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ARTICLE
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Summary
Metabolite levels measured in the human population are endophenotypes for biological processes. We combined sequencing data for

3,924 (whole-exome sequencing, WES, discovery) and 2,805 (whole-genome sequencing, WGS, replication) donors from a prospective

cohort of blood donors in England. We used multiple approaches to select and aggregate rare genetic variants (minor allele frequency

[MAF]< 0.1%) in protein-coding regions and tested their associations with 995 metabolites measured in plasma by using ultra-high-per-

formance liquid chromatography–tandem mass spectrometry. We identified 40 novel associations implicating rare coding variants (27

genes and 38 metabolites), of which 28 (15 genes and 28 metabolites) were replicated. We developed algorithms to prioritize putative

driver variants at each locus and used mediation and Mendelian randomization analyses to test directionality at associations of metab-

olite and protein levels at the ACY1 locus. Overall, 66% of reported associations implicate gene targets of approved drugs or bioactive

drug-like compounds, contributing to drug targets’ validating efforts.
Introduction

Variability of metabolite levels in the human population is

influenced by both extrinsic and intrinsic factors. Genetic

variation can affect metabolite levels by regulating the

expression of enzyme-coding genes, modifying the struc-

ture of the enzyme or completely inactivating the enzyme

in the case of protein-truncating variants. This could lead

to a disruption of a particular metabolic pathway and, de-

pending on the severity of this disruption, to the develop-

ment of disease.1 Metabolites are intermediate phenotypes

between genes and clinical outcomes, and thus studying

metabolites can aid the interpretation of effector genes of

genome-wide association studies (GWASs) of complex

traits and diseases. Genetic variants associated with metab-

olites are enriched near genes of pharmacological interest,

aiding the evaluation of potential drug targets.2 Often,

genes involved in inborn errors of metabolism also harbor

genetic variants associated withmetabolite levels related to

the disorder, and those same genetic variants may also be

associated with complex traits and diseases.2

GWASs have identified hundreds of common (minor

allele frequency [MAF] > 0.1%) genetic variants associated
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with metabolite levels.2,3 Relatively less is known about

the contribution to metabolites across the rare spectrum

of genetic variation.4–6 Studying variants with a predicted

severe impact on proxies of protein function can inform

drug discovery efforts7 by aiding the interpretation of the

phenotypic consequences of partial or complete gene

‘‘knockouts’’ in humans. A genetic variant that inactivates

a gene encoding a drug target may mimic the pharmaco-

logical modulation of a drug, providing an ‘‘experiment

of nature’’ to inform drug development. Metabolite levels

associated with such variants could be used as readouts

to infer clinical and therapeutic effects of a drug.

To expand our knowledge of rare high-impact (i.e., pre-

dicted loss-of-function and missense) variants associated

with levels of nearly 1,000 plasma metabolites, we interro-

gated a cohort of apparently healthy blood donors re-

cruited in the INTERVAL study8 with whole-exome

sequencing (WES) or whole-genome sequencing (WGS).

We used a robust approach to aggregate loss-of-function

and/or missense rare variants in test windows to improve

the statistical power to detect signals. For comparison, we

also explored synonymous variants with no predicted

functional impact. Moreover, we developed a novel
UK; 2Open Targets, Wellcome Genome Campus, Hinxton CB10 1SD, UK;

Public Health and Primary Care, University of Cambridge, Cambridge CB1

e Biomedical Campus, Puddicombe Way, Cambridge CB2 0AW, UK; 5MRC

mbridge CB2 0SL, UK; 6Computational Medicine, Berlin Institute of Health

t Foundation Centre of Research Excellence, University of Cambridge, Cam-

ant Research Unit in Donor Health andGenomics, University of Cambridge,

enome Campus and University of Cambridge, Cambridge CB10 1SA, UK;

, Italy; 11NHS Blood and Transplant-Oxford Centre, Level 2, John Radcliffe

y of Oxford, John Radcliffe Hospital, Oxford OX3 9BQ, UK; 13European Mo-

ome Campus, Hinxton CB10 1SD, UK

e 2, 2022

ttp://creativecommons.org/licenses/by/4.0/).

mailto:ns6@sanger.ac.uk
https://doi.org/10.1016/j.ajhg.2022.04.009
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ajhg.2022.04.009&domain=pdf
http://creativecommons.org/licenses/by/4.0/


method to assess the contributions of individual rare vari-

ants to the aggregated association signals. We also investi-

gated whether any of the genes found to be associated with

metabolite levels were also associated with protein levels

measured in the same cohort. Overall, this study demon-

strates the value of a densely phenotyped cohort for dis-

secting changes associated with metabolite and protein

levels.
Subjects and methods

Study description
The INTERVAL study8 comprises approximately 45,000 apparently

healthy blood donors nested within a randomized trial of blood

donation intervals. The trial has received ethics committee

approval from the National Research Ethics Service Committee

East of England - Cambridge East (Research Ethics Committee

[REC] reference 11/EE/0538). Between mid-2012 and mid-2014,

whole-blood donors aged 18 years and older were consented and

recruited at 25 centers of England’s National Health Service Blood

and Transplant. All participants completed an online question-

naire including questions about demographic characteristics

(e.g., age, sex, ethnic group), anthropometry (height, weight), life-

style (e.g., alcohol and tobacco consumption), and diet. Partici-

pants were generally in good health because blood donation

criteria exclude people with a history of major disease (such as

myocardial infarction, stroke, cancer, HIV, and hepatitis B or C)

and those who have had recent illness or infection. Study partici-

pants were randomly selected into two non-overlapping sub-co-

horts of 4,502 and 3,762 participants, which were both screened

with the Metabolon platform. The former sub-cohort was whole-

exome sequenced, while the latter was whole-genome sequenced.

Both were genotyped with the UK Biobank Axiom Array and

imputed with a combined UK10K-1000G Phase III imputation

panel.
Metabolite measurements
The non-targeted metabolomics analysis was performed at Metab-

olon (Durham, North Carolina, USA) on a platform consisting of

four independent ultra-high-performance liquid chromatogra

phy–tandem mass spectrometry (UPLC–MS/MS) instruments.

Raw data were extracted, peaks identified, and quality control

(QC) processed via Metabolon’s hardware and software. Com-

pounds were identified by comparison to library entries of purified

standards or recurrent unknown entities. Metabolon maintains a

library based on authenticated standards that contains the

retention time/index (RI), mass-to-charge ratio (m/z), and chro-

matographic data (including MS/MS spectral data) on all

molecules present in the library. Furthermore, biochemical ide-

ntifications are based on three criteria: retention index within a

narrow RI window of the proposed identification, accurate mass

match to the library 510 ppm, and MS/MS forward and reverse

scores between the experimental data and authentic standards.

MS/MS scores are based on a comparison of the ions present in

the experimental spectrum to the ions present in the library spec-

trum. While there may be similarities between these molecules

based on one of these factors, the use of all three data points can

distinguish and differentiate biochemicals. More than 3,300

commercially available purified standard compounds have been

acquired and registered into LIMS for analysis on all platforms
The America
for determination of their analytical characteristics. Additional

mass spectral entries have been created for structurally unnamed

biochemicals, which have been identified by virtue of their recur-

rent nature (both chromatographic andmass spectral). These com-

pounds have the potential to be identified by future acquisition of

a matching purified standard or by classical structural analysis.

