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Abstract

Gene expression changes have been recognized as important drivers of adaptation to changing environmental conditions.

Little is known about the relative roles of plastic and evolutionary responses in complex gene expression networks during the

early stages of divergence. Large gene expression data sets coupled with in silico methods for identifying coexpressed

modules now enable systems genetics approaches also in nonmodel species for better understanding of gene expression

responses during early divergence. Here, we combined gene coexpression analyses with population genetics to separate

plastic and population (evolutionary) effects in expression networks using small salmonid populations as a model system. We

show that plastic and population effects were highly variable among the six identified modules and that the plastic effects

explained larger proportion of the total eigengene expression than population effects. A more detailed analysis of the

population effects using a QST - FST comparison across 16,622 annotated transcripts revealed that gene expression followed

neutral expectations within modules and at the global level. Furthermore, two modules showed enrichment for genes

coding for early developmental traits that have been previously identified as important phenotypic traits in thermal

responses in the same model system indicating that coexpression analysis can capture expression patterns underlying

ecologically important traits. We suggest that module-specific responses may facilitate the flexible tuning of expression

levels to local thermal conditions. Overall, our study indicates that plasticity and neutral evolution are the main drivers of

gene expression variance in the early stages of thermal adaptation in this system.
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Introduction

The relative roles of plasticity and evolutionary adaptation

have gained considerable interest in recent evolutionary ge-

netics research (Gienapp et al. 2008; Chevin et al. 2010;

Meril€a 2012; Crozier and Hutchings 2014; Meril€a and

Hendry 2014; Reusch 2014; DeBiasse and Kelly 2016). This

is also tightly associated with a fundamental understanding of

how populations adapt to rapid environmental changes

(Franks and Hoffmann 2012). Rapid thermal adaptation

may play a crucial role in future population persistence, par-

ticularly for ectotherms living in isolated habitats and thus

unable to migrate to suitable thermal conditions (Franks and

Hoffmann 2012; Narum et al. 2013). Rapid ecological

responses to rising temperatures have been documented for

several species, but the genetic mechanisms underlying

these responses remain relatively poorly understood
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(Gienapp et al. 2008; Shaw and Etterson 2012; Meril€a and

Hendry 2014). In particular, the relative roles of plastic and

evolutionary components underlying rapid ecological

responses have remained challenging to demonstrate

(Gienapp et al. 2008; Meril€a 2012; Meril€a and Hendry

2014). Plasticity, commonly understood as a capacity of the

same genotype to express alternative phenotypes within the

same generation, is widely acknowledged to produce rapid

responses to new environmental conditions (Price et al. 2003;

Crispo 2007; Fusco and Minelli 2010; Forsman 2015). Rapid

genetic evolution in few generations has been demonstrated

in a variety of model systems, challenging the traditional view

of evolution as a slow process (Messer et al. 2016). Thus, there

is potential for both processes to underlie rapid responses to

abrupt environmental changes. According to current views,

plasticity and evolution are not mutually exclusive, but they

may interact during the adaptation to a new environment

(Ghalambor et al. 2007; Ehrenreich and Pfennig 2016).

Several scenarios have been proposed to explain how plas-

ticity and evolutionary responses might evolve during the

course of adaptation (Pigliucci et al. 2006; Crispo 2007;

Schlichting and Wund 2014; Ehrenreich and Pfennig 2016;

Hendry 2016). The initial response under novel environmental

conditions might involve only a plastic response. Modeling,

empirical, and conceptual studies suggest that phenotypic

plasticity enhances fitness, thus providing the capacity for sur-

vival (DeWitt et al. 1998; Price et al. 2003; Chevin et al. 2010;

Fierst 2011; Draghi and Whitlock 2012; Lande 2015; Murren

et al. 2015; Hendry 2016). Phenotypic plasticity may result in a

nearly optimal phenotype, which is subsequently refined

through natural selection when there is genetic variation in

the same direction as the plastic response. As a result of this

process, traits may become constitutively expressed, a phe-

nomenon commonly known as genetic assimilation, or the

environmental sensitivity may be maintained or increased

(Baldwin effect) (Waddington 1953; Pigliucci et al. 2006;

Crispo 2007; Schlichting and Wund 2014; Ehrenreich and

Pfennig 2016; Schneider and Meyer 2017). Genetic assimila-

tion may evolve when plasticity is, for example, costly and

subsequent constitutive expression is favored, whereas the

Baldwin effect may be favored under conditions in which

maintaining plasticity is beneficial (Crispo 2007; Schlichting

and Wund 2014). For example, environmental heterogeneity

favors plasticity when the environmental cue is predictable

(DeWitt et al. 1998; Crispo 2007; Hendry 2016).

Furthermore, if plasticity drives the population to a new opti-

mum in the new environment, then genotypes may also be

shielded from natural selection, thereby constraining or slow-

ing genetic evolution (Price et al. 2003; Ghalambor et al.

2007; Hendry 2016; Schneider and Meyer 2017). Plasticity

may also promote genetic evolution when the plastic re-

sponse is maladaptive for favoring genetic compensation,

known as counter-gradient variation (Conover and Schultz

1995; Morris and Rogers 2013; Hendry 2016).

Gene expression and its regulation is one of the key mo-

lecular mechanisms underlying plastic and evolutionary

responses (Whitehead and Crawford 2006; L�opez-Maury

et al. 2008; Romero et al. 2012; Alvarez et al. 2015;

DeBiasse and Kelly 2016). Epigenetic regulation via environ-

mental stimuli may trigger plastic responses, whereas an evo-

lutionary response may involve changes in regulatory

elements (Hoekstra and Coyne 2007). Gene expression can

show considerable flexibility when organisms are exposed to

environmental gradients within the same generation, but it is

also involved in long-term adaptation (L�opez-Maury et al.

2008). Gene expression plasticity can be estimated using a

genomic reaction norm approach by exposing populations

to environmental variables in experimental settings. The slope

of the genomic reaction norm can be informative about the

magnitude of plasticity, and the genotype–environment inter-

action indicates genetic variation in plasticity (Aubin-Horth

and Renn 2009). Estimating evolutionary responses in gene

expression remains a challenge, reflecting the lack of an ap-

propriate null model for separating variance as a result of

neutral divergence from natural selection (Fraser 2011;

Harrison et al. 2012; DeBiasse and Kelly 2016).

Furthermore, methods using phylogenetic relationships to in-

fer selection in expression data might not be applicable to

closely related populations (Rohlfs et al. 2014). QST - FST (or

PST for phenotypic data) comparisons are widely used to infer

local adaptation in phenotypic traits but have been applied

relatively rarely to “omics” data (Leinonen et al. 2013). In this

approach, the inference of adaptive evolution is based on the

presumably neutral distribution of the FST estimated from ge-

netic markers to which the distribution of QST is contrasted.

The QST estimates outside the FST distribution are putative

candidates for natural selection (Leinonen et al. 2013).

Modern sequencing technologies enable the simultaneous

collection of gene expression and genetic variation data for

a large number of molecular phenotypes, providing a mean-

ingful starting point for estimating the evolutionary forces

affecting expression divergence (De Wit et al. 2015).

Similarly, large gene expression data sets coupled with in

silico methods for identifying coexpressed gene networks or

modules enable a systems genetics approach, even in non

model species (Soyer and O’Malley 2013; Feltus 2014).

Analyses of coexpressed gene networks have been widely

used in medical genetics but are also gaining popularity in

evolutionary genetics (Langfelder and Horvath 2008; Feltus

2014; Ruprecht et al. 2017). The rationale behind in silico

coexpression gene network analysis is that gene expression

correlation may reveal functionally related genes belonging to

the same biological pathway (Langfelder and Horvath 2007,

2008). Furthermore, the expression variance of genes belong-

ing to a module can be summarized to eigengenes, and their

expression can be further analyzed in relation to external in-

formation. Thus, multiple testing problems can be reduced

compared with testing each gene separately to detect
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differential expression (Langfelder and Horvath 2008). Genes

and gene products interact in complex networks. The position

of a gene in a network or the number of interactions to other

genes can affect the evolutionary dynamics of gene expres-

sion (Levy et al. 2008; Feltus 2014; Fischer et al. 2016; Laarits

et al. 2016). For example, the number of protein–protein

interactions and the location of the gene in a network may

constrain or buffer against changes in gene expression (Han

et al. 2004; Levy et al. 2008; Papakostas et al. 2014). Thus,

analysing gene expression changes within and among net-

works can provide further insights into how populations

have adapted to local conditions (Ruprecht et al. 2017).

Understanding the roles of plastic and evolutionary

responses in gene expression may benefit from integrating

methods commonly used for evolutionary and systems biol-

ogy (Soyer and O’Malley 2013; Feltus 2014). Coexpression

analysis might reveal complex interaction networks but are

not informative of the evolutionary forces shaping the net-

work evolution (Soyer and O’Malley 2013). Traditional QST -

FST comparisons might help separate neutral and adaptive

processes in network evolution and provide a global view of

transcriptome divergence. Comparisons of recently diverged

populations may provide further insights into the molecular

mechanisms underlying rapid thermal adaptation in a time

scale comparable to anthropogenic environmental change.

Furthermore, direct comparisons of ancestral-derived popula-

tions are informative of the evolution of plasticity (Schlichting

and Wund 2014). Here, we used European grayling

(Thymallus thymallus) populations inhabiting small mountain

lakes in Norway to investigate early-stage divergence in gene

expression. This model system is suitable for investigating the

early stages of divergence because colonization dates back

25–30 generations (Haugen and Vøllestad 2000, 2001). In

addition, knowledge concerning the ancestral population

facilitates comparisons to the derived populations, enabling

the tracking of evolutionary sequences and plastic events

(Schlichting and Wund 2014).

