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Abstract

Most animal disease surveillance systems concentrate efforts in blocking transmission

pathways and tracing back infected contacts while not considering the risk of trans-

porting animals into areas with elevated disease risk. Here, we use a suite of spatial

statistics and social network analysis to characterize animal movement among areas

with an estimated distinct risk of disease circulation to ultimately enhance surveil-

lance activities. Our model utilized equine infectious anemia virus (EIAV) outbreaks,

between-farm horsemovements, and spatial landscape data from 2015 through 2017.

We related EIAV occurrence and the movement of horses between farms with climate

variables that foster conditions for local disease propagation. We then constructed a

spatially explicit model that allows the effect of the climate variables on EIAV occur-

rence to vary through space (i.e., non-stationary). Our results identified important

areas in which in-going movements were more likely to result in EIAV infections and

disease propagation. Municipalities were then classified as having high 56 (11.3%),

medium 48 (9.66%), and low 393 (79.1%) spatial risk. The majority of the move-

ments were between low-risk areas, altogether representing 68.68% of all animal

movements. Meanwhile, 9.48% were within high-risk areas, and 6.20% were within

medium-risk areas. Only 5.37% of the animals entering low-risk areas came from high-

risk areas. On the other hand, 4.91% of the animals in the high-risk areas came from

low- and medium-risk areas. Our results demonstrate that animal movements and

spatial risk mapping could be used to make informed decisions before issuing animal

movement permits, thus potentially reducing the chances of reintroducing infection

into areas of low risk.
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1 INTRODUCTION

Equine infectious anemia virus (EIAV) is awidespread disease of equids

caused by a lentivirus member of the Retroviridae family, subfamily

Orthoretrovirinae (Leroux et al., 2004). EIAV affects members of the

Equus genus worldwide, with horses presenting the highest infection

rate in warm and wet regions (Issel & Foil, 1984; Oliveira et al., 2017;

Tigre et al., 2017). EIAV transmission is often related to direct con-

tact with infected blood, milk, and other fluids; however, biting flies

such as the horse fly, stable fly, and deer flies are known to be EIAV

vectors (Issel & Foil, 2015). Therefore, regions where environmental

conditions favor high vector densities make vector or iatrogenic trans-

mission more likely and consequently increase the risk for disease of

spatial local transmission (Barros & Foil, 2007;Machado et al., 2021).

Between-farm movements of infected, untested, or false-negative

animals have been associated with short- and long-distance disease

spread events (Büttner & Krieter, 2021; Cárdenas et al., 2019; Prem

et al., 2019; Spence et al., 2017, 2018, 2019). Thus, understanding

how farms are connected through between-farm animal movements

is critical to, for example, (i) identify high-risk movements, (ii) uncover

disease spread routes, and (iii) design improved surveillance and

control strategies (Cardenas, VanderWaal, et al., 2021; Guinat et al.,

2016; Machado et al., 2020). For the most part, disease control and

surveillance programs in Brazil have clear definitions for permitting

animals to move from farm to farm. Often, a negative diagnostic test

result is required before movement permits are granted to individ-

uals or groups of animals. If an animal is classified as positive, it is

mandatory to be removed from the herd and euthanized. This process

is different from other countries, such as the United States, where

euthanasia or slaughter is not mandatory but is the option generally

selected (Cardenas, Pozo, et al., 2021; Machado et al., 2021; Napp

et al., 2019; Schiller et al., 2011; Zhang et al., 2018). However, move-

ment permitting does not consider the spatial risks associated with

infection-related risks at the farm of origin or the destination farm,

unless the disease in question is a foreign animal disease in which case,

movements are much more restricted (Shamoun-Baranes et al., 2014).

Nevertheless, in Brazil, for most endemic and even reportable dis-

eases, such as EIAV, animals are allowed to be transported among areas

regardless of known or unknown disease occurrence and anticipated

risk of disease dissemination (Barzoni et al., 2018; Fèvre et al., 2006).