A variety of curation procedures were carried out to ensure that a

high-quality dataset was made available for statistical analysis and

data interpretation. The quality control and curation processes

were designed to ensure accurate and consistent identification of

true chemical entities and to remove those representing system ar-

tifacts, misassignments, and background noise. Metabolon data

analysts used proprietary visualization and interpretation software

to confirm the consistency of peak identification among the

various samples. Library matches for each compound were

checked for each sample and corrected if necessary.
Quality control of metabolites
Plasma samples from 8,536 INTERVAL participants that passed

WES QC (Table S1) were sent to Metabolon for metabolite

profiling. Plasma samples were sent in two batches and were

thus processed at different times. Because of the potential for

batch effects, QC of the metabolite data was done by batch. Me-

tabolites with >100 missing values were excluded, and in total,

995 metabolites were available after QC. Metabolites were log-

transformed by taking the natural logarithm. A metabolite value

was defined as an outlier and winsorized where the value was 5

or more standard deviations away from the mean metabolite

value. A principal-component analysis (PCA) was done with

nonlinear iterative partial least squares because of the sparsity of

the dataset. To help identify any multivariate outliers, we per-

formed biplots comparing the first principal component to each

of the next nine principal components. We undertook linear re-

gressions of the first five principal components against age, sex,

BMI, current smoking, alcohol consumption frequency, center,

batch, plate (as a proxy for run day), appointment month (proxy

for possible seasonal effects), and time between appointments

(when blood samples were taken) and processing (measured in

two ways because of varying levels of missing data: as hours and

by days) to determine whether these factors were significantly

associated with variability of the metabolites. As shown in

Table S2, age, sex, BMI, current smoking, alcohol, INTERVAL cen-

ter, plate, appointment month, and lag time between appoint-

ment and processing account for some of the variability in theme-

tabolites. Adjusting the metabolite levels for some of these

variables may be appropriate, however as a result of high levels

of missingness, not all variables were considered. For this reason,

log-transformed and winsorized metabolite values were adjusted

in a linear regression only for age, sex, BMI, center, batch, plate,

appointment month, time between appointment and processing,

and the first five principal components of ancestry from multi-

dimensional scaling. The metabolite residuals from this linear

regression were then rank-inverse normalized and used as pheno-

type for association testing. To give a more detailed description of

the covariates: age was calculated as the participant’s age (in years)

at the time at which the blood sample was collected. BMI was esti-

mated as self-reported weight (in kilograms) divided by the square

of self-reported height (in meters). Current smoking was assigned

on the basis of the information provided by the participant about

their tobacco smoking status at baseline, with adjustment for ‘‘cur-

rent smoker’’ versus ‘‘never’’ or ‘‘former’’ smoker combined. More
n Journal of Human Genetics 109, 1038–1054, June 2, 2022 1039



specifically, current smoking was based on participants who re-

sponded ‘‘yes’’ to the question "Do you currently smoke?" while

never/former smoking status was defined as those who responded

‘‘no’’ to that question and responded either ‘‘yes’’ (former) or ‘‘no’’

(never) to the question "Have you ever smoked?" Alcohol con-

sumption frequency was also collected by self-report in the base-

line questionnaire. Appointment month was taken as the month

of the year in which the blood sample was collected and was

used as a 12-factor categorical variable to account for potential sea-

sonal effects. Finally, we also adjusted for the length of time be-

tween the blood collection (as proxied by the time of the appoint-

ment at the recruitment center) and the time at which the blood

sample was fractionated at the processing laboratory after it had

been shipped from the recruitment center. For the majority of

samples (>95%), the processing happened the next day, so we

used a binary variable (1 day versus >1 day) to account for those

samples for which samples were not processed the following

day. To account for more subtle effects, we also adjusted for the

number of hours between the sample collection and sample pro-

cessing as a continuous variable.

A total of 230metabolic biomarkers were produced by the serum

nuclear magnetic resonance (NMR) metabolomics platform

(Nightingale Health)9 on 46,097 samples in the INTERVAL cohort.

Glucose, lactose, pyruvate, and acetate were excluded initially

because of unreliable measurements. Conjugated linoleic acid

and conjugated linoleic acid to total fatty acid ratio were set to

missing for 3,585 samples showing signs of peroxidation. Creati-

nine levels were set to missing for 1,993 samples with isopropyl

alcohol signals. Glutamine levels were set to missing for 347 sam-

ples that showed signs of glutamine to glutamate degradation.

Samples with more than 30% missingness or identified as EDTA

plasma were removed.
Protein measurements and quality control
We used a multiplexed, aptamer-based approach (SOMAscan

assay) to measure the relative concentrations of 3,622 plasma pro-

teins or protein complexes assayed via 4,034modified aptamers in

plasma. The proteins cover a wide range of molecular functions.

Details of the protein measurements have been described previ-

ously.10 After quality control and excluding samples with missing

protein measurements, 3,301 participants overlapping with WES

data remained for analysis.
Sequencing and quality control
WES and WGS were performed at the Wellcome Sanger Institute

(WSI) sequencing facility.

For WES, sheared DNA was prepared for Illumina paired-end

sequencing and enriched for target regions with Agilent’s

SureSelect Human All Exon V5 capture technology (Agilent

Technologies; Santa Clara, California, USA). The exome-captured

library preparation was sequenced with the Illumina HiSeq plat-

form as paired-end 75 bp reads, reaching an average depth of

approximately 503. Reads were aligned to the GRCh37 human

reference genome wiyh BWA (v0.5.10).11 GATK HaplotypeCaller

v3.4 12 was used for variant calling and recalibration. Samples

were excluded on the basis of the following criteria: (1) withdrawn

consent; (2) estimated contamination >3% according to the soft-

ware VerifyBamID;13 (3) sex inferred from genetic data different

from sex supplied; (4) non-European samples after manual inspec-

tion of clustering in 1000G PCA and choosing cutoffs on the first

two PCs; (5) heterozygosity outliers (samplesþ/� 3 SDs away from
1040 The American Journal of Human Genetics 109, 1038–1054, Jun
the mean number of heterozygous counts); (6) non-reference ho-

mozygosity outliers (samples þ/� 3 SDs away from the mean

number of non-reference homozygous counts); (7) outlier Ti/Tv

ratio (transition to transversion ratio þ/� 3 SDs away from the

mean ratio); and (8) excess singletons (number of singleton vari-

ants >3 SDs from the cohort mean). After QC, 4,070 samples

were kept in the final release. Genetic variants with MAF > 1%

were excluded with the following thresholds: (1) variant qua-

lity score recalibration (VQSR): 99.90% tranche; (2) missi

ngness > 3%; and (3) Hardy Weinberg Equilibrium (HWE)

p < 1 3 10–5. Genetic variants with MAF % 1% were excluded

with the following thresholds: (1) VQSR: 99.90% tranche; (2) ge-

notype quality (GQ): <20 for SNPs and <60 for Indels; (3)

sequencing depth (DP) < 2; and (4) allelic balance (AB) > 15

and < 80 for heterozygous variants. After genotype-level QC

(GQ, DP, AB), only variants with <3% missingness were kept. A

total of 1,716,946 variants were kept in the final release. Out of

the 4,070 samples passing the QC, metabolite data were available

for 3,924.

For WGS, sheared DNA was prepared for Illumina paired-end

sequencing. Sequencing was performed with the Illumina HiSeq

X platform as paired-end 75 bp reads, reaching an average depth

of 153. Reads were aligned to the GRCh38 human reference

genome with mostly BWA (v.0.7.12) although a subset of samples

was aligned with v.0.7.13 or v.0.7.15. GATK HaplotypeCaller v3.5

was used for variant calling and recalibration. We extracted coor-

dinates from the VCF files that mapped to regions targeted in

the WES. We then used custom scripts to transform coordinates

of variants to the GRCh37 human reference. We filtered out sam-

ples on the basis of the following criteria: (1) estimated

contamination > 2% according to the software VerifyBamID; (2)

non-reference discordance (NRD) with genotype data on the

same samples >4%; (3) population outliers from PCA (PC1 > 0

and minimum PC2); (4) heterozygosity outliers (samples þ/� 3

SDs away from the mean number of heterozygous counts);

(5) number of third-degree relatives (proportion IBD [PI-

HAT)] > 0.125) > 18; and (6) overlap with WES. After quality

control, 3,670 WGS samples were kept. Out of the 3,670 samples

passing the QC, metabolite data were available for 2,805.