Here, we investigate the relative roles and the evolution of

plastic and evolutionary responses in gene coexpression net-

works during rapid thermal adaptation. We focus on two

working hypothesis. First, under the genetic assimilation sce-

nario, the plastic response to thermal treatment is completely

or almost lost during the course of divergence, and the pop-

ulations show divergent expression profiles, reflecting adap-

tive evolution. Second, under the Baldwin effect scenario,

plasticity is maintained or even elevated relative to the ances-

tral level, but populations may also show divergence in gene

expression. To address the abovementioned questions, we

raised developing embryos from four grayling populations

originating from varying thermal environments and exposed

them to two thermal treatments in a common garden envi-

ronment. To evaluate the above scenarios, we first used a

gene coexpression analysis to identify expression modules of

potentially functionally similar transcripts. We then analyzed

module eigengene expression variation in an ANOVA frame-

work to partition variance to treatment, population and their

interaction effects. ANOVA analysis should reveal the relative

contributions of plastic (treatment) and population (evolution-

ary) effects on module eigengene expression. Treatment and

population interaction should be informative about the ge-

netic variation in plasticity and thus the evolution of plasticity.

If genetic assimilation has occurred, we expect to see loss or

reduction of plasticity in the eigengene expression, and differ-

entiation between the eigengene expression profiles of pop-

ulations due to adaptive evolution. If the Baldwin effect holds

true, plasticity in eigengene expression should be maintained.

Second, we further analyzed the population effect in gene

expression using a broad sense QST - FST comparison. This ap-

proach is used to estimate gene expression variation resulting

from neutral and potentially adaptive processes within mod-

ules and at the global level.

Materials and Methods

Sample Collection and Common Garden Experiment

The study system comprises the ancestral river population and

three derived small mountain lake populations located in cen-

tral Norway (fig. 1). The colonization history of these popula-

tions was inferred from historical records (Haugen and

Vøllestad 2000, 2001). The initial colonization of the

L. Lesjaskogsvatnet occurred in the 1880s, when a temporary

channel from the R. Gudbrandsdalslågen was opened.

Therefore, the R. Gudbrandsdalslågen represents the

ancestral grayling population of the system. From

L. Lesjaskogsvatnet, a few grayling individuals were trans-

ported to high-elevation mountain lakes (L. Hårrtjønn and

L. Øvre Merrabotvatnet) in the 1910s. A natural colonization

from L. Hårrtjønn to L. Aursjøen occurred during the 1920s

(Haugen and Vøllestad 2001; fig. 1). Thus, the divergence in

this system has occurred in during the past 25–30 genera-

tions, assuming that the generation time for grayling is ap-

proximately six years (Haugen and Vøllestad 2001). The four

study populations can be roughly classified as “warm” or

“cold” origin populations according to the mean temperature

during the grayling spawning season and early development

period in June–August (Haugen 2000, supplementary figs. S1

and S2, Supplementary Material online). In this respect, R.

Gudbrandsdalslågen and L. Hårrtjønn can be described as

“warm” origin populations, whereas L. Lesjaskogsvatnet

and L. Aursjøen can be described as “cold” origin popula-

tions. The mean temperature differences translate to large

temperature sums differences during the period of June–

August (supplementary figs. S1 and S2, Supplementary

Material online).

The sample from R. Gudbrandsdalslågen was collected

close to the town Otta, representing the ancestral population

of the study system. The Otta location is below a present-day

natural migration barrier to grayling, indicating that this
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population has probably been isolated from the other popu-

lations for a large number of generations (Junge et al. 2014).

The L. Lesjaskogsvatnet sample was collected from R. Valåe,

which is a small cold tributary in the eastern part of the lake.

The sample from L. Hårrtjønn was collected from a small river

outlet, and the sample from L. Aursjøen was collected from

the main tributary (R. Kvita). Mature male and female fish

were collected from each location during the 2013-spawning

season for a common garden experiment. Eggs and sperm

were extracted from mature fish under anesthesia and sub-

sequently transported on ice to the University of Oslo exper-

imental facility. The experimental crosses were performed

according to Thomassen et al. (2011). Briefly, for each popu-

lation, eggs from four to five females were pooled and fertil-

ized with sperm collected from four to six males. Individual

fertilized eggs were subsequently transferred to standard 24-

well culture plates with temperature-acclimated water added

to the wells. The culture plates were incubated in climate-

controlled rooms and at target temperatures of 6 �C and

10 �C. This design was thus a reciprocal thermal treatment,

as these temperatures represent the average temperatures

experienced by developing embryos in their natal

environments (cold populations in 6 �C and warm populations

in 10 �C). The number of degree days was used as a proxy for

developmental stage to sample embryos from the same de-

velopmental stage (Chezik et al. 2014). Embryos were col-

lected at �140 degree-days post fertilization, immediately

individually frozen on dry ice in Eppendorf tubes, and subse-

quently stored at �80 �C until further analysis. Altogether 19

embryos from the cold treatment and 16 embryos from the

warm treatment were sampled for the subsequent RNA-

sequencing. The final sample set comprised five cold and

four warm treatment embryos for Gudbrandsdalslågen,

L. Hårrtjønn, and L. Aursjøen and four cold and four warm

treatment embryos for L. Lesjaskogsvatnet.

RNA Extraction

RNA was extracted from whole embryos using TRI reagent

according to the manufacturer’s instructions (Sigma–Aldrich).

Before extraction, the tissue was homogenized using

TissueLyser (Qiagen) for 30 s with full speed. The quality and

quantity of the RNA were determined using a BioAnalyzer

instrument (Agilent Technologies), and only samples with

RNA integrity number (RIN) higher than eight were included

in the sequencing. The sequencing libraries were prepared

according to manufacturer’s instructions (Illumina). The se-

quencing was conducted at Beijing Genome Institute (BGI)

using Illumina HiSeq 2000 equipment with 100-bp paired-

end reads. To avoid lane effects, each sequencing library

was distributed among five different lanes, and the reads

were combined for subsequent analyses.

Bioinformatic Analyses

The quality of each sequencing library was investigated using

the FastQC (v. 0.11.2) quality control tool for sequencing data

(Andrews 2010). Analysis of the raw reads indicated the pres-

ence of low-quality bases in the 30 end of the reads and an

excess of PCR duplicates. ConDeTri read trimmer with default

parameters was used to remove low-quality bases and PCR

duplicates (Smeds and Künstner 2011). A de novo transcrip-

tome assembly was reconstructed using all nine sequencing

libraries (altogether ca. 610 million reads) from the ancestral

population R. Gudbrandsdalslågen. Before assembly, in silico

normalization was used to restrict the maximum kmer cover-

age to 50� to decrease computational demands by reducing

redundancy in the high-coverage regions. After normaliza-

tion, 66.8 million reads remained for the de novo assembly.

The de novo assembly was performed using the Trinity 2.0.4

assembler (Haas et al. 2013) with default parameters, except

“minimum kmer coverage” was set to 10 and the “minimum

glue” to 10. These parameters were adjusted to reduce the

number of falsely identified transcripts as a result of low cov-

erage, but the sensitivity for identifying lowly expressed tran-

scripts can be lower compared with default parameters. The

resulting transcripts were translated to proteins, and

FIG. 1.—A map of the Grayling study system showing the colonization

routes (arrows) and timing (numbers along the arrows) as inferred from

the historical records, lake size (km2), and elevation (MASL¼meters above

sea level). These lakes differ in their thermal profiles during the grayling

development period and can be roughly classified as cold (blue) and

warm (red) populations.
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candidate-coding regions (or ORFs) were identified using

TransDecoder software (http://transdecoder.github.io; last

accessed December 30, 2017) with a minimum protein length

of 100 amino acids. Similar protein sequences were merged

using CD-HIT software (Li and Godzik 2006; Fu et al. 2012)

with the sequence identity threshold set to one. The

TransDecoder translated proteins (i.e., containing in silico pre-

dicted ORFs) were annotated using reciprocal protein–protein

BLAST search using P-value cut-off 10�5 as implemented in

BLASTþ software (Camacho et al. 2009). The BLAST searches

were conducted against zebrafish (Danio rerio), stickleback

(Gasterosteus aculeatus), cod (Gadus morhua), and Atlantic

salmon (Salmo salar) protein databases. A local database for

each species was constructed using protein annotations avail-

able in theEnsemblproteindatabase (Cunninghametal. 2015)

for zebrafish, stickleback and cod, and from GenBank (Benson

et al. 2012) for Atlantic salmon. A transcript was considered

reliably annotated when a significant reciprocal BLAST hit to

one of the annotated proteins in any of the species was

obtained. Tocompile ageneexpressionestimateor count table

foreach transcript, thequalityfiltered readsweremappedback

to the de novo assembly. The mapping back was performed

using Bowtie2 alignment software (Langmead and Salzberg

2012) with parameters -a -X 600 -rdg 6, 5 -rfg 6, 5 -score-

min L, -0.6, -0.4 -no-discordant, -no-mixed. These parameters

avoid mappings to splice variants and restrict the output to only

read pairs mapped concordantly according to the eXpress soft-

ware manual (http://bio.math.berkeley.edu/eXpress/faq.html;

lastaccessedDecember30,2017).Transcript abundances, that

is, read counts per transcript, were estimated from the align-

ments using the default parameters in eXpress (Roberts and

Pachter 2013). Rounded effective counts were used for the

gene expression analyses as suggested in the eXpress manual.

Effective counts are the expected number of reads generated

from a given target (transcript), considering target length and

the number of reads generated in the sequencing experiment

(Roberts and Pachter 2013).