Therefore, the use of animal movements alone (e.g., ranking farms

based on the number of animals transported to and into farms (Ezanno

et al., 2020; Firestone et al., 2012)) to identify farms at greater risk of

becoming infected or infecting others does not account for the risk of

reintroducing infection in areas with greater potential of local trans-

mission risk (Björnham et al., 2020; Cárdenas et al., 2019; Tao et al.,

2021).

The approach proposed here is especially useful where monitoring

of disease spread is carried out through passive surveillance systems

(Jones et al., 2019; Machado et al., 2019) in which animal movement

data are recorded on a regular basis (Duncan et al., 2022; Lentz

et al., 2016; Notsu et al., 2020; Pozo et al., 2019). We integrate social

network analysis with geostatistical analysis to map the distribution

of EIAV, delineate risk areas, and quantify animal movements between

diverse risk areas (e.g., movements from low-risk to high-risk areas) to

assess the potential role of movement in spreading EIAV throughout

the study region.

2 MATERIAL AND METHODS

2.1 Study population and data sources

In Brazil, the movement of food animal species is regulated by the

animal health office at the state level. In the case of horses, move-

ment permits are issued upon presentation of a negative EAIV test.

We obtained records of all EIAV tests (n= 45,857) performed between

2015 and 2017 in the state of Rio Grande do Sul; each individual

test has an expiration date of 6 months, which means that movement

issues are valid for the same number of months. National regulations

(MAPA, 2020) for equine movements mandate that all weaned ani-

mals older than 6 months be accompanied by official negative test

results for EIAV; thus, the test results used in this study areofficial diag-

noses all related to pre-movement permits (SEAPA, 2016). The total

equine population reported for this area in 2017 was 347,220 (MAPA,

2017). In addition, we obtained records of all between-farm horse

movements from 2015 to 2017 with a total of 1,235,383 records in

which 1,877,215 horses were moved, which consisted of geolocations

of farms of origin and destination, movement types (e.g., reproduction,

veterinary care), and the number of transported animals. Between-

farmmovement datawere curated before further analysis. An in-depth

data quality analysis was conducted on between-farm movement data

to determine the volume of missing information regarding the date of

movement, number of transported animals, and geolocation. EIAV test

results and between-farmmovement datawere obtained from the offi-

cial veterinary service SEAPDR-RSunder a data use agreement (SEAPI,

2017).

2.2 Mapping the spatial distribution of equine
infectious anemia virus

The Brazilian legislation accepts enzyme-linked immunoassay and

commercial agar gel immunodifusion (IDGA) as diagnostic test. How-

ever, the IDGA is the confirmatory test with a sensitivity of 98.8% and

specificity of 100% (Coggins et al., 1972). A positive EIAV was defined

as a horse farm with at least one positive test for EIAV between 2015

and2017. In total,we identified158newly reported cases, and the con-

trol group was sampled from the list of farms that had issued at least

one movement and in which all EIAV tests between 2015 and 2017

were negative. Themovements of animals that have tested positive are

banned; therefore, there are no records of the entry or exit of positive

animals between Brazilian states. The case-control ratio was 1:5, with

control farm samples from the same municipality of the pair(s) cases.



CARDENAS ET AL. e2759

F IGURE 1 a)Mapwith South America showing the location of the study area (the Rio Grande do Sul) in the black fill shape. (b) Spatial
distribution of 158 equine infectious anemia virus (EAIV)-positive farms in red and 2202 negative sites in green; major lakes are represented in
blue.

In the case of municipalities where no cases were detected, five farms

were sampled following the same criteria described above. In total,

2202 controls were sampled from 497municipalities (Figure 1).