All the genetic variants reported in the text and in the tables

were lifted to GRCh38.
Single-variant association test
Single-variant association tests were performed for each variant

(all QC’ed whole-exome sequence variants) via an additive genetic

model for all 995 metabolites. The association tests were carried

out with RAREMETALWORKER v4.14.14 The analysis software re-

turns the summary statistics for each variant and each specific

metabolite and a covariance matrix that reports the pairwise LD

of variants in 1 MB regions. These statistics were subsequently

used in RAREMETAL to perform rare variant aggregation tests as

described in the next section. Genomic control values ranged

from 0.98 to 1.04, indicating no substantial inflation or deflation

due to population stratification.
Rare-variant aggregation tests
We used a total of four different rare-variant tests (RVTs) to inves-

tigate the aggregated effect of multiple rare variants with

MAF < 0.1% on each trait, exploring two types of allelic architec-

ture: (1) we used burden family tests, such as burden test, Madsen

and Browning (MB), and variable threshold (VT), to discover
e 2, 2022



signals where variants with the same direction and magnitude of

effects were tested together. They mostly vary on how they use

weighted and unweighted functions with a fixed or variable fre-

quency threshold. (2) SKAT is a variance-component multiple

regression test that retains power in settings where neutral vari-

ants or variants with opposite direction of effects could result in

loss of power. For the rare variant analyses, we used RAREMETAL

v4.14,14 which allows us to perform RVT by using single-variant

test statistics and their correlations.

One of the biggest challenges of rare variant aggregation is to

define sets of variants that identify domains encoding for a bio-

logical function. Our selection included all rare variants within

coding exons, splice sites, or UTR regions of known genes

(52,912 genes on autosomes) based on GENCODE v24 lifted

over to build 37, only some types of pseudogenes (IG_C, IG_J,

IG_V, TR_J, TR_V) were removed. Overlapping exons (528,874

exons) were merged within each gene, resulting in 301,736

exonic regions. Windows were generated by keeping the exon

structure intact as far as possible and allowing between �5 and

�20 variants per window. If there were less than five variants

within an exon or more than 20 variants per gene, then windows

were created by combining neighboring exons so that the num-

ber of variants was similar between windows. More specifically,

the algorithm procedure is as follows. (1) If the first or last

exon has fewer than five variants, the variants in this exon are

combined with the variants in the neighboring exon. (2) If there

is still exactly one exon with fewer than five variants, it is com-

bined with its neighbor. (3) If an exon has more than 20 variants,

it is split into roughly equal numbers of variants (e.g., 21 variants

will be split into 11 and 10 variants). (4) The overall number of

variants is calculated for each gene and the number of windows

needed. (5) Then the average number of variants per window is

calculated as a target so that the variants can be split equally be-

tween windows. (6) The number of variants per window is

computed iteratively by adding the number of variants for each

exon, starting with the first exon. (7) The optimal distribution

is the one where the number of variants per window has the min-

imum difference to the target number.

Three different strategies in selecting variants were used. (1)

CODING tests of all rare exonic variants, splice sites, and variants

residing inUTRs. In the CODING approach, we tested 23,864 genes

in 52,024 windows with 15 variants per window on average and a

minimum of five and a maximum of 30 variants. (2) MLOF tests of

LoF and missense variants combined; In total we analyzed 20,835

genes in 32,534 windows with 14 variants per window on average,

and at least 5 variants and maximal 28 variants per window. iii)

LOF variant tests; In the LOF approach we tested only LoF variants

within each window predicted as high confidence (HC) by

LOFTEE. LOFTEE (loss-of-function transcript effect estimator) is a

plugin to the Variant Effect Predictor (VEP) that considers all stop-

gained, splice-disrupting, and frameshift variants and filters out

many known false-positive modes, such as variants near the end of

transcripts and in non-canonical splice sites, as described in the

codedocumentation. Intotal,weanalyzed9,385genes in9,428win-

dowswith three variants per window on average andminimum two

andmaximum19variantsperwindow.Thedistributionof thenum-

ber of variants per window in eachmethod are reported in Figure S1.

Multiple correction testing was performed with false discovery

rate (FDR). We included p values tested in all analysis approaches

to calculate q values by using the core R package function

‘‘p.adjust,’’ that implements the Benjamini and Hochberg (1995)

FDR method.
The America
The approach described above could lead to false negative sig-

nals if variants associated with a given trait are distributed across

different windows. For this reason, we also tested associations by

combining variants across entire genes. Overall, this gene-based

approach tested up to 23,864 genes under the same variant selec-

tionmodels described above, resulting in a greater average number

of variants per gene compared to the window-based approach

(range 5–2,024 under the CODING scenario).
Conditional analysis
We tested whether our RVT signals were independent from

sentinel variants identified in the metabolite genome-wide associ-

ation study (mGWAS) meta-analysis of INTERVAL and EPIC-Nor-

folk (P.S. and I.S.D., unpublished data). The sentinel variants

were selected 500 kb upstream or downstream of the window of

interest. To test for conditional independence, we included geno-

types of the sentinel variants in the RVT as covariates. We calcu-

lated the difference of �log10(p values) before and after condi-

tional analysis and we called it ‘‘delta’’. We arbitrarily set a delta

threshold of 1 and called all the RVT signals having a delta value

below the threshold independent from sentinel variants.
Forward selection procedure
We developed a forward selection procedure to identify a mini-

mum set of variants that could explain the association in each

test unit. This procedure is as follows. In the first step each variant

is dropped one at a time and the test statistics recalculated. The

new test statistics could either result in an increased or roughly un-

changed p, which means that either the variant contributed

considerably to the association p or not much. We define this p

difference as ‘‘delta,’’ and to verify the cumulative effect of the var-

iants with high impact, we rank all the variants by the magnitude

of delta. Finally, we apply a forward selection procedure, calcu-

lating the test statistics by adding each of the ranked variants until

we reach the lowest test p. The set of variants that are necessary to

achieve the lowest p are called ‘‘driver’’ variants because they are

driving the association identified with the full test unit. We found

that associations detected by the burden test family were driven by

many contributing variants while associations detected by SKAT

had only few driver variants. In those cases where deltas are quite

similar, the final set of variants might be interchangeable.
Mediation and Mendelian randomization analysis
We used a traditional approach tomediation analysis consisting of

comparing two regression models, one with and one without con-

ditioning on the mediator. We used protein levels and metabolite

levels, each as mediator, in two analyses to assess the direction of

the associations between the genetic signals, protein levels, and

metabolite levels.

If the dependent variable is regressed on the mediator and the

genetic variants, and the size of the effect of the genetic signal re-

mains similar, then this indicates that the mediator is unlikely to

be on the causal path from the genetic variants to the dependent

variable and is therefore not a mediator. However, when the effect

of the genetic signal is much reduced compared to a regression

model with the genetic variants as sole covariates, then this dem-

onstrates a mediating effect on the path from the genetic variants

to the dependent variable.15

After the mediation analysis, which established that metabolite

level acts as mediator for protein level, we also carried out a two-

stage least squaresMendelian randomization (MR) analysis, which
n Journal of Human Genetics 109, 1038–1054, June 2, 2022 1041



uses genetic variants as the instrumental variables, metabolite

level as the exposure, and protein level as the outcome variable.16

However, one has to keep in mind that an MR makes (among

others) the assumptions that the instrument is independent of

confounders and that the outcome is independent of the instru-

ment conditioned on exposure and confounders. The latter

assumption, for example,might not be fulfilledwhen protein level

is taken as the exposure and metabolite level as the outcome var-

iable because metabolite level is not conditionally independent of

the genetic variants given protein level as seen in the above medi-

ation analysis.