The Bowtie2 alignments described above were used for the

identification of single nucleotide polymorphisms (SNPs). The

mpileup command in SAMtools 1.4 package (Li et al. 2009)

was used with a minimum mapping quality of 20 to combine

mapping positions into a single file. SNPs and genotypes were

called from the resulting pile up file using BCFtools and

options –bcvg. The SNPs within 20 bp of indels and exceeding

2,000� coverage were removed. Genotypes were filtered us-

ing minimum overall genotype quality 999, minimum overall

genotype coverage 50, minimum individual genotype cover-

age 10, minimum number of samples of valid genotypes 35

(i.e., no missing data allowed), and overall minor allele fre-

quency 5%. Loci deviating from Hardy–Weinberg equilibrium

(both heterozygote excess and deficiency) at P-level 0.05 were

removed. Finally, only one SNP per transcript was subjected to

further analyses. Genetic differentiation was estimated using

the Weir and Cockerham (1984) estimator of FST as

implemented in the R package adegenet (Jombart and

Ahmed 2011). A Bayesian approach was used to detect loci

potentially under natural selection (Foll and Gaggiotti 2008).

This method dissects FST into population and locus effects

using a generalized linear model and assuming multinomial-

Dirichlet probability distribution. Posterior distributions of lo-

cus effects can be indicative of either balancing or directional

selection (Foll and Gaggiotti 2008).

Gene Expression Analyses

Potential unwanted variation in the count data arising from

library preparation or other technical factors were investigated

using principal component analysis. The R stats function

prcomp in R statistical programming environment was used

for PCA analysis. Three clusters were identified by the first two

axes, which explained 42.3% (PC1) and 14.1% (PC2) of the

total variation and were not linked to the experimental setup,

indicating the presence of possible unwanted variation

(fig. 2). Although care was taken to control batch effects by

randomizing RNA-extraction dates and distributing sequenc-

ing libraries to several sequencing lanes, some unwanted var-

iation remained due to unknown reasons. To remove the

unwanted variation in the data, residuals from a general linear

model on nonnormalized counts were used, and population

and treatment were used as covariates (Risso et al. 2014).

Briefly, this method should work for data without control

genes, assuming that the covariates of interest are not corre-

lated with unwanted variation (Risso et al. 2014). We used

function RUVr, as implemented in the R package RUVSeq, to

remove such effects (Risso et al. 2014). After removal of the

unwanted variation, the samples were grouped according to

population and treatment, and the PC1 and PC2 explained

25.9% and 17.3% of the total variation, respectively (fig. 3).

A weighted gene coexpression analysis (WGCNA) was

used to identify clusters of similarly expressed genes or mod-

ules using R package WGCNA (Langfelder and Horvath

2008). In this approach, similar gene coexpression patterns

are identified based on expression correlation, which can sub-

sequently be used to group transcripts into modules using

hierarchical clustering (Langfelder and Horvath 2008). Gene

expression variation within a module can be summarized to

eigengenes using PCA, and variation in eigengenes can be

linked to external information of interest (Langfelder and

Horvath 2007, 2008). First outliers potentially interfering

with network construction were detected using hierarchical

clustering analysis with Euclidean distance to describe sample

relationships. A sample from R. Gudbrandsdalslågen warm

treatment was excluded due to a large distance from the

other samples. A coexpression similarity matrix was calculated

using signed (i.e., keeping the sign of coexpression) expres-

sion measures. The similarity matrix was transformed to adja-

cency matrix by raising the similarity between genes by to soft

thresholding power of 13. This soft thresholding power was
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FIG. 2.—Principal component analysis (PCA) of the unnormalized gene expression data. GDL¼Gudbrandsdalslågen, HRT¼ L. Hårrtjønn, AUR¼ L.

Aursjøen, and LES¼ L. Lesjaskogsvatnet. C indicates cold treatment and W indicates warm treatment.

FIG. 3.—Principal component analysis (PCA) of the residual normalized gene expression data, showing the relationships among treatments and

populations. GDL¼Gudbrandsdalslågen, HRT¼ L. Hårrtjønn, AUR¼ L. Aursjøen, and LES¼ L. Lesjaskogsvatnet. C indicates cold treatment and W indicates

warm treatment.
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determined from the data, using a cut-off value of 0.9. In

other words, genes were considered coexpressed if the cor-

relation coefficient exceeded 0.9 within a module. The other

parameters used for the network construction were minimum

module size 50 transcripts, deep split 2, and merge cut height

0.3. The stability of the modules was examined with 100

bootstrap replicates to assess the overlap of the module labels

between nonsampled and resampled data sets. The overlap

was estimated using Fisher’s exact test based on the module

assignments. If the proportion of resampled data sets had

significant overlap (P< 0.01) >70%, then the module was

considered statistically robust. The expression profile in each

module was summarized to eigengene expression using the

first principal component (PC1). The variation in eigengenes

was analyzed using ANOVA with population and treatment

and their interaction as explanatory variables. The rationale for

the ANOVA analyses is to detect plastic (treatment) and (pop-

ulation) responses. The ANOVA analyses were performed us-

ing the R stats function aov.

To estimate adaptive gene expression divergence, broad

sense QST (i.e., the additive genetic variance component is

unknown) was estimated across the four study populations

for all transcripts. In experimental settings where heritability or

additive genetic variance cannot be estimated, QST can be

approximated assuming ratios of c/h2, where c represents

the assumed proportion of total variance due to additive ge-

netic effects among populations, and h2 represents heritability

(Brommer 2011). Three c/h2 ratios were assumed: 0.5, 1, and

1.5. The null assumption c/h2¼ 1 assumes that the additive

phenotypic variance between and within populations is the

same, but this ratio can be smaller (0.5) or larger (1.5), reflect-

ing, for example, environmental effects (Brommer 2011).

More specifically, assuming a range of biologically meaningful

ratios (0–2 suggested by Brommer 2011) one can compare

the distribution of QST when environmental or nonadditive

variance components are contributing to trait divergence (c/

h2< 1) to a situation where additive variance mostly explain

trait divergence (c/h2> 1). Transcriptome derived SNPs were

used to estimate FST to obtain a neutral baseline to which QST

can be compared. The rationale for the QST - FST comparisons

is to identify candidate transcripts under stabilizing or diver-

gent selection (Leinonen et al. 2013). If a given transcript

shows lower or higher differentiation compared with the FST

distribution, then stabilizing and divergent selection can be

inferred, respectively (Leinonen et al. 2013). QST was calcu-

lated according to the formula ðc=h2Þr2
B=ððc=h2Þr2

B þ 2r2
W Þ;

where c=h2 is the assumed ratio of additive variance and

heritability, r2
B is the variance between populations in tran-

script expression and 2r2
W is the variance within population in

transcript expression (Brommer 2011). The within and be-

tween population variance components in transcript expres-

sion were estimated fitting a mixed effect model using

thermal treatment as a fixed effect and population as a ran-

dom effect. The mixed effect model was fitted using lme

function in R package lme4 (Bates et al. 2015). The confi-

dence intervals of each QST estimate were estimated with

250 bootstrap replicates. The QST estimates were compared

with the entire distribution range of locus specific FST (proxy

for the neutral distribution) according to Whitlock (2008) after

excluding those loci under directional and balancing selection.

Transcripts showing a higher divergence (QST> FST) than

expected by genetic drift alone are potentially under direc-

tional selection whereas transcripts showing lower divergence

(QST< FST) are under balancing selection. Neutrally evolving

transcripts are expected to fall within the FST distribution

(Leinonen et al. 2013). The 95% confidence intervals of the

QST estimates were considered in the above comparisons. If

the upper or lower confidence interval did not overlap with

the lower or upper tail of the FST distribution, then the given

transcript was considered affected by stabilizing or divergent

selection, respectively.

Gene Ontology Enrichment Analyses

Gene enrichment analyses were performed using zebrafish

gene annotations for each statistically robust module identi-

fied in the WGCNA analysis. The STRING database was used

to identify significant (FDR< 0.05) Gene Ontology (GO) cat-

egories for biological processes and PFAM protein domains

and features (Szklarczyk et al. 2015). The GO categories were

summarized using SimRel semantic similarity measure to avoid

interpretation of redundant categories. The merging of se-

mantically similar GO categories was based on hierarchical

clustering with a user-specified cutoff value C. A cutoff value

0.5 was used to merge similar categories, corresponding to

1% chance of merging two randomly generated categories

(Supek et al. 2011). The P-values of the initial enrichment

analyses were used to select a representative GO term for

each merged category. Thus, the lowest P-value among the

merged categories was selected as the representative GO

term. The REVIGO web-server tool was used for semantic

similarity analyses (Supek et al. 2011).

Results

On average, 78.7 million paired-end reads were obtained per

sequencing library. After quality filtering and removing PCR

duplicates, 68.1 million reads remained (86.5%;

supplementary table S1, Supplementary Material online).

The average GC content of the quality-filtered libraries was

46%. De novo assembly with Trinity identified 142,653 tran-

scripts (including isoforms) and 109,102 trinity “genes.” The

total length of the de novo assembly was 143.923 Mb, and

the mean and median contig lengths were 583 bp and

1,009 bp, respectively. In silico prediction of the putative cod-

ing sequence with TransDecoder identified 136,291 tran-

scripts with open reading frames. Clustering of highly

similar sequences with CD-hit identified 61,190 unique
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proteins. The annotation of the unique proteins with recipro-

cal BLAST search identified 19,461 putative homologies to at

least one of the reference species (zebrafish, stickleback, cod

or Atlantic salmon). In total, 131 putative paralogous genes,

that is, the same transcript showed reciprocal BLAST hits to

different gene models, were removed from the downstream

analyses. Specifically, 6,069 (31.2%), 3,830 (19.7%), 4,302

(22.1%), and 5,260 (27.0%) transcripts had one, two, three,

or four BLASTP hits, respectively. Therefore, the majority

of the transcripts (13,392, 68.8%) had more than one

reciprocal BLAST hit in reference species. Approximately

27.3 (40.1%) million reads were mapped back concordantly

to the de novo assembly with Bowtie2 (supplementary

table S1, Supplementary Material online). Altogether count

data were obtained from 19,330 annotated transcripts.