2.3 Network analysis

From themovement data, we reconstructed yearly networks for 2015,

2016, and 2017, as well as the multiyear network that included the

entire study period. Briefly, we utilized the unique identification of

each municipality and the movements of animals to form the edges of

the network. Thus, we considered the network as a graph g = (V, E),

where V represents the nodes (municipalities) of the network, and E

represents the unique contact between two nodes or edges of the net-

work. Network terminology is described in Table S1. Here, the graph

was represented by an adjacency matrix Awith (A)ij = 1, if there was

a connection between the source nodes i and destination nodes j,

and (A)ij = 0 otherwise. Directed contact networks were (A)ij ≠ (A)ji

due to contacts having a particular origin (node i) and destination

(node j) with a specific direction (Jackson, 2008). Movements with the

same origin and destination were removed from this analysis since no

edges were formed. To characterize the static network, the param-

eters derived from the social network analysis metrics in-degree,

out-degree, PageRank (Brin and Page, 1998), clustering coefficient,

closeness centrality, and betweenness (Freeman, 1978; Wasserman

and Faust, 1994; Watts and Strongatz, 1998) were calculated by year,

and for the entire study period, all metrics used are described in Table

S1. A more detailed network analysis of horse movements in this same

study area was already described by Cárdenas et al. (2019); therefore,

we only included a brief description of the network.

2.4 Mapping covariates and data preparation

We identified four environmental covariates potentially affecting EIAV

distribution by modifying vector populations, including two land cover

covariates and two climate covariates. The geolocations of cases and

control farms were then used to extract the following variables: land

surface temperature represented by the annual average tempera-

ture (Krcmar, 2005), annual average precipitation (Mullens, 2019) in

millimeters provided by WorldClim (worldclim, 2021), soil moisture

(Blahó et al., 2013), and normalized difference vegetation index (NDVI)

(Baylis et al., 1998), both obtained from the Copernicus Global Land

Service (JRC, 2021). All covariate values were summarized by calcu-

lating the mean for the full study period. All variables listed above

were at ∼5 min of spatial resolution from the equator. Similarly, we

used the between-municipality movement networks to calculate the

following metrics: in-degree and out-degree, PageRank, cluster coef-

ficient, closeness centrality, betweenness, in-degree, and out-degree

centralization, which were later extracted for each farm based on their

geolocation. These parameters are described in detail in Figure S2 and

Table S3).
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2.5 Bayesian hierarchical spatial models
framework

We implemented a spatial hierarchical model to account for the

environmental andnetworkmetrics covariates, considering spatial sta-

tionarity and non-stationarity models. The specific farm locations i of

cases and controls were defined as Yi. Each farm location i (i = 1,. . . ,n, n

= 2624) is given as Yi, where Yi = 1 if EIAV was present and Yi = 0

otherwise. The hierarchical generalized base spatial model for the first

level is modelled as a logit model, Yi via binomial distribution,

Yi = Logit (𝜇i) . (1)

We constructed the following linear predictor:

Logit (𝜇i) = 𝛼 + 𝛽i ⋅ Xi + 𝜐 (si) + 𝜔 (si) (2)

where 𝜇 is the probability of EAIV occurrence, 𝛼 is the model inter-

cept,𝛽i ⋅ Xi describes amatrix of all environmental andnetworkmetrics

covariates, 𝜐 (si) is an independent and identically distributed (iid) ran-

dom effect to account for variation between individual farms, and 𝜔(si)

provides a spatial random field (Gaussian field) to account for spatial

errors. Since large lakes are present in the state of Rio Grande do Sul,

the spatial processeswerenot assumed tobeuniform (non-stationarity

field) following the approach proposed by (Bakka et al., 2019; Elias T.

et al., 2019).

Briefly, we used a stochastic partial differential equation (SPDE)

approach to analyze the spatial point data and to calculate themarginal

posteriors using the integrated nested Laplace approximations (INLA)

approach implemented with the R-INLA framework in the R language

environment (Bakka et al., 2018; Elias T. et al., 2019; van Niekerk et al.,

2021), which first requires the creation of a mesh of Delaunay triangu-

lation (Figure2), including the specification of amaximumtriangle edge

length, a model domain boundary, and the location of barriers within

the domain (Bakka et al., 2019). Themaximum triangle edge lengthwas

specified as 10 km within the inner domain and 20 km in the outer

domain; the boundary of the domain was constructed as a polygon of

the state of Rio Grande do Sul, and the barriers were specified as the

location of major lakes within the state. The resulting mesh created

usingR-INLA is presented inFigure2and consists of 2,766 triangle ver-

tices. In addition, we specified a barriermodel to prevent the estimated

spatial error from terrestrial sampling sites from being extrapolated

into openwater areas as suggested elsewhere (Martínez-Minaya et al.,

2018).