External data sources
We searched for the rare variants identified through our analysis in

the UK Biobank (UKB) summary statistics by using two sources

available: (1) Global Biobank Engine (GBE) with meta-analysis of

array data, including White British, European, African, South

Asian, East Asian, admixed, and related,17 and (2) pheWEB -

UKB pheWAS imputed with TOPMed.18

Annotation of missense variants
We explored the deleteriousness of missense variants with a num-

ber of functional prediction scores derived from the variant effect

predictor (VEP v.85): sorting intolerant from tolerant (SIFT),19

polymorphism phenotyping (PolyPhen),20 combined annota-

tion-dependent depletion (CADD),21 and rare exome variant

ensemble learner (REVEL).21,22
Results

Dataset and study design

We analyzed 995 metabolites measured with a non-tar-

geted Metabolon HD4 metabolomics platform in plasma

samples from 3,924 apparently healthy European-ancestry

participants recruited in the INTERVAL study23 (see sub-

jects and methods and Table S1). 672 metabolites (68%)

were chemically identified and assigned to eight biochem-

ical super-pathways (i.e., amino acids, carbohydrates, co-

factors and vitamins, energy, lipids, nucleotides, peptides,

and xenobiotics). These broad categories can be further

subdivided into 79 biochemical pathways (Table S3). The

remaining 323 (32%) metabolites were of unknown chem-

ical structure. To identify rare (MAF < 0.1%) coding vari-

ants associated with metabolite levels, we accessed

whole-exome sequencing (WES) of 3,924 participants

(mean sequencing depth of 503; subjects and methods),

resulting in 1.72 million variants after strict QC.24,25 To

test associations withmetabolites, we applied three variant

selection strategies and two classes of statistical models in

order to capture a broad spectrum of possible allelic archi-

tectures. As detailed in the methods, our primary analysis

was based on the definition of windows of <20 variants

each, but results were compared to a whole-gene-based

analysis. For all scenarios, we applied three variant selec-

tion strategies: (1) variants predicted by LOFTEE to be

loss-of-function with high confidence (LOF; i.e., essential

splice site changes, stop codon gain, or frameshifts);26 (2)

missense þ loss-of-function (MLOF); and (3) all coding re-
1042 The American Journal of Human Genetics 109, 1038–1054, Jun
gion variants plus untranslated regions (UTRs) and essen-

tial splice sites (CODING). To achieve a comparable num-

ber of variants in each test region, we split genes into test

windows of up to 20 variants on average while preserving

intron-exon boundaries (GENCODE v24, Figure 1, Figure

S1, Table S4, subjects and methods). For each test, we

applied (1) three different implementations of burden tests

(burden [BU],27,28 Madsen and Browning [MB],27,28 and

variable threshold [VT]29), which capture associations

driven by variants with similar direction and magnitude

of effect (see subjects and methods) and (2) a regression-

based test, i.e., the sequence kernel association test

[SKAT]30 to capture regions that include variants with

opposite direction of effects, testing for both protective

and risk alleles. We applied a p values cutoff (p ¼
2.28 3 10�8) to declare genome-wide significance, corre-

sponding to a 5% global FDR (gFDR) value correcting for

all models and phenotypes tested. We tested associations

surpassing this significance threshold in an independent

replication sample of 2,805 whole-genome sequences

from non-overlapping INTERVAL participants by applying

identical test window boundaries (mean sequencing depth

of 153, subjects and methods).27,28

Rare coding variants in 27 genes are associated with

metabolite levels

Overall, using the window-based approach, our RVTs iden-

tified 40 signals in 27 genes associated with 38metabolites,

of which LOF, MLOF, and CODING tests identified 4, 33,

and 17 gene-metabolite associations, respectively (gFDR

% 5%; Table 1, Table S5, Figure 2).We compared our results

to published metabolite GWASs based on common or low-

frequency variants captured by SNP array technology

(mGWAS)2,31,32 or rare variants reported in genome

sequencing studies.4,5,33 Of the 27 genes with an associa-

tion in this study, two (UMPS and SLC5A10) had reported

association with rare variants in a WGS-based study,5 ten

had associations involving common variants in SNP-based

studies, and 15 identified new associations (described

later). Overall, 4% of all metabolites were associated with

at least one gene (mean 1.5 metabolites per gene, 1–7

range). Associations implicated rare genetic variants (me-

dian variant frequency ¼ 0.013%, 148 singletons and

1 R allele count [AC] R 7) compared to available signals

frommost recent mGWAS based on SNP array imputation.

The rare variant associations included between five and 19

variants/window and had minor allele count (MAC) be-

tween one and seven. Variants had large effect sizes (e.g.,

21% with beta > 2 SD standardized phenotype, range

�3.67–3.68 SD). The whole-gene-based testing strategy

discovered 37 additional associations, 2, 30, and 15 respec-

tively for LOF, MLOF, and CODING, and 34 associations

(21 genes) matched discoveries under the window-based

model (Table S5).

We attempted to replicate the associations by usingWGS

data from 2,805 participants from the INTERVAL study not

overlapping with the WES dataset. For 15 genes associated
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Figure 1. Study design, including data, methods, and results summary
Data—INTERVAL study description and correlation ofmetabolite levels ordered by super-pathways; rare variant test strategies—analysis
windows (in green) were defined to be exons containing at most 20 rare variants (MAF % 0.1%), three variant selection strategies were
applied (CODING, MLOF, and LOF; variant classes are color coded), and for each strategy, four rare variant aggregation tests were used to
explore different allelic architectures; results —results of WES RVT analysis at 5% FDR threshold and replication of discovery signals us-
ing WGS RVT analysis. Cof/Vitamins represent the super pathway cofactors and vitamins.
with 28 metabolites, we replicated associations bet-

ween the reported window and the reported metabolite

at a stringent Bonferroni correction (p % 0.05/149 ¼
3.3 3 10�4, Table S6), implicating ACY1, PTER, ADSL,

NPL, KYNU, PAH, ACADS, LACTB, ABCC2, NAT8,

CCBL1, UMPS, SLC5A10, ALB, and CERS4. The remaining

associations did not reach this stringent level of signifi-

cance because of absence of the corresponding rare vari-

ants from the WGS data.

We also attempted to replicate associations by using an

independent metabolomic platform (Nightingale Health)

based on NMR,9 which includes 226 metabolites of

different classes (ketone bodies, glycolysis related metabo-

lites, amino acids, fluid balance, inflammation, fatty acids

and saturation, cholesterol, glycerides and phospholipids,

apolipoproteins, lipoprotein subclasses, and lipoprotein

particle sizes). We tested the 27 genes by using models

identical to the Metabolon-based discovery. Two of the

relevant metabolites were shared between the metabolo-

mics platforms, and associations were confirmed at two

of the gene-metabolite associations, PAH-phenylalanine

and RGS3-sphingomyelin (p < 4.3 3 10�5). Additionally,

we scanned the phenotypes by searching for associations

of the significant 27 genes with any of the 226 NMR me-
The America
tabolites, but we did not find any additional associations

(Bonferroni p < 8.19 3 10�6) (Table S7).

Finally, we carried out conditional analyses to test

whether the RVT associations may be explained by the

presence of nearby common variants. We modeled the

RVT associations while conditioning for nearby (<500

kb) common sentinel variants identified through a meta-

analysis of INTERVAL and EPIC-Norfolk studies (P.S. and

I.S.D., unpublished data) and found that most (93%) of

the RV associations were independent from the proxi-

mal sentinel common variants, while ACADS-ethyl-

malonate and NAT8-N-acetyltyrosine narrowly missed

the cutoff for independence (Table S8 and subjects and

methods). We also used the WES data to search for novel

metabolite associations with common coding genetic var-

iants (MAF > 0.1%, n ¼ 44,135) and we detected 1,836 sig-

nals in 580 genes at exome-wide significance level

(p < 2.63 3 10�9) that had all been previously reported

in mGWASs.