However, the final data set comprised 16,622 annotated tran-

scripts after the removal of transcripts containing at least one

individual with zero counts. This filtering step was applied to

remove transcripts showing uninformative signals and to

avoid frequent crashes in the WGCNA resampling analysis.

Principal component analysis showed differentiation both

between treatments and populations (fig. 3). PC1 explained

25.9% and PC2 explained 17.3% of the total variation in

gene expression. There was clear differentiation between

populations in cold and warm treatments for R.

Gudbrandsdalslågen, L. Lesjaskogsvatnet, and L. Aursjøen.

However, L. Hårrtjønn in the cold treatment overlapped other

populations in the warm treatment (fig. 1). Analysis of vari-

ance using PC1 as a dependent variable revealed significant

population [F(3, 27)¼ 26.82, P< 0.001], treatment [F(1,

27)¼ 208.12, P< 0.001], and their interaction effects [F(3,

27)¼ 11.25, P< 0.001]. Post hoc (Tukey HSD) tests indicated

that three out of six pairwise population comparisons in the

cold treatment were significant (adjusted P-value< 0.05),

whereas in the warm treatment, two comparisons were sig-

nificant (supplementary fig. S3, Supplementary Material on-

line). When different populations were compared between

the treatments only two out of sixteen comparisons were

nonsignificant (supplementary fig. S3, Supplementary

Material online).

The WGCNA identified ten modules, and six modules

(assigned to black, blue, brown, green, red, and turquoise

colors by the WGCNA analysis) were robust in the resampling

analysis, that is, showing significant overlap in 70% of the

resampled data sets with the original data set (fig. 4). The six

statistically robust modules contained a total of 5,999

(36.1%) transcripts. Black, blue, brown, green, red, and tur-

quoise modules contained 223, 1,499, 1,133, 740, 302, and

2,102 transcripts, respectively. The majority of the transcripts

(9,496, 57.1%) was not assigned to any particular module

(grey module) and the remaining modules (magenta, pink

and yellow) showed instability in the resampling analysis

(fig. 4). PC1 on the transcripts belonging to the statistically

robust modules explained 96.5% of the total variation,

whereas the PC2 explained 1.4% of the total variation

(fig. 5). Module eigengenes (PC1) showed variable responses

to population, treatment and their interaction effects (table 1,

fig. 6). Blue and turquoise modules had significant (P< 0.001)

population, treatment and their interaction effects, whereas

black and green modules showed only significant treatment

effects (table 1, fig. 6). The other modules (red and brown)

showed nonsignificant population, treatment or their interac-

tion effects (table 1, fig. 6).

The mean and range of QST across all transcripts were

0.024 (0–0.570), 0.044 (0–0.726), and 0.062 (0–0.799) as-

suming 0.5, 1, and 1.5 for the c/h2 scalar variable, respectively

(supplementary fig. S4, Supplementary Material online). A to-

tal of 13,121 transcripts were significant, that is, the confi-

dence intervals excluded zero. The mean FST across 2,458 SNP

loci was 0.128 and the range of locus specific FST values was

0–0.531 (supplementary fig. S4, Supplementary Material on-

line). There were no differences in the mean FST in SNPs lo-

cated in the flanking regions (FST¼ 0.129, n¼ 1,955), and

nonsynonymous positions (FST¼ 0.129, n¼ 256) or synony-

mous positions (FST¼ 0.116, n¼ 247). SNP data separated

populations in PC1 (16.4% variation) and PC2 (11.8% varia-

tion), whereby the ancestral population was the most distant

from the other populations (supplementary fig. S5,

Supplementary Material online). None of the loci showed

indications of natural selection (supplementary fig. S10,

Supplementary Material online). The QST estimates of two

transcripts [TR19626: 0.799 (95% C.I. 0.712–0.871) and

TR47182: 0.709 (95% C.I. 0.576–0.813)] fell outside the up-

per range of the FST distribution when c/h2¼ 1.5, and one

transcript [TR19626: 0.726 (95% C.I. 0.622–0.819)] fell out-

side the upper range of the FST distribution when c/h2¼ 1.0

(supplementary fig. S4, Supplementary Material online). No

QST estimates were detected outside the lower range of the

FST distribution (supplementary fig. S4, Supplementary

Material online). Thus, almost the entire range of QST esti-

mates fell within the FST distribution, indicating that the tran-

scriptome divergence can be explained by patterns consistent

with neutral evolution. The mean QST differed between mod-

ules. Black (0.037), brown (0.020), green (0.041), and red

(0.016) modules showed relatively small differentiation,

whereas blue (0.123) and turquoise (0.137) modules showed

a higher degree of differentiation on average assuming c/

h2¼ 1.0 (fig. 7). A bootstrap sampling from the whole QST

distribution was conducted using the same number of tran-

scripts as in each module to compare the observed mean to

the resampled means. The observed means of each module

were significantly different from the randomized means.

Altogether 126 (56.5%), 1,060 (70.7%), 665 (58.7%),

440 (59.5%), 165 (54.6%), and 1,275 (60.7%) zebrafish

annotations were recovered for the grayling transcripts be-

longing to the black, blue, brown, green, red, and turquoise

modules, respectively, which were used for enrichment anal-

ysis using the STRING database. Gene enrichment analysis
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FIG. 4.—Results of the weighted gene coexpression analysis showing the dendrogram of transcripts based on the coexpression similarity. Each transcript

is assigned to a module described with different colors. The stability of the modules was examined using one hundred resampling replicates, but the first fifty

resampled data sets are shown for clarity.

FIG. 5.—PCA on transcripts across all treatments and populations belonging to six statistically robust modules showing divergence in gene expression.

Gene Coexpression network evolution GBE

Genome Biol. Evol. 10(1):77–93 doi:10.1093/gbe/evx278 Advance Access publication December 23, 2017 85



revealed significant (FDR< 0.05) 33 (black module), 134 (blue

module), 112 (green module), and 18 (turquoise module) GO

terms associated with biological processes. After merging se-

mantically similar categories, 15, 55, 33, and 7 categories

remained for black (supplementary fig. S6, Supplementary

Material online), blue (supplementary fig. S7,

Supplementary Material online), green (supplementary fig.

S8, Supplementary Material online), and turquoise (supple-

mentary fig. S9, Supplementary Material online) modules, re-

spectively. No significant enrichments for the biological

processes were observed for the red and brown modules.

Most of the categories belonged to general terms, such as

“biological regulation” and “cellular process,” both of which

were identified in all modules, except the turquoise module.

Other categories were involved in biological functions

“response to stress,” “response to stimulus” (green module),

and “methylation” (blue module). There were also several

more specific terms associated with developmental processes.

The black module contained “muscle fiber development,”

the green module “nervous system development,” and the

turquoise module “embryonic organ development” terms.

Altogether six (blue module), two (brown module), two

(green module), one (red module), and five (turquoise

Table 1

ANOVA Results on the Module Eigengene Expression Variation as a Result

of Population, Treatment, and Their Interaction Effects

Module Population

(13, 27a)

Treatment

(1, 27)

Interaction

(3, 27)

Black 13.2b (2.076c) 27.7 (13.036)*** 1.6 (0.249)

Blue 21.0 (25.932)*** 57.4 (212.624)*** 14.4 (17.763)***

Brown 1.8 (0.19) 0.3 (0.108) 14.5 (1.569)

Green 9.6 (1.615) 35.7 (18.097)*** 1.4 (0.228)

Red 0.1 (0.015) 1.2 (0.358) 11.6 (1.202)

Turquoise 23.6 (55.219)*** 54.6 (383.606)*** 18.0 (42.22)***

aDegrees of freedom.
bPercentage of variance explained.
cF ratio.

***P<0.001.

FIG. 6.—Module eigengene variation showing the flexible tuning of gene expression to treatment, population, and their interaction effects. The inset

legends show the statistical significance of each of the ANOVA effects (ANOVA results are detailed in table 1). The blue and red colors refer to cold and warm

treatments, respectively.
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module) significant (FDR< 0.05) Pfam protein domain enrich-

ments were identified (supplementary table S2,

Supplementary Material online).

Discussion

The Evolution Plastic Response during Early Divergence

One of the major findings of the present study is that pop-

ulations respond differently to the thermal treatment at both

the whole transcriptome level and within the transcriptional

modules. This finding opens up possibilities for disentangling

the causes of variable responses in the context of how plas-

ticity itself evolves and how it interacts with evolutionary

responses. Studies have suggested that the initial response

to new environmental conditions is produced through plas-

ticity, but if there is genetic variation in the same direction,

then the response can become genetically determined.

During this process, the environmental sensitivity or plasticity

can be lost or reduced, a phenomenon known as genetic

assimilation or accommodation (Pigliucci et al. 2006; Crispo

2007; Schlichting and Wund 2014; Ehrenreich and Pfennig

2016; Schneider and Meyer 2017). However, plasticity can be

maintained or increased relative to ancestral plasticity levels, a

phenomenon known as the Baldwin effect (Crispo 2007). It is

expected that the Baldwin effect is favored when plasticity is

not costly and is beneficial. Genetic assimilation, however, is

expected to evolve under conditions in which constitutive ex-

pression is favored. The costs of plasticity and maladaptive

responses are expected to favor genetic assimilation (Crispo

2007). If the genetic assimilation scenario would hold in this

study system, then we would expect a loss or reduced plas-

ticity and increased population effects during the colonization

of different habitats. We expect that population and treat-

ment interaction in eigengene expression is informative about

the evolution of plasticity (Aubin-Horth and Renn 2009). We

observed significant interaction terms in blue and turquoise

FIG. 7.—Boxplots depicting the variance of QST for each of the transcripts in each module, assuming a scaling factor c/h2¼1.0. The distribution of FST for

2,458 SNP loci is shown for comparison.
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modules indicating that plasticity can evolve in this system and

thus plasticity itself might be under selection. Also the blue

and turquoise modules showed significant population and

treatment effects and these effects explained a large propor-

tion of the total variance. Thus, selection may favor reduced

plasticity (genetic assimilation) in the warm origin populations

and large plasticity (Baldwin effect) in the cold origin popula-

tions in the blue and turquoise modules. A Simulation study

has shown that genetic assimilation is a slow process (Lande

2015) and complete assimilation potentially takes longer to

evolve than the divergence time between the study popula-

tions (25–30 generations). Experimental studies have shown

that genetic assimilation in thermal stress can rapidly evolve

(ten generations) in laboratory populations of nematodes

(Sikkink et al. 2014). In bacterial populations, genetic assimi-

lation to high CO2 levels evolved after 4.5 years (570–850

generations) of experimental evolution (Walworth et al.

