cos(t), ±1 ± √

2 sin(t), cos(t)) and one may check that the surface
φ = π induces linking number +1 between them in the first case, (4.2), and linking number −1 in
the second, (4.3).

The arguments of each of the two factors in (4.2), θ1 and θ2, say, define angles that wind around
each of the disclination lines and exhibit the homotopy equivalence of the Hopf link complement
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with the torus, T2, mentioned in Introduction.9 Thus, the two Hopf link textures are equivalent
to the maps T2 → RP

2 of the form (4.1) with φ = θ1 ± θ2. In these textures, the director is non-
orientable around both the meridian and longitude of the torus. When it is only non-orientable
around one of them, as is the case for a Janus colloid [18,19], there are still only two homotopy
classes of maps but again each of these has a planar representative; examples, for each class, are
the textures of the form (4.1) with φ = θ1 and φ = θ1 + 2θ2. Indeed, a little work shows that all
non-orientable textures on the torus may be brought into such a planar form [26]. By contrast,
for textures that are orientable, which are classified by an unsigned degree, the only charge q ∈ N

for which the texture may be made planar is the trivial case, q = 0. All others are essentially non-
planar. It may be noted that the surface normal to a toroidal colloidal particle, corresponding to
homeotropic anchoring, has degree 0 and so is in the planar class.

This dichotomy between planar and non-planar textures represents a fundamental feature of
the global theory of nematic defects. As the neighbourhood of any disclination loop is a torus,
and the texture on such a torus can be made planar [26], the local texture in a neighbourhood
of the disclinations is not sensitive to the dichotomy of the global theory. That this is a genuine
topological feature of the global theory of nematics follows from the topological characterization
we provide here: namely the number of planar textures supported by a given link is equal to
the number of elements in the order 2 subgroup of H1(Σ(L)). Note that this gives a unique
planar texture on the complement of any knotted defect line. Some links also have unique planar
textures; an example in table 1 is the (5, 10) torus link, which has an infinite number of homotopy
classes of textures but only one of them admits a planar representative. Conversely, some links
have planar representatives for all of their homotopy classes; examples from table 1 are the (n, n)
torus links for n odd, which have 2n−1 distinct planar textures and none that are not planar.
We now proceed to establish this result.

Any planar texture is a map of the form Ω → RP
1. Of course, such a texture can also be

viewed as a map into RP
2, because RP

1 is a subset of RP
2. The question, then, is which

homotopy classes of maps Ω → RP
2 are obtained in this way? The question may be turned

around and phrased equivalently as asking for the nature of any obstruction to compressing a
map Ω → RP

2 to a planar one, Ω → RP
1. This question is addressed directly. Given any nematic

texture n : Ω → RP
2, we try to compress it to a planar one in an inductive manner proceeding

dimension by dimension on a cell decomposition for the domain. It is not hard to see that every
texture compresses over the one-skeleton, so the first obstruction arises with the behaviour on the
two-cells.10 Having homotoped the director so that it is planar on the one-skeleton, the texture
on each two-cell corresponds to a map from a disc into RP

2 such that its boundary lies in an
equatorial RP

1, i.e. (D2, ∂D2) → (RP
2, RP

1), and hence to an element of the relative homotopy
group π2(RP

2, RP
1). If the texture is actually planar (and not simply homotopic to a planar one),

then this element is trivial. Thus, every map Ω → RP
2 gives rise to a two-cocycle with local

coefficients in π2(RP
2, RP

1). Under homotopy, this two-cocycle will change but its cohomology
class does not. For any planar texture, this class is trivial and the obstruction to compressing any
texture to a planar one is characterized by a degree 2 cohomology class with local coefficients in
the relative homotopy group π2(RP

2, RP
1).

To describe the local coefficient system note that any map D2 → RP
2 must be orientable

which gives the isomorphism (as groups) π2(RP
2, RP

1) = π2(S2, S1) = Z
2.11 These two integers

can be thought of as counting the number of times the map wraps around the northern and
southern hemispheres, respectively, with the winding number in S1 around the boundary given
by their difference. This can be viewed as a type of charge fractionalization, illustrated in figure 4,
where a whole Skyrmion is split into two halves (merons), corresponding to coverings of the
two hemispheres. In the liquid crystalline case, one must also take into account the action of

9The ratio of the magnitudes of the two factors represents a contractible coordinate.

10This is the only potential obstruction given that Ω is homotopy equivalent to a two-complex.

11To compute π2(S2, S1), one takes the relevant short exact sequence in relative homotopy groups,

0 −−−−−−→ Z −−−−−−→ π2(S2, S1) −−−−−−→ Z −−−−−−→ 0, from which one obtains π2(S2, S1) = Z
2.