The default and recommended settings for priors were adopted;

thus, we used penalized complexity priors (Fuglstad et al., 2019; Simp-

son et al., 2017) for the spatial random fields where the spatial range

and standard deviation quantile and probability tailored to be higher

than 1 is 0.01. (Rue et al., 2009; Sultaire et al., 2022). We explored the

sensitivity to priors to the posterior random field values by comparing

the Watanabe–Akaike information criterion (WAIC) and the random

posterior mean distribution values (Table S3).

F IGURE 2 Equine infectious anemia virus (EIAV) data are plotted
in red cases and in green controls. Grey triangles show the spatial
mesh of Delauney triangulations created using R-integrated nested
Laplace approximations (INLA); the blue line represents the border for
the state considering physical barriers (large lakes)

TABLE 1 Model nomenclature and selection

Model Model formula WAIC

Intercept model Logit (𝜇i) = 𝛼 + 𝛽i ⋅ Xi 8,778.03

Spatial model Logit (𝜇i) = 𝛼 + 𝛽i ⋅ Xi + 𝜐 (si) 1,331.74

Barrier model Logit (𝜇i) = 𝛼 + 𝛽i ⋅ Xi + 𝜐 (si) + 𝜔(si) 1,267.89

Abbreviation:WAIC,Watanabe–Akaike information criterion.

2.6 Model fitting and comparison

For model fitting and selection, we compared three candidate model

structures (Table 1). The first model was constructed with an inter-

cept only used to benchmark models with spatial terms. The second

model considers the spatial-effect term (stationary GRF) without bar-

riers, and the third model considers the presence of a physical barrier

term (non-stationary GRF). The best model, without any covariates,

was selected based on theWAIC.

We evaluated a number of candidate covariatemodelswhile follow-

ing our conceptual framework (Figure 3), which rests on the following

assumptions: temperature, along with precipitation, promotes the for-

mation and maintenance of soil moisture that might contribute to the

growthof vegetation, thus increasingEIAVvectordensities and the sta-

bility of the virus in the environment (Barros&Foil, 2007).On theother

hand, municipalities with the greatest movement of horses, thus highly

connected via animal transportation contact networks, aremore prone

to receiving infected animals, thus increasing the chances of EIAV dis-

semination (Cárdenas et al., 2019). For covariate selection, we used the

best model, which was the one with the non-stationary barrier term

(Table 1).We first analyzed the candidate variable via univariable anal-

ysis (Table 4). Significant variables were selected for the multivariable

backward elimination analysis, where all variables with 95% credible
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F IGURE 3 Conceptual model: The conceptual model describes
the association between environmental characteristics and network
metrics as a function of Equine infectious anemia virus (EIAV) cases

intervals (95% confidence interval [CI]) in which zero was not included

were considered.

2.7 Risk flow between risk areas

We used the final covariate barrier model to estimate the poste-

rior mean probabilities of EIAV occurrence, which were then used

to categorize each municipality into three EIAV risk areas by using

Jenks’s natural breaks of the aggregated posterior mean probability

values. Thus, municipalities at high risk were between 𝜇 = 0.38 and

2.45, municipalities at medium risk were between 𝜇 = 0 and 0.38, and

municipalities at low risk were between 𝜇 < 0. Finally, we utilized the

between municipalities’ horse movements to identify and count the

number of in-going and out-going movements among the three risk

areas. We have also measured the distances (km) between the origin

and the destination of each movement. Briefly, the Euclidean distance

between the municipalities of origin and destination was calculated

and further examined by plotting the empirical cumulative distribu-

tion and the distance in km for movements within the same risk areas

(e.g., from high-risk to high-risk areas) and between different risk areas

(from low-risk to high-risk areas) (Figure S7).