2016). The results from experimental evolution studies in

other species cannot be directly translated to natural popula-

tions, but these studies show evidence that genetic assimila-

tion can evolve rapidly. Although there is potential for rapid

evolution of genetic assimilation, the response at the gene

expression level can be complicated. Sikkink et al. (2014)

showed that there were no correlated responses in gene ex-

pression to the evolved changes in thermal stress at the phe-

notypic level. This finding may further complicate detecting

genetic assimilation at the molecular level.

Heterogeneous environments can favor plasticity because

multiple optima are needed during the life-time of an organ-

ism (Crispo 2007; Murren et al. 2015; Hendry 2016), poten-

tially explaining the variable plastic response observed in the

grayling populations. We observed the lowest plastic response

in the smallest lake (L. Hårrtjønn) with few river outlets. In

contrast, we observed the large plastic responses in larger

lakes with many small tributaries. For example, in L.

Lesjaskogsvatnet, the grayling spawns in numerous “large

cold” and “small warm” rivers, which differ in their thermal

profiles (Haugen 2000; Haugen and Vøllestad 2001;

Gregersen et al. 2008; Kavanagh et al. 2010). The embryos

hatch, and the larvae drift or migrate from the spawning

tributary into the lake during summer and early autumn.

Grayling in L. Lesjaskogsvatnet may thus experience a wide

thermal range during its lifetime, favoring larger plasticity.

Similar patterns may arise if plasticity is costly in one environ-

ment but not in the other. Costs may arise as a result of

energetic costs of maintaining genetic machinery for produc-

ing a plastic response, developmental instability, and genetic

costs if the plasticity is associated with a disadvantageous

gene (DeWitt et al. 1998; Crispo 2007). Studies investigating

plasticity costs have reported variable outcomes, but overall

the results suggest that the costs are small or absent (Snell-

Rood et al. 2010; Murren et al. 2015). Evaluating the costs of

plasticity in grayling populations in the present study would be

difficult, but the relation of enrichments to growth and

developmental traits might indicate that plasticity costs could

indeed exist. Kavanagh et al. (2010) demonstrated that cold

populations had a faster developmental rate and higher mus-

cle mass than warm populations but at the cost of decreased

development of skeletal structures. This finding may suggest

that there are energetic costs associated with expressing dif-

ferent developmental rates, but further studies are needed to

evaluate whether such costs exist at the transcriptome level.

Finally, plasticity can also be maladaptive and thus select

against or compensate for faster evolutionary rate, a phenom-

enon known as counter gradient variation (Conover and

Schultz 1995; Ghalambor et al. 2007, 2015).

Modular Gene Expression Response

The basic assumption underlying gene coexpression analyses

is that functionally similar genes are likely coexpressed or their

expression is correlated (Langfelder and Horvath 2008). We

found evidence for the above assumption in the grayling tran-

scriptome response to thermal treatments. We observed sev-

eral enrichments for developmental traits among the

modules, indicating that this approach can capture gene ex-

pression patterns underlying ecologically important traits.

Previous studies have shown that graylings from cold-origin

populations grow faster and have higher muscle mass than

the warm origin populations (Kavanagh et al. 2010). We

found muscle development related enrichments in the black

module, which could be linked to the observed differentiation

in the muscle growth patterns between cold and warm envi-

ronments. In addition, we found several embryonic organ

development enrichments in the turquoise module and they

could be associated with several other early developmental

traits that have differentiated in grayling populations (Haugen

2000; Haugen and Vøllestad 2000, 2001; Koskinen et al.

2002). Similar results have been observed in lake whitefish

(Coregonus clupeaformis), for which key phenotypic traits of

adaptive significance were associated with coexpression mod-

ules (Filteau et al. 2013). Filteau et al. (2013) correlated phe-

notypic measurements to module eigengene expression,

facilitating the direct association of ecologically important

traits with gene expression patterns. We used a “top-down”

approach, which can also enable the association of gene ex-

pression modules with previously identified adaptive traits in

the grayling populations. In addition to enrichments associ-

ated with biological processes, we observed Pfam protein do-

main enrichment for Homeobox domain in the red module.

The Hox gene cluster is a known transcription factor regulat-

ing embryonic development in the anterior posterior axis (e.g.,

Cheatle Jarvela and Hinman 2015). Originally discovered in

Drosophila, Hox genes have been observed to control devel-

opmental processes in a wide variety of organisms (Pearson

et al. 2005; Cheatle Jarvela and Hinman 2015). Recently, the

Hox gene cluster was identified as a potential driver of diver-

sification in coral reef fishes (Puebla et al. 2014). Hox genes
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control downstream genes through the upregulation or

downregulation of gene expression and thus play an impor-

tant role in regulating gene regulatory networks. However,

additional studies are needed to elucidate the molecular

mechanisms of how Hox genes control plastic or evolutionary

responses in gene expression.

The modular pattern of gene expression suggests a flexible

model of plastic and evolutionary responses during the early

stages of thermal adaptation. Thus, the gene coexpression

modules had variable responses to thermal treatment, popu-

lation effect or their interaction or no effect at all. In general,

plastic effects explained larger proportion of the eigengene

expression than population effects. Overall, these results sug-

gest that transcriptome is divided into subunits with separate

biological functions and different evolutionary properties or

gene expression responses. Although modularity is a charac-

teristic of most living organisms at both the phenotypic and

molecular levels (West-Eberhard 2003), there is no consensus

on the origin and maintenance of modularity (Espinosa-Soto

et al. 2010). Several scenarios have been proposed based on

computer simulations and empirical findings to explain how

modularity evolves (Wagner 1996; Wagner et al. 2007;

Espinosa-Soto et al. 2010). In general, modularity is expected

to decrease pleiotropic interactions among the modules,

thereby enabling more independent evolution of separate

traits (Wagner et al. 2007; Snell-Rood et al. 2010). During

adaptive evolution, most of the traits are under stabilizing

selection, whereas a few traits are under directional selection

(Wagner and Altenberg 1996; Espinosa-Soto et al. 2010).

There is little evidence for the selection scenario in the present

study, although we found that the mean differentiation (QST)

within the modules were significantly different from random

patterns. Most likely, the modules evolve at different rates but

the process is inseparable from the neutral expectations. For

example, the black module was enriched for muscle develop-

ment genes, whereas the blue module was enriched for ner-

vous system development genes, but both modules evolved

under neutrality. Kavanagh et al. (2010) observed that the

development of the musculoskeletal traits in grayling involved

trade-offs. Faster muscle growth in the cold treatment likely

constrains development of other traits, suggesting that ge-

netic correlations might constrain the independent evolution

of developmental modules. According to modularly varying

evolutionary goals scenario, the modularly variable environ-

ment may trigger modular evolution. This idea has been dem-

onstrated with computer simulations and in experimental

studies (Parter et al. 2007; Espinosa-Soto et al. 2010). Parter

et al. (2007) showed that bacterial populations living in vari-

able environments showed more modular organization of

metabolic networks than populations in stable environments.

This scenario is appealing for examination in the grayling sys-

tem to reveal habitat-specific modular patterns, but our

attempts to construct robust population-specific gene

coexpression modules resulted in low reproducibility of the

modules. Espinosa-Soto et al. (2010) used computer simula-

tions to show that modularity could arise as a by-product of

selection favoring new gene activity patterns in certain organ-

ismal structures or under novel environmental conditions.

Empirical findings support this scenario because most of the

new evolutionary innovations are built on previously evolved

modules (Espinosa-Soto et al. 2010). Demonstrating whether

new gene activity patterns are underlying modular transcrip-

tome evolution would require comparative data from several

species (Espinosa-Soto et al. 2010). Finally, computer simula-

tions indicate that maximizing network performance and min-

imizing connections costs can facilitate network modularity

(Clune et al. 2013). In conclusion, the mechanism driving

the origin and maintenance of the modularity in the present

study cannot be inferred with certainty. However, we suggest

that modularity may facilitate the flexible adjustment of gene

expression levels to local thermal conditions as indicated by

module-specific plastic and evolutionary responses.

No Evidence for Adaptive Evolution in Gene Expression?

We detected no clear signals of adaptive evolution, suggest-

ing that neutral patterns can explain gene expression variance

after a recent colonization of varying thermal environments.

We found only two transcripts outside the FST distribution

(assuming c/h2¼ 1.5 or 1), and the remaining QST estimates

fell within the FST distribution. These two transcripts were

annotated to genes SSUH2 and tctex1d1. SSHU2 is involved

in human dental malformations (Xiong et al. 2017), and

tctex1d1 is associated with relative testis weight and is located

in a genomic region of high sequence differentiation between

house mouse (Mus musculus) subspecies (Phifer-Rixey et al.