Biological, biochemical, and functional interpretation of

associations

We next investigated the genetic architecture of each locus

and their biochemical characteristics in detail. We assessed
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Table 1. Associations of metabolites with 27 genes that are enriched for inborn errors of metabolism and drug targets

Gene
symbol

Strongest
metabolite

Super
pathway

N driver
variants

Variant selection
strategy RVT-WES p RVT-WGS p

Replicated
signal mGWAS

OMIM
disorder Drug Test

ABCC2 X - 21467 – 2 MLOF 1.5 3 10�9 8.6 3 10�6 yes – Dubin–Johnson
syndrome (DJS)

bioactive
compound

SKAT

ABCG5 campesterol lipid 9 MLOF 1.6 3 10�8 3.7 3 10�4 no – sitosterolemia bioactive
compound

burden

ACADS butyrylcarnitine lipid 10 CODING 2.3 3 10�9 1.2 3 10�7 yes yes ACYL-CoA dehydrogenase,
short-chain, deficiency
of (ACADSD)

bioactive
compound

burden

ACY1 N-acetylmethionine amino acid 14 MLOF 2.1 3 10�24 5.3 3 10�17 yes yes aminoacylase 1
deficiency (ACY1D)

bioactive
compound

variable
threshold

ADSL N6-succinyladenosine nucleotide 9 MLOF 8.3 3 10�11 2.8 3 10�13 yes – adenylosuccinase
deficiency (ADSLD)

N/A burden

ALB X - 22771 – 1 MLOF 4.5 3 10�9 1.3 3 10�4 yes – analbuminaemia
(ANALBA), familial
dysalbuminemic
hyperthyroxinemia (FDAH)

bioactive
compound

SKAT

CCBL1 indolelactate amino acid 10 MLOF 1.2 3 10�8 1.7 3 10�5 yes yes – bioactive
compound

burden

CERS4 sphingomyelin
(d18:1/20:1, d18:2/20:0)*

lipid 12 MLOF 6.2 3 10�14 2.9 3 10�4 yes – – N/A burden

CHKB 5-methyluridine
(ribothymidine)

nucleotide 1 CODING 4.8 3 10�9 7.2 3 10�1 no – congenital Muscular
dystrophy, megaconial type

bioactive
compound

SKAT

CIC 1-(1-enyl-stearoyl)-2-
linoleoyl-GPE
(P-18:0/18:2)*

lipid 14 CODING 2.2 3 10�8 9.5 3 10�1 no – mental retardation,
autosomal dominant
45 (MRD45)

N/A burden

COMT X - 11593 – 1 MLOF 9.2 3 10�9 1.2 3 10�1 no yes panic disorder 1
(PAND1),
schizophrenia (SCZD)

approved
drug

SKAT

CR1L X - 21444 – 10 CODING 1.8 3 10�8 9.5 3 10�1 no – – N/A Madsen and
Browning

DPCR1 2-aminobutyrate amino acid 14 CODING 2.5 3 10�9 3.5 3 10�1 no – – N/A burden

ERICH6 glycerophosphorylcholine
(GPC)

lipid 4 LOF 1.9 3 10�8 2.3 3 10�1 no – – N/A variable
threshold

IVD isovalerylcarnitine amino acid 7 MLOF 1.1 3 10�11 3.5 3 10�3 no yes isovaleric acidemia (IVA) bioactive
compound

burden

KYNU xanthurenate amino acid 8 MLOF 1.4 3 10�9 4.3 3 10�9 yes – hydroxykynureninuria;
Vertebral, cardiac, renal
and limb defects syndrome
2 (VCRL2)

bioactive
compound

burden

(Continued on next page)
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Table 1. Continued

Gene
symbol

Strongest
metabolite

Super
pathway

N driver
variants

Variant selection
strategy RVT-WES p RVT-WGS p

Replicated
signal mGWAS

OMIM
disorder Drug Test

LACTB succinylcarnitine energy 9 MLOF 7.6 3 10�13 5.5 3 10�6 yes yes – bioactive
compound

variable
threshold

NAT8 N-acetylarginine amino acid 8 MLOF 8.4 3 10�10 1.3 3 10�5 yes yes – N/A burden

NPL N-acetylneuraminate carbohydrate 10 MLOF 3.3 3 10�9 1.5 3 10�9 yes – – N/A burden

PAH phenylalanine amino acid 9 MLOF 1.7 3 10�10 5.2 3 10�8 yes yes phenylketonuria
(PKU) and
hyperphenylalaninemia,
non-PKU

approved drug Madsen and
Browning

PTER N-acetyl-beta-alanine nucleotide 11 MLOF 1.9 3 10�14 3.3 3 10�8 yes – – N/A Madsen
and Browning

RGS3 stearoyl sphingomyelin
(d18:1/18:0)

lipid 8 MLOF 1.6 3 10�8 3.1 3 10�1 no – – N/A variable
threshold

SLC16A9 carnitine lipid 9 MLOF 9.5 3 10�9 4.3 3 10�1 no yes – N/A variable
threshold

SLC25A15 X - 15728 – 12 CODING 4.8 3 10�9 5.3 3 10�1 no – hyperornithemia-
hyperammonemia-
homocitrullonuria
syndrome

bioactive
compound

burden

SLC5A10 1,5-anhydroglucitol
(1,5-AG)

carbohydrate 6 LOF 2.0 3 10�11 5.4 3 10�5 yes rare – N/A burden

TYMP 5-methyluridine
(ribothymidine)

nucleotide 1 CODING 3.5 3 10-9 6.9 3 10�3 no yes mitochondrial DNA
depletion syndrome-1
(MTDPS1)

approved drug SKAT

UMPS Orotate nucleotide 1 MLOF 1.4 3 10�9 2.4 3 10�5 yes rare orotic aciduria bioactive
compound

SKAT
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Figure 2. WES association results
(A) List of genes discovered by type of test (burden family and/or SKAT).
(B) UpSet plot of associations by approach. On the left, bar plot of total number of associations by approach and on top, bar plot of num-
ber of shared associations in multiple approaches. The number of associations in each set appears above the column, while approaches
shared are indicated in the graphic below the column.
(C) Bar plot of all metabolites used in the analysis split by pathway and number of associated metabolites shown in darker color.
(D) Mirrored Manhattan plot showing �log10 Ps for WES single-variant tests (bottom) and WES rare-variant tests (top). Strongest gene-
metabolite associations are highlighted in red. All genetic associations derived from any approach or aggregation test are reported in the
RVTManhattan plot. All 27 genes found to be associated withmetabolites in RVTare labeled in the plot. Gene label color code highlights
genes as not previously reported (red), reported in mWGS (purple), or reported in mGWAS (blue).
the proteins and diseases that are reportedly linked to each

gene-metabolite pair, employing a range of bioinformatic

tools and data repositories.34,35 Overall, the majority of as-

sociations had a clear biochemical rationale and could

plausibly be explained by protein-coding variants altering

the efficiency of the enzyme reactions (Table S9). To

inform the genetic structure of each locus, we used two

alternative approaches based on either leave-one-out/for-
1046 The American Journal of Human Genetics 109, 1038–1054, Jun
ward selection or Lasso (subjects and methods) to identify

minimal sets of variants with the greatest probability of ac-

counting for the RVT association signal (‘‘driver’’ variants,

which are not necessarily all causal variants).