All the analysis and data visualization presented in this work were

conducted in R software (Core Team, 2021) using the packages tidy-

verse (Wickham et al., 2019), INLA (Bakka et al., 2018), sf (Pebesma,

2018), ggspatial (Dunnington, 2021, p. 2), brazilmaps (Prado Siqueira,

2021), INLAutils (W Redding et al., 2017), INLAoutputs (Santos

Baquero, 2018), inlabru (E. Bachl et al., 2019), rgeos (Bivand & Rundel,

2021), circlize (Gu et al., 2014), and raster (J. Hijmans, 2021).

3 RESULTS

3.1 Animal movement description and data
quality analysis

A total of 1,877,215horseswere transported between 2015 and 2017,

which amounted to 1,235,383 movements among 497 municipalities.

A moderate increase in EIAV cases was seen for the period from

2015 to 2016 (Table 2). A total of 1,170,471 (94.74%) between-farm

TABLE 2 Yearly horsemovement frequency, total animals moved,
and the number of equine infectious anemia virus (EIAV) cases in the
state of Rio Grande do Sul, Brazil

Year

Number of

movements

Total number of

transported

animals

Number of

EIAV cases

2015 266,334 428,665 47

2016 497,566 740,349 66

2017 471,483 708,201 45

movements had at least one data-related issue (e.g., missing geolo-

cation), which limited our ability to reconstruct farm-to-farm contact

networks. The main issue with the movement data was related to

origin and destination farms having the same farm identification in the

origin and destination present in 1,148,789 (92.98%) of between-farm

movements. Missing geolocation was the secondmost prevalent issue,

with 452,616 (36.63%)movements; however, 100%of themovements,

1,235,383, had accurately identified municipalities of origin and

destination, date, and the number of moving animals, which allowed

for the reconstruction of the contact network amongmunicipalities.

3.2 Between-municipality movement networks

Our results did not show a significant variation in the number of horses

transported betweenmunicipalities over the course of the 3 years. The

majority of the municipalities (441, 88.73%) received or sent at least

one animal throughout the study period. Over time, the number of

edges and the total number of horses increased from 2015 to 2016;

consequently, it is reflected in the increasing values in graph density

(Table 3). Last, the average in-degree and out-degree also increased

from 33.50 to 43.32 from 2015 to 2017 (Table 3).

3.3 Model formulation and selected covariate
variables

Of the three spatiotemporal models (Table 4), the model with the

barrier effect had the most suitable fit and was used in the covari-

ate selection procedure. Univariate analysis showed that precipitation,

in-degree, and out-degree were significantly associated with EIAV

(Table 4). Because in-degree and out-degree were correlated and in-

degreewasabetter fit thanout-degree,weeliminatedout-degree from

the finalmodel. Additionally, variables that includednumberonewithin

the quantile 0.25–0.75 in the distribution of the fixed effect were not

considered significant and were removed from the final barrier model

(Table 4). Thus, the selected final model considered precipitation and

the number of movements intomunicipalities (in-degree).

Higher risk values were observed closer to the border with

Argentina, Porto Alegre metropolitan area, and near large lakes in the

Southwest (Figure 5a). We identified 56 (11.3%) municipalities at high

risk for EAIV, while 48 (9.66%) were estimated to have medium spatial
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TABLE 3 Between-municipality networks metrics for 3 years of between-municipalities movements. Overall and yearly graph density, number
of edges, nodes, the total number of horses transported betweenmunicipalities, and in-degree and out-degree averages with their 95% confidence
interval (CI 95%)

Year

Graph

density Nodes Edges

Mean of in-degree

(CI 95%)

Mean of out-degree

(CI 95%)

All years 0.12 497 31,726 63.83 (68.02, 71.78) 63.83 (59.51, 68.15)