2014). The overall pattern of gene expression divergence is

consistent with neutral theory of evolution, predicting that

genetic drift is expected to dominate over natural selection

in small populations (Nei et al. 2010). Previous gene expres-

sion evolution studies have suggested that stabilizing selection

and neutral evolution explains gene expression divergence

between closely related species (Rifkin et al. 2003). For exam-

ple, using a quantitative genetic model, Lemos et al. (2005)

showed that 61–100% of the expressed genes in Drosophila

species and mouse strains were under stabilizing selection,

but little expression variance was explained by genetic drift

or directional selection. Khaitovich et al. (2004) examined pri-

mate gene expression, showing that expression differences

accumulated linearly with time, consistent with neutral

expectations. Previous studies using QST - FST comparisons

have provided evidence for natural selection in gene expres-

sion data, but the majority of the gene expression divergence

is consistent with neutral evolution (Roberge et al. 2007;

Kohn et al. 2008; Aykanat et al. 2011; Papakostas et al.

2014; Leder et al. 2015). However, direct comparisons of

QST - FST studies are not without problems (Leinonen et al.

2008, 2013). Previous studies have compared the mean and
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95% confidence intervals of FST estimated from a few micro-

satellite markers to the QST distribution, but this approach

might be biased because the genome wide variance of FST

could be underestimated (Whitlock 2008; Leinonen et al.

2013). Whitlock (2008) simulated FST and QST distributions

and observed that QST and single locus FST distributions be-

have similarly under the Lewontin–Kraukauer model, suggest-

ing that the entire distribution range of locus-specific FST

estimates more realistically describes the neutral distribution.

We used more than two thousand SNP markers, resulting in a

more genome-wide perspective on variance of FST. However,

in our study, both estimators may suffer from sampling bias,

reflecting small sample size and a low number of populations

(O’Hara and Meril€a 2005; Whitlock 2008), potentially result-

ing in a large sampling variance of both estimators.

Theoretical studies have shown that a large number of sam-

ples and populations are needed to accurately estimate QST

and FST (O’Hara and Meril€a 2005; Whitlock 2008).

Furthermore, the heritability of gene expression considerably

varies from gene to gene (Leder et al. 2015). The common

garden design did not allow the estimation of heritability, but

the assumed ratios of additive variance and heritability indi-

cated that QST - FST overlapped in a wide parameter range.

Similarly, direct comparisons of transcriptome divergence

to previous studies demonstrating adaptive evolution in early-

life history traits at the phenotypic level in grayling populations

are slightly challenging. Koskinen et al. (2002) and Kavanagh

et al. (2010) reported higher divergence than would be

expected under neutrality in early life history traits, such as

muscle growth, although in a different set of populations

from the same region. Neutral divergence in gene expression

was evident when the divergence in transcripts with homology

to zebrafish muscle proteins and embryonic organ develop-

ment were considered. The mean QST was 0.041 for eleven

muscle growth-related transcripts and 0.146 for embryonic or-

gan development-related transcripts, indicating divergence

consistent with neutrality. In addition to the statistical difficul-

ties in estimating adaptive evolution in gene expression, further

complications in estimating and interpreting gene expression

divergence compared with the phenotypic level might arise

from the complexity of the molecular mechanisms underlying

genotype–phenotype maps (Diz et al. 2012; Harrison et al.

2012; Alvarez et al. 2015). First, gene expression variability is

inherently noisy because of environmental effects or effects

arising from the maternal or paternal environment. Common

garden experiments should in theory remove environmental

effects, but trans generational plasticity (TGP) may bias estimat-

ing evolutionary responses in gene expression, even in the com-

mon environment (Salinas and Munch 2012; Shama et al.

2016). For example, Shama et al. (2016) showed that gene

expression patterns in sticklebacks (G. aculeatus) follow the

environment experienced by the maternal environment, and

these effects can persist for several generations. Salinas and

Munch (2012) demonstrated that the parental rearing

temperature modified the growth reaction norms in sheep

shead minnow offspring (Cyprinodon variegatus). Therefore,

TGP could bias heritability estimates and lead to false conclu-

sions about the rate of rapid adaptive evolution (Salinas and

Munch 2012). Second, there is uncertainty about the gene

expression variance that is functionally important or having a

phenotypic effect, particularly when only quantitative data are

available, as in many RNA-seq studies (Harrison et al. 2012). In

QST - FST comparisons, the extreme values in the tails of the

distribution are most likely candidates affected by natural se-

lection, but variation falling within the neutral distribution

might also have adaptive significance. Documented gene ex-

pression changes underlying adaptive traits can be relatively

small, as in human hair color variation (Guenther et al. 2014),

or can involve almost complete tissue-specific silencing of ex-

pression, as in the pelvic spine loss in sticklebacks (Chan et al.

2010). Therefore, the QST - FST approach to analysing gene ex-

pression data to identify extreme values might not always be

completely warranted. Finally, gene expression patterns de-

pend on the topological features of a given network and the

position of a gene in the network (Siegal et al. 2007; Levy et al.

2008). The network can buffer against the expression changes

of individual genes to a certain degree, but highly connected

genes or internal hub genes can be more vital to the entire

network function and output (Han et al. 2004; Levy et al. 2008;

Garfield et al. 2013). For example, the knockout of hub genes

can be almost lethal in yeast (Han et al. 2004), and the number

of protein interactions can constrain expression patterns.

Therefore, estimating gene expression divergence should also

consider the position of a gene in a network and the number of

interactions with neighboring genes.

Conclusions

Our study revealed that each gene coexpression module var-

ied in plastic and population responses. Overall, plastic

responses explained a larger amount of the eigengene expres-

sion variance, suggesting that plasticity might be a key mech-

anism in adaptation to the local thermal conditions among

these grayling populations. Plasticity showed population-

specific responses, suggesting that plasticity might evolve

according to patterns consistent both with the Baldwin and

genetic assimilation effects. Although populations showed

signals of differentiation in expression profiles, no clear signals

of adaptive evolution in gene expression were observed. The

population differences were explained by patterns consistent

with genetic drift, but sampling variance in both FST and QST

estimators because of low sample sizes might lead to low

power of detecting selection. The modular organization of

the gene expression patterns might enable module-specific

tuning of gene expression to local thermal conditions.

Overall, we suggest that combining systems and quantitative

genetics methods can help in understanding the evolution of

complex gene expression networks.

M€akinen et al. GBE

90 Genome Biol. Evol. 10(1):77–93 doi:10.1093/gbe/evx278 Advance Access publication December 23, 2017

Deleted Text: <sub><italic>ST</italic></sub>
Deleted Text: F<sub>ST</sub>
Deleted Text: <sub><italic>ST</italic></sub>
Deleted Text: Q<sub>ST</sub>
Deleted Text: <sub><italic>ST</italic></sub>
Deleted Text: F<sub>ST</sub>
Deleted Text: <sub><italic>ST</italic></sub>
Deleted Text: F<sub>ST</sub>
Deleted Text: <sub><italic>ST</italic></sub>
Deleted Text: Q<sub>ST</sub>
Deleted Text: <sub><italic>ST</italic></sub>
Deleted Text: Q<sub>ST</sub>
Deleted Text: <sub><italic>ST</italic></sub>
Deleted Text: F<sub>ST</sub>
Deleted Text: -
Deleted Text: <sub><italic>ST</italic></sub>
Deleted Text: F<sub>ST</sub>
Deleted Text: <sub><italic>ST</italic></sub>
Deleted Text: F<sub>ST</sub>
Deleted Text: <sub><italic>ST</italic></sub>
Deleted Text: Q<sub>ST</sub>
Deleted Text: <sub><italic>ST</italic></sub>
Deleted Text: F<sub>ST</sub>
Deleted Text: <sub><italic>ST</italic></sub>
Deleted Text: <sub><italic>ST</italic></sub>
Deleted Text: Q<sub>ST</sub>-F<sub>ST</sub>
Deleted Text: <sub><italic>ST</italic></sub>
Deleted Text: Q<sub>ST</sub>
Deleted Text: compared to
Deleted Text: -
Deleted Text: <italic>Gasterosteus</italic> 
Deleted Text: <sub><italic>ST</italic></sub>
Deleted Text: <sub><italic>ST</italic></sub>
Deleted Text: Q<sub>ST</sub>-F<sub>ST</sub>
Deleted Text: u
Deleted Text: <sub><italic>ST</italic></sub>
Deleted Text: <sub><italic>ST</italic></sub>
Deleted Text: Q<sub>ST</sub>-F<sub>ST</sub>
Deleted Text: neighbouring
Deleted Text: -
Deleted Text: <sub><italic>ST</italic></sub>
Deleted Text: F<sub>ST</sub>
Deleted Text: <sub><italic>ST</italic></sub>
Deleted Text: Q<sub>ST</sub>


Supplementary Material

Supplementary data are available at Genome Biology and

Evolution online.

Acknowledgments

This study was financially supported through grants from the

Academy of Finland (project numbers 287342 and 302873)

and the Norwegian Research Council (project number

177728), and the Finnish Cultural Foundation. The authors

thank Tutku Aykanat forassistancewithQST - FST comparisons,

and Ane Kvinge for assistance with field sampling and the

common garden experiment. We acknowledge the CSC—IT

Center for Science in Finland for providing computational

resources. We also thank two anonymous reviewers for con-

structive comments on an earlier version of this manuscript.

Literature Cited
Andrews S. 2010. FastQC: a quality control tool for high throughput

sequence data. Available online at: http://www.bioinformatics.

babraham.ac.uk/projects/fastqc, last accessed December 30, 2017.

Alvarez M, Schrey AW, Richards CL. 2015. Ten years of transcriptomics in

wild populations: what have we learned about their ecology and evo-

lution? Mol Ecol. 24(4):710–725.

Aubin-Horth N, Renn SCP. 2009. Genomic reaction norms: using integra-

tive biology to understand molecular mechanisms of phenotypic plas-

ticity. Mol Ecol. 18(18):3763–3780.

Aykanat T, Thrower FP, Heath DD. 2011. Rapid evolution of osmoregula-

tory function by modification of gene transcription in steelhead trout.