12

rspa.royalsocietypublishing.org
Proc.R.Soc.A472:20160265

...................................................

(0, –1) (1, 0) (–1, 0) (0, 1)

Figure 4. Non-trivial elements of π2(S2, S1)= Z
2 and charge fractionalization of Skyrmions. Elements are specified by two

integers, (p, q) which give the number of times the map wraps around the northern and southern hemispheres. The winding
in the equatorial S1 around the boundary is given by p − q. The antipodal map sends (p, q) to (−q,−p) which preserves the
winding on the boundary as x → −x is orientation preserving in two dimensions.

π1(RP
2) on π2(RP

2, RP
1) which sends a positively oriented northern hemisphere to a negatively

oriented southern hemisphere and so on, and so sends (a, b) to (−b, −a). This gives π2(RP
2, RP

1)
the structure of the group ring Z[Z2].

The homotopy of any nematic texture n : Ω → RP
2 to be planar on the one-skeleton gives a

homomorphism of twisted cohomology groups

ρ : H2(Ω ; Zw1 ) → H2(Ω ; Z[Z2]w1 ), (4.4)

in which the planar textures correspond to the kernel. We thus need to compute the group
H2(Ω ; Z[Z2]w1 ) and the map ρ. H2(Ω ; Z[Z2]w1 ) admits the same decomposition through the
covering space as H2(Ω ; Zw1 ). On the branch set, Bw1 , and the sheets of the cover, Ω1 and Ω2, the
coefficient system is trivial and given by Z

2. The equivariance condition now requires elements
in (3.3) to be of the form ((x1, x2), (−x2, −x1)) ∈ H1(Bw1 , ∂Bw1 ; Z2) and so on. It follows that

H2(Ω ; Z[Z2]w1 ) =
⎛
⎝ 2⊕

j=1

H1(Ω − B, ∂Ω)

⎞
⎠/P, (4.5)

where the relations P are of the form (
i+ i−
i− i+

)(
x1
x2

)
= 0, (4.6)

and the structure of the maps i+ and i− is inherited from (3.3).
To define the map ρ, we first select any planar texture n0 to represent the element 0 in

H2(Ω ; Zw1 ). Homotopically distinct modifications of n0, that do not alter the behaviour on the one-
skeleton, are achieved via the addition of Skyrmions to two-cells. The addition of a degree one
Skyrmion to a given two-cell corresponds to the addition of a co-oriented northern and southern
hemisphere (the element (1, 1) in π2(RP

2, RP
1)). It follows that ρ acts as the diagonal map, sending

x → (x, x) and that the texture is planar if (x, x) ∼ (0, 0) under the relations (4.6), which can be
written as (

x
x

)
∼
(

x
x

)
+
(

i+ i−
i− i+

)(
α

β

)
, (4.7)

for any α, β ∈ H1(B, ∂B; Z). Setting β = 0, we find (x, x) ∼ (x + i+α, x + i−α). It is always possible to
find an α such that i−α = −x so long as x represents a torsion class in H2(Ω ; Zw1 ), giving (x, x) ∼
(x + i+α, 0). Hence, the map is planar if x + i+α = 0 or

(i+ + i−)α = −2x, (4.8)

which is equivalent to the statement that 2x = 0 ∈ H2(Ω ; Zw1 ). From this, we obtain the result that
n is homotopic to a planar texture if its class [n] ∈ H2(Ω ; Zw1 ) is an element of order 2. It is clear
that this does not depend on which planar texture n0 is used as the reference map that represents
the 0 element, and so one finds that planar textures are in correspondence with the order 2
subgroup of H2(Ω ; Zw1 ). Note that because the order 2 elements are those which are invariant
under the transformation x → −x, there is no additional reduction when passing to free homotopy
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e2
e1

1

BB

e2
e1

(1, 0) (0, 1)

B

e2
e1

(1, 0)

(–1, 0)

B

Figure 5. Diagrammatic calculation of planar textures on the torus. A Skyrmion of charge 1 is split via the relative
homotopy group into (1, 1)= (1, 0) + (0, 1). Moving the (0, 1) half-Skyrmion throughB sends (0, 1)→ (−1, 0), which can
be annihilated with the remaining (1, 0), resulting in a planar texture. (Online version in colour.)

classes of planar textures. As in the homotopy classification, one can give a diagrammatic version
of this construction, illustrated in figure 5. The situation is identical to figure 2, but now the
point charges are split (fractionalized) through the relative homotopy group, into northern and
southern hemispheres.