2015 0.06 487 16,317 33.50 (30.76, 36.24) 33.50 (30.72, 36.28)

2016 0.08 493 21,157 42.91 (39.86, 45.96) 42.91 (39.81, 46.01)

2017 0.08 496 21,489 43.32 (40.35, 46.29) 43.32 (40.28, 46.36)

TABLE 4 Summary statistics of the fixed effects of the barrier model

Univariate Multivariate

Covariate Mean

Quantile

0.025

Quantile

0.975 WAIC Mean

Quantile

0.025

Quantile

0.975 WAIC

In-degree 1.006 1.003 1.009 1,261.19 1.006 1.003 1.009 1256.16

Out-degree 1.006 1.003 1.009 1,262.19 - - -

PageRank 7.10 −5.72 9.64 1264.91 - - -

Clustering coefficient 0.002 −2.662 0.002 1259.69 - - -

Closeness centrality 1.95 4.89e-26 3.01 1267.62 - - -

Betweenness 1 0.99 1 1268.95 - - -

Precipitation 1.019 1.003 1.037 1261.95 1.016 1.002 1.033

Soil moisture 1.011 0.989 1.037 1267.77 - - -

Temperature 0.998 6.99e-01 1.377 1268.85 - - -

NDVI 1 1 1 1270.50 - - -

Abbreviation: NDVI, normalized difference vegetation index;WAIC,Watanabe–Akaike information criterion.

risk and 393 (79.1%) were considered low risk (Figure 4b). Finally, high

standard deviation valueswere observed in the south of RioGrande do

Sul (Figure S6); therefore, risk estimates for this area should be inter-

preted with caution. Our sensitivity analysis did not reveal significant

differences between the priors tested (Table S4 and Figure S5).

3.4 The movement of horses between risk areas

We used the spatial posterior mean at the municipality level of the

final barrier model (Figure 4b) and the animal movements between

municipalities to identify key areas in which in-going and out-going

movements were more prone to facilitate disease dissemination. The

spatial distribution of the risk areas and the movement flows among

them are shown in Figure 5a. The majority of the movements were

between low-risk areas, representing 848,433 (68.68%) of all animal

movements. The remainder of the movements were 117,060 (9.48%)

and 76,640 (6.2%) for high- and medium-risk areas, respectively. Only

5.37% of the animals transported into low-risk areas came from high-

risk areas.On theother hand, 92,148 (4.91%) of the animals in high-risk

areas came from low- and medium-risk areas (Figure 5b and Table S7).

Finally, we recovered the distribution of EAIV cases within each risk

zone. We observed a total of 29 cases in low-risk areas, 17 in medium-

risk areas, and 112 in high-risk areas. The number of cases was divided

by the total number of municipalities for each risk-zone area, which

amounted to 3.28% cases per municipality in low-risk areas and 14.9%

and 81.8% for medium-risk and high-risk areas, respectively.

4 DISCUSSION

Our findings are the result of an integrated approach that coupled

Bayesian hierarchical non-stationary spatial analysis (Battle et al.,

2019; Emch et al., 2012; van Niekerk et al., 2021) with social networks

analysis (Chen & Lanzas, 2016), which allowed us to demonstrate sig-

nificant evidence of horse movements among areas of distinct risk

for EIAV circulation. We estimated the probabilities of EIAV occur-

rence, which was used to classify municipalities into three risk areas,

(1) high-risk, (2) medium-risk, and )3) low-risk, whichwere later used in

conjunction with animal movement to calculate the number of move-

ments among the distinct risk areas. Our results showed that the

majority of movements (84.35%) were within areas of the same risk

classification, while 15.65% of animal movements occurred between

areas with different risk classifications (e.g., high risk to low risk). We
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F IGURE 4 Spatial variation in posterior fitted values. (a) The posterior predictivemean values per pixel area of 56 km2. (b) The aggregated
posterior mean probabilities for eachmunicipality in the state of Rio Grande do Sul, Brazil.