Genetica 139(2):233–242.

Bates D, M€achler M, Bolker B, Walker S. 2015. Fitting linear mixed-effects

models using lme4. J Stat Softw. 67(1):51.

Benson DA, et al. 2012. GenBank. Nucleic Acids Res. 41(D1):36–42.

Brommer JE. 2011. Whither PST? The approximation of QST by PST in

evolutionary and conservation biology. J Evol Biol. 24(6):1160–1168.

Camacho C, et al. 2009. BLAST plus: architecture and applications. BMC

Bioinformatics. 10(1):1.

Chan YF, et al. 2010. Adaptive evolution of pelvic reduction in sticklebacks

by recurrent deletion of a Pitx1 enhancer. Science

327(5963):302–305.

Cheatle Jarvela AM, Hinman VF. 2015. Evolution of transcription factor

function as a mechanism for changing metazoan developmental gene

regulatory networks. Evodevo 6(1):3.

Chevin L-M, Lande R, Mace GM, Kingsolver JG. 2010. Adaptation, plas-

ticity, and extinction in a changing environment: towards a predictive

theory. PLoS Biol. 8(4):e1000357.

Chezik KA, Lester NP, Venturelli PA, Tierney K. 2014. Fish growth and

degree-days I: selecting a base temperature for a within-population

study. Can J Fish Aquat Sci. 71(1):47–55.

Clune J, Mouret J-B, Lipson H. 2013. The evolutionary origins of modu-

larity. Proc Biol Sci. 280(1755):20122863.

Conover DO, Schultz ET. 1995. Phenotypic similarity and the evolutionary

significance of countergradient variation. Trends Ecol Evol.

10(6):248–252.

Crispo E. 2007. The Baldwin effect and genetic assimilation: revisiting two

mechanisms of evolutionary change mediated by phenotypic plastic-

ity. Evolution (N Y). 61(11):2469–2479.

Crozier LG, Hutchings JA. 2014. Plastic and evolutionary responses to

climate change in fish. Evol Appl. 7(1):68–87.

Cunningham F, et al. 2015. Ensembl 2015. Nucleic Acids Res.

43:D662–D669.

DeBiasse MB, Kelly MW. 2016. Plastic and evolved responses to global

change: what can we learn from comparative transcriptomics? Table

1. J Hered. 107(1):71–81.

DeWitt TJ, Sih A, Wilson DS. 1998. Costs and limits of phenotypic plastic-

ity. Trends Ecol Evol. 13(2):77–81.

Diz AP, Mart�ınez-Fern�andez M, Rol�an-Alvarez E. 2012. Proteomics in evo-

lutionary ecology: linking the genotype with the phenotype. Mol Ecol.

21(5):1060–1080.

Draghi JA, Whitlock MC. 2012. Phenotypic plasticity facilitates mutational

variance, genetic variance, and evolvability along the major axis of

environmental variation. Evolution (N Y). 66(9):2891–2902.

Ehrenreich IM, Pfennig DW. 2016. Genetic assimilation: a review of its

potential proximate causes and evolutionary consequences. Ann Bot.

117(5):769–779.

Espinosa-Soto C, Wagner A, Babu MM. 2010. Specialization can drive the

evolution of modularity. PLoS Comput. Biol. 6(3):e1000719.

Feltus FA. 2014. Systems genetics: a paradigm to improve discovery of

candidate genes and mechanisms underlying complex traits. Plant Sci.

223:45–48.

Fierst JL. 2011. A history of phenotypic plasticity accelerates adaptation to

a new environment. J Evol Biol. 24(9):1992–2001.

Filteau M, Pavey SA, St-Cyr J, Bernatchez L. 2013. Gene coexpression

networks reveal key drivers of phenotypic divergence in lake whitefish.

Mol Biol Evol. 30(6):1384–1396.

Fischer EK, Ghalambor CK, Hoke KL. 2016. Can a network approach

resolve how adaptive vs nonadaptive plasticity impacts evolutionary

trajectories? Integr Comp Biol. 56(5):877–888.

Foll M, Gaggiotti O. 2008. A genome-scan method to identify selected loci

appropriate for both dominant and codominant markers: a Bayesian

perspective. Genetics 180(2):977–993.

Forsman A. 2015. Rethinking phenotypic plasticity and its consequences for

individuals, populations and species. Heredity (Edinb). 115(4):276–284.

Franks SJ, Hoffmann AA. 2012. Genetics of climate change adaptation.

Annu Rev Genet. 46:185–208.

Fraser HB. 2011. Prospects & overviews genome-wide approaches to the

study of adaptive gene expression evolution. BioEssays 33(6):469–477.

Fu L, Niu B, Zhu Z, Wu S, Li W. 2012. CD-HIT: accelerated for clustering the

next-generation sequencing data. Bioinformatics 28(23):3150–3152.

Fusco G, Minelli A. 2010. Phenotypic plasticity in development and evo-

lution: facts and concepts. Philos Trans R Soc Lond B Biol Sci.

365(1540):547.

Garfield DA, et al. 2013. The impact of gene expression variation on the

robustness and evolvability of a developmental gene regulatory net-

work. PLoS Biol. 11(10):e1001696.

Ghalambor CK, et al. 2015. Non-adaptive plasticity potentiates rapid adap-

tive evolution of gene expression in nature. Nature

525(7569):372–375.

Ghalambor CK, McKay JK, Carroll SP, Reznick DN. 2007. Adaptive versus

non-adaptive phenotypic plasticity and the potential for contemporary

adaptation in new environments. Funct Ecol. 21(3):394–407.

Gienapp P, Teplitsky C, Alho JS, Mills JA, Meril€a J. 2008. Climate change

and evolution: disentangling environmental and genetic responses.

Mol Ecol. 17(1):167–178.

Gregersen F, Haugen TO, Vøllestad LA. 2008. Contemporary egg size

divergence among sympatric grayling demes with common ancestors.

Ecol Freshw Fish. 17(1):110–118.

Guenther CA, Tasic B, Luo L, Bedell MA, Kingsley DM. 2014. A molecular

basis for classic blond hair color in Europeans. Nat Genet.

46(7):748–752.

Haas BJ, et al. 2013. De novo transcript sequence reconstruction from

RNA-seq using the Trinity platform for reference generation and anal-

ysis. Nat Protoc. 8(8):1494–1512.

Gene Coexpression network evolution GBE

Genome Biol. Evol. 10(1):77–93 doi:10.1093/gbe/evx278 Advance Access publication December 23, 2017 91

https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evx278#supplementary-data
http://www.bioinformatics.babraham.ac.uk/projects/fastqc
http://www.bioinformatics.babraham.ac.uk/projects/fastqc


Han J-DJ, et al. 2004. Evidence for dynamically organized modularity in the

yeast protein–protein interaction network. Nature 430(6995):88–93.

Harrison PW, Wright AE, Mank JE. 2012. The evolution of gene expression

and the transcriptome–phenotype relationship. Semin Cell Dev Biol.

23(2):222–229.

Haugen T, Vøllestad LA. 2000. Population differences in early life-history

traits in grayling. J Evol Biol. 13(6):897–905.

Haugen TO. 2000. Growth and survival effects on maturation pattern in

populations of grayling with recent common ancestors. J Fish Biol.

56:1173–1191.

Haugen TO, Vøllestad LA. 2001. A century of life-history evolution in

grayling. Genetica 112–113:475–491.

Hendry AP. 2016. Key questions on the role of phenotypic plasticity in eco-

evolutionary dynamics. J Hered. 107(1):25–41.

Hoekstra HE, Coyne JA. 2007. The locus of evolution: Evo Devo and the

genetics of adaptation. Evolution (N Y). 61(5):995–1016.

Jombart T, Ahmed I. 2011. adegenet 1.3-1: new tools for the analysis of

genome-wide SNP data. Bioinformatics 27(21):3070–3071.

Junge C, Museth J, Hindar K, Kraabøl M, Vøllestad LA. 2014. Assessing

the consequences of habitat fragmentation for two migratory salmo-

nid fishes. Aquat Conserv Mar Freshw Ecosyst. 24(3):297–311.

Kavanagh KD, Haugen TO, Gregersen F, Jernvall J, Vøllestad LA. 2010.

Contemporary temperature-driven divergence in a Nordic freshwater

fish under conditions commonly thought to hinder adaptation. BMC

Evol Biol. 10(1):350.

Khaitovich P, et al. 2004. A neutral model of transcriptome evolution. PLoS

Biol. 2(5):E132.

Kohn MH, Shapiro J, Wu C-I. 2008. Decoupled differentiation of gene

expression and coding sequence among Drosophila populations.

Genes Genet Syst. 83(3):265–273.

Koskinen MT, Haugen TO, Primmer CR. 2002. Contemporary fisherian

life-history evolution in small salmonid populations. Nature

419(6909):826–830.

Laarits T, Bordalo P, Lemos B. 2016. Genes under weaker stabilizing se-

lection increase network evolvability and rapid regulatory adaptation

to an environmental shift. J Evol Biol. 29(8):1602–1616.

Lande R. 2015. Evolution of phenotypic plasticity in colonizing species. Mol

Ecol. 24(9):2038–2045.

Langfelder P, Horvath S. 2007. Eigengene networks for studying the rela-

tionships between co-expression modules. BMC Syst Biol. 1:54.

Langfelder P, Horvath S. 2008. WGCNA: an R package for weighted cor-

relation network analysis. BMC Bioinformatics. 9(1):559.

Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with Bowtie

2. Nat Methods. 9(4):357–359.

Leder EH, et al. 2015. The evolution and adaptive potential of transcrip-

tional variation in sticklebacks – signatures of selection and widespread

heritability. Mol Biol Evol. 32(3):674–689.