Using the forward selection approach, we found that the

majority of SKAT signals could be accounted for by only

one or two driver variants, whereas the number of driver

variants in burden tests was greater (4–14). Overall, the
e 2, 2022



A

B

C

Figure 3. Driver variants analyses
(A) Absolute effect size (beta in SD) of driver variants split by their predicted consequence on protein.
(B) Enrichment of driver variants split by their predicted consequence on protein.
(C) Enrichment of driver variants by different functional prediction methods: Polyphen, SIFT, CADD, REVEL, and predicted
consequences.
proportion of driver variants identified by Lasso and for-

ward selection was 55%, and 66% if SKAT tests were

excluded from the comparison (Figure S2). We found

that driver variants predicted to cause severe protein trun-

cation tended to have higher effect sizes when compared

to other functional classes (Figure 3). Driver variants were

enriched for protein-truncating variants (i.e., splice donor,
The America
splice acceptor, frameshift, and stop gained variants) with

3-fold increased odds. However, missense was the most

represented category among all rare variants and we

show that missense driver variants are significantly en-

riched for being likely deleterious (Figure 3 and subjects

and methods). For 12 genes, we were able to confirm for

each variant the biological consistency of the direction of
n Journal of Human Genetics 109, 1038–1054, June 2, 2022 1047



effect between gene and metabolite. This means that in

some cases the substrate metabolites accumulate if

missense or LoF variants are decreasing the efficiency of

the enzyme or transporter, while in other cases disrupted

gene function results in reduced levels of the metabolite

product (Table S5). In the following sections we focus on

results generated from the window-based approach.

Neurological function

We observed associations of 18 rare variants in ACY1 (14

drivers) with seven metabolites, including N-acetyl

methionine (VT test, pWES ¼ 2.1 3 10�24, pWGS ¼
5.3 3 10�17), five N-terminal acetylated amino acids

(N-formylmethionine, N-acetylserine, N-acetylglutamate,

N-acetylthreonine, N-acetylvaline, and N-acetylalanine),

and N-formylmethionine (Table S10). ACY1 encodes

aminoacylase-1, a homodimeric zinc-binding metall-

oenzyme involved in the hydrolysis of N-acetylated

proteins. The two most significant encoded non-synony-

mous changes are predicted to disrupt protein function:

frameshift p.Ser192fs (rs770702363, MAF ¼ 0.051%,

beta(SE) ¼ 2.449(0.4997), p ¼ 9.45 3 10�7) and missense

p.Asp174Gly (rs200314495, MAF ¼ 0.013%, beta(SE) ¼
3.679(0.999), p ¼ 2.30 3 10�4, SIFT ¼ deleterious,

PolyPhen¼ probably damaging). rs770702363 is predicted

to be pathogenic and located within the M20 peptidase

domain, in the proximity ofmetal ion binding (protein po-

sition: 175). The remaining driver variants were all

missense changes, with the exception of another frame-

shift variant 3:51987362:C:CT (Table S5).

A possible interpretation of the association is that the

combined effect of missense variants may reduce the over-

all enzymatic activity of aminoacylase 1, leading to an in-

crease of their substrate (in this case N-acetylated amino

acids). ACY1 has been described in OMIM as a gene

causing aminoacylase 1 deficiency (ACY1D), a rare inborn

error of metabolism characterized by increased urinary

excretion of specific N-acetyl amino acids, and most

affected individuals show neurologic abnormalities such

as intellectual disability, seizures, hypotonia, and motor

delay.36 We therefore searched two UKB PheWAS data-

bases, GBE17 and PheWeb,18 for associations with

complex neurological phenotypes (subjects and methods).

Driver variant rs6804746 (MAF ¼ 0.02%) was associated

with ICD10 code G31 (‘‘other degenerative diseases of

the nervous system not elsewhere classified’’, GBE; p ¼
4.6 3 10�8) and with chronic fatigue syndrome (PheWeb;

p ¼ 3.5 3 10�4). Two other driver variants associated

with mental disorders in PheWeb, namely rs1164299165

with pervasive developmental disorders (MAF ¼ 0.005%;

p ¼ 9.73 10�4) and rs887540 with major depressive disor-

der (MAF ¼ 0.03%; p ¼ 3 3 10�4).

Complex carbohydrates and cellular infectivity

Rare variants in NPL were associated with increased

N-acetylneuraminate (burden test, pWES ¼ 3.2 3 10�9,

pWGS ¼ 1.5 3 10�9). NPL encodes a member of the
1048 The American Journal of Human Genetics 109, 1038–1054, Jun
N-acetylneuraminate lyase subfamily, which regulates

cellular concentrations of N-acetylneuraminate by me-

diating the reversible aldol condensation between

N-acetyl-d-mannosamine (ManNAc) and pyruvate to

N-acetylneuraminate.

The signal included 15 variants (ten drivers), including a

missense (rs141892236, MAF ¼ 0.090%, beta(SE) ¼
1.552(0.378), p ¼ 4.13 3 10�5) and a splice donor variant

(rs757256606, MAF ¼ 0.026%, beta(SE) ¼ 2.005(0.707),

p ¼ 4.62 3 10�3) and several other missense changes close

to the active protein sites at positions 143 and 173

(rs146355388, p.Pro146Thr, MAF ¼ 0.039%, beta(SE) ¼
1.550(0.578), p ¼ 7.323 10�3; rs148306247, p.Glu156Ala,

MAF ¼ 0.090%, beta(SE) ¼ 0.654(0.378), p ¼ 8.43 3 10�2;

rs138338286, p.Glu157Val, MAF ¼ 0.026%, beta(SE) ¼
0.685(0.707), p ¼ 3.33 3 10�1). We can hypothesize that

reduced enzymatic activity of NPL driven by rare variation

may lead to the accumulation of N-acetylneuraminate,

which is then recycled and returned to the cell surface,

potentially increasing susceptibility to bacterial and viral

pathogenicity. Interestingly, rs148306247, rs146355388,

and rs138338286 were all associated with different infec-

tion-related traits in both GBE and PheWeb, reflecting

the importance of the N-acetylneuraminate in host-para-

site interactions. Finally, rs141892236 was associated

with septicemia in GBE (p ¼ 2.3 3 10�11), while a weaker

signal for Streptococcus infection was found in PheWeb

(p ¼ 3 3 10�3), reinforcing the role of this gene in viral

and bacterial infection.

Lipids homeostasis and phytosterols

We observed an association between variants in ABCG5

and an increase in campesterol levels (burden test,

pWES ¼ 1.6 3 10�8, pWGS ¼ 3.7 3 10�4). ABCG5 encodes

ATP-binding cassette subfamily G member 5 (ABCG5), an

ABC transporter involved in the lipid homeostasis

pathway transporting sterols from the cytosol to the extra-

cellular domain, limiting intestinal absorption and pro-

moting biliary excretion of sterols. Campesterol is a

phytosterol (PS), or a steroid derived from plants. As a

food additive, phytosterols have cholesterol-lowering

properties (by reducing cholesterol absorption in intes-

tines) and may act in cancer prevention. The signal

included 14 variants (nine drivers), of which the two

most significant associations encode for missense changes

(rs755523464, p.Tyr487Cys, MAF ¼ 0.025%, beta(SE) ¼
3.491(1.002), p ¼ 4.94 3 10�4 and 2:43822798:A:G,

p.Trp488Arg, MAF ¼ 0.025%, beta(SE) ¼ 3.185(1.002),

p ¼ 1.48 3 10�3) (Table S5).