For links, the physical interpretation of these planar textures cannot be given in terms of
Skyrmion-like distortions entangled with the link for, being planar, they have none. A planar
texture on the complement of a link L may be written as n = (cos φ, sin φ, 0), for φ : Ω → RP

1. The
preimage of a particular orientation gives an orientable spanning surface for the link. Distinct
planar textures are therefore associated with spanning surfaces for a particular link that are not
cobordant as X-submanifolds.12 In the case of the Hopf link, these have a particularly simple
interpretation: an orientable surface spanning the link induces a well defined relative orientation
on the two link components, which allows one to compute an unambiguous linking number. The
two planar textures on the Hopf link can therefore be interpreted as inducing different linking
numbers through computation of a preimage surface. In general, however, we do not know of the
full distinction between planar textures.13

We remark in closing that the fractionalization of Skyrmions that we described here occurs
also in magnetic systems [41] and is analogous to the nature of vortex cores in 3He–A [42]. The
group π2(S2, S1) classifies non-singular topological objects in a system whose order parameter
lives on S2, but for which there is an equatorial S1 with lower energy. For example, take the
classical energy functional for the unit magnetization, m, of a two-dimensional ferromagnet with
easy-plane anisotropy ∫

|∇m|2 + A(m · ez)2 d2x. (4.9)

If A is large then the ground state manifold is the equatorial S1 ⊂ S2 with zero z-component.
Defects in this system are then described by a winding number q ∈ π1(S1). The singular core of
such an S1 defect can be continuously filled by allowing m to vary over the full sphere (‘escape
in the third dimension’), and thus defines an element of the relative homotopy group π2(S2, S1).
The situation we describe here generalizes this by having textures on a general three-dimensional
domain, rather than a thin film, and the non-trivial action of π1 on π2 that occurs for nematic
order.

5. Physical realization of homotopy classes
Several techniques have been developed for determining the director field in complicated
three-dimensional textures, such as three-photon excitation fluorescence polarizing microscopy,

12See the next section for a definition.

13Pairwise linking numbers may distinguish the planar textures of the Hopf link, and certain others, but they certainly do
not in the case of the Whitehead link (H1(Σ(L)) = Z8, 2 planar textures) or the Borromean rings (H1(Σ(L)) = Z4 ⊕ Z4, 4 planar
textures). In these cases, for instance, we do not know the distinction.
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(a) (b)

(c) (d) (e)

Figure 6. (a) Cutaway cartoon of the Hopf link defect inside a toroidal droplet, as created in [43]. (b) PT representations of
textures on the Hopf link complement. Left: a planar texture with Lk= +1, corresponding to a solid colour surface.Middle: a
homotopic texture with a Lk= −1 surface with colour winding. Right: another homotopic texture, where the colour winding
has been removed to form a tether connecting the link components. (c) Schematic PT surface inferred from experimental
data [43]. (d) Compressing the winding into tethers and pushing them off the surface. The differing orientations arise owing to
the tethers being pushed off different sides of the surface, indicated by the± signs. (e) Connecting the tethers by passing over
the roof of the solid torus to form a single tether. (Online version in colour.)

confocal microscopy or coherent anti-Stokes Raman scattering microscopy. The topological
properties of the director field can then be deduced using the Pontryagin–Thom (PT) construction
for nematic textures [29,37]. We describe here how this topological characterization applies to
recent experiments of Tasinkevych, Campbell and Smalyukh on toroidal nematic drops [43] and
how it relates to the global defect topology we have presented. These experiments create a variety
of fascinating nematic textures with linked and knotted disclination lines in polymer-stabilized
nematic drops with the topology of a handlebody (genus between 1 and 5). We focus on the
example of the Hopf link created in a solid torus (genus 1).

The PT construction represents the topology of the texture by a coloured surface [29]. It states
that there is a bijection between homotopy classes of maps Ω → RP

2 = X ∪ {pt}, where X is a line
bundle over RP

1, and cobordism classes of X-submanifolds of Ω , where a X-submanifold is a
codimension one submanifold with a bundle map from its normal bundle into X. In practical
terms, one plots the preimage of an equatorial RP

1 ⊂ RP
2, which gives a surface, that we call a

PT surface. The additional angular degree of freedom in the RP
1 can be visualized by colouring

the PT surface. The resulting coloured surface captures the topological information in the texture.
Homotopies of the texture are equivalent to cobordisms between surfaces that are consistent with
the colouring and bundle map.