Leinonen T, McCairns RJS, O’Hara RB, Meril€a J. 2013. Q(ST)-F(ST) compar-

isons: evolutionary and ecological insights from genomic heterogene-

ity. Nat Rev Genet. 14(3):179–190.

Leinonen T, O’Hara RB, Cano JM, Meril€a J. 2008. Comparative studies of

quantitative trait and neutral marker divergence: a meta-analysis. J

Evol Biol. 21(1):1–17.

Lemos B, Meiklejohn CD, C�aceres M, Hartl DL. 2005. Rates of divergence

in gene expression profiles of primates, mice, and flies: stabilizing se-

lection and variability among functional categories. Evolution (N Y).

59(1):126–137.

Levy SF, Siegal ML, Levchenko A. 2008. Network hubs buffer environmen-

tal variation in Saccharomyces cerevisiae. PLoS Biol. 6(11):2588–2604.

Li H, et al. 2009. The Sequence Alignment/Map format and SAMtools.

Bioinformatics 25(16):2078–2079.

Li W, Godzik A. 2006. Cd-hit: a fast program for clustering and comparing

large sets of protein or nucleotide sequences. Bioinformatics

22(13):1658–1659.

L�opez-Maury L, Marguerat S, B€ahler J. 2008. Tuning gene expression to

changing environments: from rapid responses to evolutionary adap-

tation. Nat Rev Genet. 9(8):583–593.

Meril€a J. 2012. Evolution in response to climate change: in pursuit of the

missing evidence. BioEssays 34(9):811–818.

Meril€a J, Hendry AP. 2014. Climate change, adaptation, and phenotypic

plasticity: the problem and the evidence. Evol Appl. 7(1):1–14.

Messer PW, Ellner SP, Hairston NG. 2016. Can population genetics adapt

to rapid evolution? Trends Genet. 32(7):408–418.

Morris MRJ, Rogers SM. 2013. Overcoming maladaptive plasticity through

plastic compensation. Curr Zool. 59(4):526–536.

Murren CJ, et al. 2015. Constraints on the evolution of phenotypic plas-

ticity: limits and costs of phenotype and plasticity. Heredity (Edinb).

115(4):293–301.

Narum SR, Campbell NR, Meyer KA, Miller MR, Hardy RW. 2013. Thermal

adaptation and acclimation of ectotherms from differing aquatic cli-

mates. Mol Ecol. 22(11):3090–3097.

Nei M, Suzuki Y, Nozawa M. 2010. The neutral theory of molecular evo-

lution in the genomic era. Annu Rev Genomics Hum Genet.

11:265–289.

O’Hara RB, Meril€a J. 2005. Bias and precision in QST estimates: problems

and some solutions. Genetics 171:1331–1339.

Papakostas S, et al. 2014. Gene pleiotropy constrains gene expression

changes in fish adapted to different thermal conditions. Nat

Commun. 5:4071.

Parter M, Kashtan N, Alon U. 2007. Environmental variability and modu-

larity of bacterial metabolic networks. BMC Evol Biol. 7:169.

Pearson JC, Lemons D, McGinnis W. 2005. Modulating Hox gene func-

tions during animal body patterning. Nat Rev Genet. 6(12):893–904.

Phifer-Rixey M, Bomhoff M, Nachman MW. 2014. Genome-wide patterns

of differentiation among house mouse subspecies. Genetics

198(1):283–297.

Pigliucci M, Murren CJ, Schlichting CD. 2006. Phenotypic plasticity and

evolution by genetic assimilation. J Exp Biol. 209(Pt 12):2362–2367.

Price TD, Qvarnstrom A, Irwin DE. 2003. The role of phenotypic plasticity

in driving genetic evolution. Proc R Soc B Biol Sci. 270(1523):

1433–1440.

Puebla O, Bermingham E, McMillan WO. 2014. Genomic atolls of differ-

entiation in coral reef fishes (Hypoplectrus spp., Serranidae). Mol Ecol.

23(21):5291–5303.

Reusch TBH. 2014. Climate change in the oceans: evolutionary versus

phenotypically plastic responses of marine animals and plants. Evol

Appl. 7(1):104–122.

Rifkin SA, Kim J, White KP. 2003. Evolution of gene expression in the

Drosophila melanogaster subgroup. Nat Genet. 33(2):138–144.

Risso D, Ngai J, Speed TP, Dudoit S. 2014. Normalization of RNA-seq data

using factor analysis of control genes or samples. Nat Biotechnol.

32(9):896–902.

Roberge C, Guderley H, Bernatchez L. 2007. Genomewide identification of

genes under directional selection: gene transcription QST scan in diverg-

ing Atlantic salmon subpopulations. Genetics 177(2):1011–1022.

Roberts A, Pachter L. 2013. Streaming fragment assignment for real-time

analysis of sequencing experiments. Nat Methods. 10(1):71–73.

Rohlfs RV, Harrigan P, Nielsen R. 2014. Modeling gene expression evolu-

tion with an extended Ornstein–Uhlenbeck process accounting for

within-species variation. Mol Biol Evol. 31(1):201–211.

Romero IG, Ruvinsky I, Gilad Y. 2012. Comparative studies of gene ex-

pression and the evolution of gene regulation. Nat Rev Genet.

13(7):505–516.

Ruprecht C, Vaid N, Proost S, Persson S, Mutwil M. 2017. Beyond geno-

mics: studying evolution with gene coexpression networks. Trends

Plant Sci. 22(4):298–307.

Salinas S, Munch SB. 2012. Thermal legacies: transgenerational effects of

temperature on growth in a vertebrate. Ecol Lett. 15(2):159–163.

M€akinen et al. GBE

92 Genome Biol. Evol. 10(1):77–93 doi:10.1093/gbe/evx278 Advance Access publication December 23, 2017



Schlichting CD, Wund MA. 2014. Phenotypic plasticity and epigenetic

marking: an assessment of evidence for genetic accommodation.

Evolution (N Y). 68(3):656–672.

Schneider RF, Meyer A. 2017. How plasticity, genetic assimilation and

cryptic genetic variation may contribute to adaptive radiations. Mol

Ecol. 26(1):330–350.

Shama LNS, et al. 2016. Transgenerational effects persist down the ma-

ternal line in marine sticklebacks: gene expression matches physiology

in a warming ocean. Evol Appl. 9(9):1096–1111.

Shaw RG, Etterson JR. 2012. Rapid climate change and the rate of adap-

tation: insight from experimental quantitative genetics. New Phytol.

195(4):752–765.

Siegal ML, Promislow DEL, Bergman A. 2007. Functional and evolutionary

inference in gene networks: does topology matter? Genetica

129(1):83–103.

Sikkink KL, Reynolds RM, Ituarte CM, Cresko WA, Phillips PC. 2014. Rapid

evolution of phenotypic plasticity and shifting thresholds of genetic

assimilation in the nematode Caenorhabditis remanei.

G3GenesjGenomesjGenet. 4:1103–1112.

Smeds L, Künstner A. 2011. ConDeTri – a content dependent read trim-

mer for illumina data. PLoS ONE. 6(10):e26314.

Snell-Rood EC, Van Dyken JD, Cruickshank T, Wade MJ, Moczek AP.

2010. Toward a population genetic framework of developmental evo-

lution: the costs, limits, and consequences of phenotypic plasticity.

BioEssays 32(1):71–81.

Soyer OS, O’Malley MA. 2013. Evolutionary systems biology: what it is and

why it matters. BioEssays 35(8):696–705.

Supek F, et al. 2011. REVIGO summarizes and visualizes long lists of gene

ontology terms. PLoS ONE. 6:e21800.

Szklarczyk D, et al. 2015. STRING v10: protein–protein interaction net-

works, integrated over the tree of life. Nucleic Acids Res.

43(D1):D447–D452.

Thomassen G, Barson NJ, Haugen TO, Vøllestad LA. 2011. Contemporary

divergence in early life history in grayling (Thymallus thymallus). BMC

Evol. Biol. 11(1):360.

Waddington CH. 1953. Waddington-assimilation.pdf. Evolution (N Y).

7(2):118–126.

Wagner GP. 1996. Homologues, natural kinds and the evolution of mod-

ularity. Am Zool. 36(1):36–43.

Wagner GP, Altenberg L. 1996. Perspective: complex adaptations and the.

Evol Evol Evol (N Y). 50(3):967–976.

Wagner GP, Pavlicev M, Cheverud JM. 2007. The road to modularity. Nat

Rev Genet. 8(12):921–931.

Walworth NG, Lee MD, Fu F-X, Hutchins DA, Webb EA. 2016. Molecular

and physiological evidence of genetic assimilation to high CO2 in the

marine nitrogen fixer Trichodesmium. Proc Natl Acad Sci.

113(47):E7367–E7374.

Weir B, Cockerham C. 1984. Estimating F-statistics for the analysis of

population structure. Evolution (N Y). 38(6):1358–1370.

West-Eberhard, M.J. 2003. Developmental Plasticity and Evolution. New

York: Oxford University Press.

Whitehead A, Crawford DL. 2006. Variation within and among species

in gene expression: raw material for evolution. Mol Ecol. 15(5):

1197–1211.

Whitlock MC. 2008. Evolutionary inference from QST. Mol Ecol.

17(8):1885–1896.

De Wit P, Pespeni MH, Palumbi SR. 2015. SNP genotyping and population

genomics from expressed sequences – current advances and future

possibilities. Mol Ecol. 24(10):2310–2323.

Xiong F, et al. 2017. Mutation in SSUH2 causes autosomal-dominant den-

tin dysplasia type I. Hum Mutat. 38(1):95–104.

Associate editor: Patricia Wittkopp

Gene Coexpression network evolution GBE

Genome Biol. Evol. 10(1):77–93 doi:10.1093/gbe/evx278 Advance Access publication December 23, 2017 93


	evx278-TF1
	evx278-TF2
	evx278-TF3
	evx278-TF4