We hypothesize that rare variants in ABCG5 could

reduce the efficiency in transporting sterols, therefore

increasing plasma dietary campesterol. The missense

variant rs150401285 (MAF ¼ 0.1%) was associated with

cholesterol (p ¼ 4.9 3 10�14), LDL cholesterol (p ¼
1.1 3 10�13), and apolipoprotein B (p ¼ 3.9 3 10�9) in

GBE and with cholelithiasis and cholecystitis in PheWeb

(p ¼ 4.6 3 10�4), indicating that loss of ABCG5 activity
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due to rs150401285 results in a protective effect on gall-

stones. Interestingly, a recent GWAS of gallstone disease37

showed that the missense p.Asp19His variant in ABCG5/

ABCG8 (gain-of-activity) increases the risk for gallstone dis-

ease through increases in biliary cholesterol secretion and

decreases in dietary cholesterol intake in the gut. It re-

mains to be determined whether this association is medi-

ated by decreased cholesterol levels.

Kynurenine pathway

Variants in KYNU were associated with increased levels

of xanthurenate, a metabolite from the tryptophan catabo-

lism (burden test, pWES ¼ 1.4 3 10�9, pWGS ¼ 4.3 3 10�9).

KYNU encodes for Kynureninase (EC 3.7.1.3), a

3-hydroxykynureninase-type enzyme involved in the ky-

nurenine pathway for the biosynthesis of NAD cofactors

from tryptophan. It catalyzes the conversion of L-3-

hydroxykynurenine and L-kynurenine to 3-hydroxyant

hranilic acid and anthranilic acid, respectively. The signal

included 12 variants (eight drivers), of which two missense

variants with the strongest association (rs137982021,

MAF ¼ 0.065%, beta(SE) ¼ 2.172(0.447), p ¼ 1.20 3 10�6

and 2:142985130:A:G, MAF ¼ 0.013%, beta(SE) ¼
3.065(0.999), p ¼ 2.17 3 10�3) encode changes predicted

to impact the catalytic efficiency of Kynureninase, leading

to an increase in the levels of L-3-hydroxykynurenine (sub-

strate) that is converted to xanthurenate by kynurenine

aminotransferase (KATs). The amino acid substitutions

that we identified span protein positions 212 to 432, corre-

sponding to the aminotransferase domain. Further, they

are all locateddownstreamof the reportedhomozygousmu-

tation (encoding p.Thr198Ala) that causes hydroxykynure-

ninuria, an inborn error of metabolism characterized by

accumulation of kynurenine, 3-hydroxykynurenine, and

xanthurenic acid excreted in the urine.38 The absence of ky-

nureninase results in a block in the pathway from trypto-

phan to nicotinic acid, and can result in niacin (vitamin

B3) deficiency. The clinical phenotype has a wide range

from asymptomatic to severe, characterized by intellectual

disability, cerebellar ataxia, pellagra, progressive encepha-

lopathy with muscular hypotonia, global developmental

delay, stereotyped gestures, and/or congenital deafness.

CCBL1 is another signal that is part of the tryptophan

pathway and was associated with increased levels of

indolelactate (burden test, pWES ¼ 1.2 3 10�8, pWGS ¼
1.7 3 10�5). CCBL1 encodes for kynurenine aminotrans-

ferase (KYAT1; EC 2.6.1.7) and it is part of the tryptophan

catabolism pathway that converts L-kynurenine and L-3-

hydroxykynurenine into kynurenate and xanthurenate,

respectively. Indolelactate is also part of the tryptophan

catabolism pathway metabolized via a series of indoles.

This process is mainly enabled by gut microbiota and in

particular Clostridia. Though the direct biochemical mech-

anism of this association is still unclear, it is interesting to

note that serum levels of indolelactate were found to be

significantly lower in adults with multiple sclerosis, as

well as the bacteria producing it.39
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KYNU and CCBL1 are enzymes of the kynurenine

pathway that have multiple biological implications, such

as an active role in the immune response; some kynurenins

are neuroactive and the kynurenine pathway is involved in

many diseases such as Alzheimer’s disease, amyotrophic

lateral sclerosis, Huntington’s disease, AIDS dementia com-

plex, malaria, cancer, depression, and schizophrenia,

where imbalances in tryptophan and kynurenines

have been found.40 Specifically, the missense variant

rs137982021 (MAF¼ 0.03%) was associated with cholecys-

titis without cholelithiasis (p ¼ 2.6 3 10�4), renal failure

NOS (p ¼ 1.7 3 10�3), and other specified cardiac dys-

rhythmias (p ¼ 1.8 3 10�3) in PheWeb, confirming its

implication in a broad range of disease categories.

Signals overlapping with drug targets

In total, 66% of the rare variant associations identified in

our study were found within genes of pharmacological in-

terest. Three genes (COMT, TYMP, and PAH) discovered in

our study overlap drug targets for four approved drugs (en-

tacapone, tolcapone, tipiracil, and sapropterin). In addi-

tion, 12 of the genes (CHKB, UMPS, ALB, ABCC2, IVD,

KYNU, LACTB, ABCG5, CCBL1, ACADS, SLC25A15, and

ACY1) are targets for bioactive drug-like compounds that

were experimentally validated in ChEMBL. Entacapone

and tolcapone are both inhibitors of catechol-O-methyl-

transferase (COMT), used in the treatment of Parkinson’s

disease as an adjunct to levodopa/carbidopa therapy.

COMT eliminates biologically active catechols and other

hydroxylated metabolites. In the presence of a decarboxy-

lase inhibitor, COMT becomes the major metabolizing

enzyme for levodopa, catalyzing the metabolism to

3-methoxy-4-hydroxy-L-phenylalanine (3-OMD) in the

brain and periphery. The mechanism of action of entaca-

pone is believed to be through its ability to inhibit

COMTand alter the plasma pharmacokinetics of levodopa.

The gene target and two inhibiting drugs are also associ-

ated with several other brain-related diseases and addic-

tions, such as schizophrenia, cocaine dependence,

gambling behavior (phase II), and epilepsy. Tipiracil is a

small molecule first approved in 2015 and indicated for

the treatment of adults with metastatic colorectal cancer.

Tipiracil selectively inhibits thymidine phosphorylase

(TYMP), a cytosolic enzyme essential for the nucleotide

salvage pathway. Sapropterin was approved in 2007 and

is today a well-established drug for the treatment of

phenylketonuria. It is a small molecule targeting phenylal-

anine hydroxylase (PAH) to activate the hydroxylation of

L-phenylalanine to L-tyrosine. Sapropterin has recently

been associated with other indications in phase III and

IV, including hyperphenylalaninemia and peripheral arte-

rial disease.

Mediation and Mendelian randomization analysis via

protein level

For a subset of the participants included in this study (n ¼
3,301), we also interrogated the plasma proteome, using an
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expanded version of an aptamer-based multiplex protein

assay (SOMAscan, Somalogic)41 to quantify 3,622 plasma

proteins.10 We conducted RVT for all our metabolite-asso-

ciated genes, searching for cis and trans associations with

available protein levels by using the same analysis strategy

as described previously (the same variants, the same

grouping within windows, and the same selection strat-

egy). We identified a significant (p ¼ 5.9 3 10�9; beta ¼
�1.09; MLOF approach) cis protein level association

within ACY1—our strongest signal in the Metabolon anal-

ysis. The same rare genetic variants in ACY1 were associ-

ated with metabolite and protein levels, implying highly

concordant allelic architectures.

To investigate the predicted functional impact of rare

ACY1 variants, we performed a structural analysis of this

protein by using UCSF Chimera42 and evaluated the

impact of substituting the different rotamers on the pro-

tein structure. The p.Gln26Pro substitution had a potential

to create steric clashes in the proximity of the active site of

the enzyme. To investigate the relationship between the

protein and metabolite levels associated with ACY1, we

performed a mediation analysis, testing two alternative

models where N-acetylmethionine and ACY1 protein

levels were fit as covariates in a model testing associations

of rare variants with protein and N-acetylmethionine

levels, respectively (Figure 4). The results were consistent

with a scenario where N-acetylmethionine level may

mediate associations of genetic variants to ACY1 protein

levels.