Using the PT construction allows one to understand how distinct homotopy classes of textures
may be realized. Taking again the Hopf link, if the texture is planar, then the PT surface will be
of constant colour, as shown in figure 6b, and one may compute a linking number. The surface,
however, can have colour winding. Suppose one had a surface inducing the opposite linking
number, with a colour winding of, say, 2π , as shown in figure 6, then this colour winding may
be compressed until it is located in just a small region of the surface, with the rest of the surface
of constant colour. The colour winding can then be ‘pulled off’ to form an additional surface
which has the form of a tether (or Skyrmion tube) connecting the link components, oriented by
the direction of the colour winding along its meridian. This defines a relative homology cycle
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and consequently an element of H1(Ω − B, ∂Ω), and so an element of H2(Ω ; Zw1 ). Addition of a
2π colour winding or, equivalently, a tether corresponds to an alteration of the homotopy class
of the texture by the homology class of the tether in the group H1(Ω , ∂Ω ; Zw1 ) = H2(Ω ; Zw1 ).
In the case of the Hopf link, this simply means that addition of a tether to a planar texture
of one linking number is homotopic to a planar texture with the other linking number. This
homotopy is constructed explicitly by Chen [29] for the torus, which is homotopy equivalent
to the complement of the Hopf link.

We are now in a position to show how the PT construction may be applied to understand
experimental data. We will use an example of a Hopf link defect inside a toroidal droplet with
homeotropic boundary conditions created experimentally by Tasinkevych et al. [43], shown in
figure 6a. The first step is to compute the first invariant w1(n). In this case H1(Ω ; Z2) = Z

3
2, one

factor for the meridian of each defect line and a third for the cycle that goes around the interior
of the droplet. n is non-orientable around each of the defect lines, but not around the droplet, so
w1(n) = (1, 1, 0). Now, we must compute the twisted cohomology group H2(Ω ; Zw1 ). A branch set
for the system is given by a Seifert surface for the Hopf link defects, this is just an annulus, so
we get one relation. H1(Ω − B; ∂Ω) = Z

2, consisting of a tether, e1 connecting the droplet to one
defect line and a tether e2 connecting the defect lines. The relation from B sets 2e2 = 0 and so one
finds that H2(Ω ; Zw1 ) is given by Z ⊕ Z2 and so free homotopy classes are given by N ⊕ Z2. The
droplet has homeotropic boundary conditions and it follows that the degree of n on the boundary
is 0 = χ (T2), and so n represents 0 in the factor of N. All that remains is to determine the Z2
invariant. Figure 6c shows the PT surface for this system inferred from published results [43]. It
contains a full 2π colour winding. Compressing this winding and pushing it off results in two
small tethers, shown in figure 6d. Their orientations differ because they are pushed off different
sides of the surfaces, indicated by + and − in figure 6. These tethers can be connected by passing
over the roof of the droplet and combined, forming a single tether, shown in figure 6d. We thus
find that, even though the surface has a linking number of −1, it has a tether, so is homotopic to a
Lk = +1 planar texture.

6. Nematic order as a vector bundle
A complementary perspective on nematic order comes from considering it as a vector bundle [44].
The SO(3) symmetry of the isotropic phase is the structure group of the tangent bundle of the
domain, TΩ , with the low temperature group D∞ picking out a rank one subspace of TΩ that is
preserved under the symmetry operations. Correspondingly, one obtains a splitting of the tangent
bundle into vectors along the nematic order and vectors orthogonal to the director as

TΩ = Ln ⊕ ξ . (6.1)

The low temperature group D∞ is the structure group of the bundle ξ , whereas the structure
group of the line bundle Ln is Z2. One can then ask how the homotopy invariants of the nematic
are reflected in the characteristic classes of these vector bundles. The first invariant w1(n) is simply
the first Stiefel–Whitney class of both Ln and ξ , which describes the orientability of the bundles.14

Because ξ is, in general, non-orientable it does not possess a Chern (or equivalently Euler) class.
However, as in the case of the homotopy classes of nematic textures, it possesses a twisted Euler
class. Given an oriented equivariant map on the covering space, n̂ : Ωw1 → S2, the splitting (6.1)
also lifts as

TΩw1 = Ln̂ ⊕ ξ̂ , (6.2)

where now the bundles are orientable. Consider an equivariant vector field m̂, with m̂ · n̂ = 0.
The zeros, m̂−1(0) form an equivariant set of codimension 2, and thus represent an equivariant
homology cycle. They are topologically required to exist if this cycle is non-trivial or equivalently

14Note that the Stiefel–Whitney class of ξ is the same as that of Ln; one can observe that an orientation of ξ is equivalent to a
choice of normal vector for each two-plane, which is just an orientation assigned to n.



16

rspa.royalsocietypublishing.org
Proc.R.Soc.A472:20160265

...................................................

c

c c c

ct

Figure 7. Cholesteric textures on the complement of Solomon’s seal. In this case, H1(Σ (L))= Z4. Under the equivalence
relation x ∼ −x, we have three distinct textures, 0, {1, 3} and 2.0 and 2 are order two, and thus homotopic to planar textures
which can be thought of as regular disclinations (χ lines) with differing relative orientations. The remaining texture is of order
4, and as such does not require the existence ofλ lines and can be represented by oneχ line and one τ line.

if the Poincaré dual PD[m̂−1(0)] ∈ H2(Ω ; Zw1 ) is non-zero, which defines the twisted Euler class
e(ξ̂ ) of the bundle ξ̂ . It is a standard result15 that the twisted Euler class is given by

e(ξ̂ ) = 2[n] ∈ H2(Ω ; Zw1 ). (6.3)

Finally, to account for free homotopy classes, one should once again quotient by the equivalence
relation x ∼ −x. Thus, one observes that the condition for the texture to be planar is equivalent to
the statement that the twisted Euler class of the orthogonal bundle, ξ , also vanishes. This makes
sense; if the texture can be made planar so that the director lies everywhere in the xy-plane, then
the vector that always points in the z-direction, m = (0, 0, 1), is a globally defined, nowhere zero
section of the bundle ξ and so its twisted Euler class must vanish. Or, from another perspective,
one can say that the planar textures are not captured by these characteristic classes.

For systems with non-uniform ground states, such as cholesteric [44,45] and smectic [46] liquid
crystals, information from the gradient tensor ∇n is particularly important. In this case, the
twisted Euler class gives global constraints on the structure of the orthogonal gradient tensor,
∇⊥n = (δij − ninj)∇jnk. In cholesterics, zeros of the deviatoric part of ∇⊥n are features readily
identifiable as the cores of λ lines and double twist cylinders [44,45]. In geometric terms, these
are singularities in the pitch axis or umbilic lines. The twisted Euler class of the tensor bundle in
which the deviatoric gradients live thus gives global constraints on these objects. In particular,
the Poincaré dual of the Euler class of the bundle gives a homology cycle that describes the
topological class of all λ lines in the system. Because ∇⊥n is a rank 2 tensor, the twisted Euler class
of the associated tensor bundle is given by 4[n] following the standard rules of tensor products.
It follows that the λ lines in a cholesteric represent the homology cycle PD[4[n]]. In the context of
knotted and linked disclinations, this raises the interesting question of elements of order 4 in the
group H1(Σ(L)). Textures in this class do not admit a non-zero vector field orthogonal to n but
do admit an orthogonal director field m, or equivalently a non-zero traceless symmetric rank 2
tensor field Tij, where niTij = 0, whose positive eigenvector is m.

The pitch axis p in the traditional description of cholesterics, describing the principal local
direction of twist in the order, is precisely such an orthogonal director field [45,47]. As such,
elements of order 4 are associated with cholesteric textures on the complement of a defect set for
which the pitch axis is well defined everywhere, but is non-orientable. In terms of the traditional
description of lines in cholesterics as χ , λ, τ lines, this corresponds to a system containing χ lines
(disclinations in n) and τ lines (disclinations in n around which p is non-orientable) but no λ lines
(singularities in p).

15One can see that this is true by constructing a section, v̂ of ξ̂ explicitly on the two-complex X(Ωw1 ), where n̂|X1 ∈ RP
1 and

the winding around the boundary of each two-cell is zero. If v is chosen to be non-zero on X1, then by the Poincaré–Hopf
theorem the number of zeros on each two-cell is twice the degree of the extension of n̂ to that two-cell, from which (6.3)
follows.
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A simple example of such a situation, illustrated in figure 7, is the case of textures on
the complement of the (4, 2) link, also known as Solomon’s seal. In this case, H1(Σ(L)) = Z4 =
{0, 1, 2, 3}. There are two elements of order two, 0 and 2, and two elements of order four, 1 and
3, which are identified under the equivalence relation x ∼ −x. The elements of order two can be
realized as planar textures and interpreted as corresponding to distinct relative orientations (and
hence linking numbers) for the two disclinations. The element of order 4 corresponds to a system
with one regular χ disclination line and one τ line. Note that exchange of the τ and χ labels can be
accomplished by a homotopy which separates the τ line into a χ and λ line, which is then merged
with the other χ line to create a τ line.
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