Once we established that the metabolite level lies on the

causal path from the genetic variants to protein level, we

aimed to isolate the direct effect of metabolite level on pro-

tein level from potential confounders via Mendelian

randomization (MR). Our MR analysis uses the genetic var-

iants as the instrumental variable, metabolite level as the

exposure, and protein level as the outcome variable. A

two-stage analysis showed that the MR estimate for the ef-

fect of metabolite level on protein level (beta ¼ �0.615,

p < 2 3 10�16) is very similar to the estimate from a linear

model (beta ¼ �0.592, p < 2 3 10�16) without an instru-

ment. This indicates that the relatively strong negative in-

fluence of metabolite levels on protein levels is genuine

and unlikely to be the effect of confounding.
Discussion

In this study, we describe an association study of rare ge-

netic variants with blood plasma concentrations of 995

metabolites in almost 4,000 apparently healthy blood do-

nors. We identified 40 gene-metabolite associations in 27

genes and 38 metabolites by using a windows-based

approach. Of these, only one association driven by a rare

variant has been already described (rs200305064 with oro-

tate);5 for 11 additional genes, there was previous evidence

for association at the same locus but driven by indepen-

dent common genetic variants. Signals from 15 genes
1050 The American Journal of Human Genetics 109, 1038–1054, Jun
(seven new) were replicated with WGS data from the

same study, while for the others, replication p values did

not reach the predefined significance cutoff, most likely

through a lack of the corresponding driver variants.

Our rare variant test strategy was designed to explore

different allelic architectures throughmultiple approaches.

Compared with the approach used by Long et al.,5 we

sought to increase statistical power by aggregating variants

of different predicted functional effects within genomic

windows defined by intron-exon boundaries. This allows

us to detect associations where gene-wide associations

could not be detected, for instance, in the case of the

ABCG5 gene associated with campesterol or RGS3 with

stearoyl sphingomyelin (d18:1/18:0). In the latter case,

the third test window contained multiple functional do-

mains more likely to harbor rare variants disrupting the

sphingomyelin pathway. However, this strategy reduces

power for cases where the contributing variants are spread

across the gene, and indeed we found 37 associations that

surpassed the significance threshold at gene level but not

in the window scenario. Overall, the MLOF approach

yielded a greater number of new discoveries and only

one association was specific to the LOF approach. This

most likely reflects an optimal number of functional vari-

ants included in the testing windows, for the current sam-

ple size, and underlying allelic architecture. As expected,

multiple RVT signals were shared among different test

types and especially between MLOF and CODING (eight

genes in total). Most of the associations were identified

by the aggregated contributions of many singletons and

fewer variants with higher allele count. Interestingly,

21% of these variants presented with an effect size greater

or equal to 2, demonstrating the power of WES to identify

rare variants with large effect sizes within genes of pharma-

cological interest. Conditional analyses using nearby

(<500 kb) common sentinel variants identified through

mGWAS confirmed that RVT associations are mostly inde-

pendent from proximal common sentinel variants.

Our algorithms to identify putative driver variants, i.e.,

variants that are more likely to contribute to the associa-

tion signal, confirms different architectures underlying

SKAT and burden signals, and SKAT tests are typically

explained by small numbers of variants of greater allelic

frequencies. Driver variants were enriched for variants of

predicted functional impact, for instance causing a severe

truncation, and missense variants predicted as deleterious

by multiple approaches (Polyphen, SIFT, CADD, and

REVEL), confirming the validity of this approach.

The new associations were enriched near genes causative

for inborn error of metabolism (IEM) and genes associated

in mGWASs of common variants. The allele frequencies

and effects sizes of the new associations were intermediate

between the two, confirming a continuum of genetic con-

tributions to metabolic function mediated by the same

genes. While as much as 55% of RVT associations were in

IEM genes, only a handful were known pathological vari-

ants for recessive diseases (ClinVar or OMIM) for which
e 2, 2022
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Figure 4. ACY1/N-acetylmethionine in depth analysis
(A) Proportions of haplotypes composed of non-driver, driver, and sentinel variants that are represented by their point shape in (B).
(B) Scatter plot of effect sizes and relative standard errors of shared protein versus metabolite associations; color coding indicates pre-
dicted consequence on protein and point shape indicates type of variants.
(C) Dot plots of phenotype residuals in carriers of driver and non-driver variants for both metabolite and protein levels.

The American Journal of Human Genetics 109, 1038–1054, June 2, 2022 1051



no healthy homozygous carriers were present in our study

participants.

For almost all of the gene-metabolite associations, we

were able to identify the underlying biochemical function,

where these functions implicated genes with important

biomedical functions. For instance, NPL, which is associ-

ated with N-acetylneuraminate (sialic acid, NANA, Neu

5Ac) belongs to an ancient pathway conserved in bacteria.

N-acetylneuraminate is an essential component of com-

plex carbohydrates, which play pivotal roles in a variety

of cellular recognition and communication processes

including host-parasite interactions. Another example is

the association between ABCG5/G8 and phytosterols

(PSs). Exogenous sterols (including PS) have been

shown to have cholesterol-lowering properties. Reduction

of up to 15% achieved in human subjects43 may be medi-

ated by competitive intestinal solubilization into mixed

cholesterol/PS micelles, or increases in intestinal and he-

patic-biliary secretion mediated by ABCG5/G8 upreg-

ulation by PS. Consequently, several studies have repo-

rted correlations between phytosterol levels and

cardiovascular health44 mediated by common variants in

ABCG8 and ABO.

Our hypothesis-free approach revealed new hypotheses

on the mechanisms through which associations with me-

tabolites may act. We compared our associations with a da-

taset of proteins and found concomitant associations with

protein levels at the ACY1 locus. Interestingly, we found

that variants associated with an accumulation of N-ace

tylmethionine were also associated with a decrease of

ACY1protein levels. Throughamediation analysis,we infer

a directional effect whereby protein levels are mediated by

the accumulation of metabolite, which would suggest the

existence of negative feedback of the metabolite onto the

protein. A possible hypothesis is that rare LoF andmissense

variants, which are predicted in this study to cause steric

clashes at the active site, may reduce the efficiency of the

protein in clearing the substrate. The potential medical

impact of this association extends beyond the neurological

function described earlier. A recent study has described a

strong positive correlation between ACY1 protein levels

and type 2 diabetes (T2DM).45 Through in vitro and in vivo

experiments, the authors showed that increasing amounts

of ACY1 decreased the ratio of N-acetyl/free amino acids,

with a consequent effect on glucose and insulin homeosta-

sis, possibly leading to b-cell exhaustion, reduced b-cell

mass, and ultimately insulin deficiency and T2DM. In

another recent study in a subset of participants from the

INTERVAL study, a polygenic risk score for T2DMwas asso-

ciated with ACY1 protein levels, thus strengthening the

link between ACY1 and T2D risk.46

Overall, our findings illustrate the value of endopheno-

types including metabolites and proteins to enhance our

understanding of previously known genetic risk factors

for disease. This is even more evident when, as in our

case, sequencing data were used for identification of rare

coding variants with large effect sizes associated with
1052 The American Journal of Human Genetics 109, 1038–1054, Jun
metabolite/protein levels. These studies generate new hy-

potheses to support therapeutic target identification and

validation.
Data and code availability

Whole-exome sequencing data for the INTERVAL cohort is avail-

able in EGA: https://www.ebi.ac.uk/ega/datasets/EGAD000010

02221. All of the summary statistics are available at Sanger ftp

site: ftp://ftp.sanger.ac.uk/pub/project/humgen/summary_statistics/

INTERVAL_WES_metabolon. All of the codes for this study are pub-

licly available at GitHub: https://github.com/teamsoranzo/Meta

bolomicsWorkflow.
Supplemental information

Supplemental information can be found online at https://doi.org/
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