F IGURE 5 Spatial distribution of risk areas for eachmunicipality and the number of movements between them. (a) The spatial patterns of the
equine infectious anemia virus (EIAV) probability of occurrence in the state of Rio Grande do Sul, Brazil. (b) The circular plot shows the horse
movement plot among themunicipalities considering the three risk levels. The origins and destinations of movements are each assigned risk colors.
The origin of the flowmovements is encoded by the external ring area, and the bandwidth represents the total of in-going and out-going
movements
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remark that the described movement patterns restricted within high-

risk areas could be driving the current endemic levels of EIAV, as

indicated by the 129 (81.64% of the total cases) cases being in high- to

medium-risk areas (Figure 5a), and only 29 (18.36%) cases were found

in low-risk areas.

Comparing the non-stationary fields (barrier model) and stationary

models, we found that including geographical barriers (large lakes in

the southeast of Rio Grande do Sul) significantly improved the model

fitting. A possible explanation could be associated with the vector-

borne transmissionof EIAV,which is themainmodeEIAV is transmitted

locally (short distances between farms). Biting flies such as horse flies,

deer flies, and stable flies have been described as efficient vectors

(Barzoni et al., 2018; Nogueira et al., 2017) that can only fly 4.9–6.8

km away from the initial marking station within 5 days. However, a

significant percentage of tabanid flies were able to transmit EIAV to

other horses within a range of 5–25 m, still limiting feasible transmis-

sion to short distances (Barros & Foil, 2007). Briefly, the barrier model

disconnected the spatial process across the physical barriers (large

lakes), blocking spurious dependence fromEIAV traveling between two

farms that were near each other in Euclidean distance but far away in

geodesic distance in the spatial domain. Not only is the barrier model

superior when compared with the spatial model (Table 1), but Figure

S6 reveals that the standard deviation resulting from the barriermodel

appears to be substantially reduced by the addition of barrier term

𝜔(si). Even with the development of the R-INLA, inlabru, and rSPDE

packages (E. Bachl et al., 2019; Bolin & Kirchner, 2020; van Niekerk

et al., 2021),more specifically thework done byBakka et al. (2019) that

implemented the option for a non-stationary barrier model directly via

R-ILNA, the vast majority of non-stationary models have been limited

to ecology (Bell et al., 2021), fisheries (Monnahan et al., 2021), and the-

oretical studies (Lindgren et al., 2022; Sanz-Alonso & Yang, 2021). One

reason for a lack of studies that include the explicit effect of barriers

in animal disease epidemiology may be associated with the challenges

of model implementation, which have been resolved by Bakka et al.

(2019). The relevance of non-stationary field approaches in animal

disease epidemiology is mainly targeted at diseases that disseminate

locally, such asWest Nile virus (Siqueira et al., 2022), Brazilian spotted

fever (Moraes Filho et al., 2019), and piroplasmosis (Minervino et al.,

2020).

Our proposed model identified two covariates associated with the

increased probability of EIAV occurrence: precipitation and in-degree.

The association between increased precipitation and EIAVmay be due

to the formation and maintenance of water bodies and favourable

conditions for vector breeding sites and enhanced environmental suit-

ability (Hemming-Schroeder et al., 2018). This is especially true for

regions where EIAV is endemic, and hot, humid rainforest environ-

ments support a very high density of horse and deer fly populations

throughout the year (Resende et al., 2021). On the other hand, we

also found that municipalities with high in-degree are more likely to

have farms that tested positive for EIAV, as expected since the most

relevant mode of between-farm transmission has been related to the

transportation of infectious animals between farms (Firestone et al.,

2011, 2012; Spence et al., 2017; Squarzoni-Diaw et al., 2021).

The number of EAIV cases at the border between Brazil, Argentina,

and Uruguay have been high for the past several years. Of these,

Uruguay is the only country where this disease is not endemic, while

northeast Argentina and most Brazilian territories are in an endemic

situation (Barzoni et al., 2018; Nogueira et al., 2017; Sandrigo et al.,

2021). The recurrent spread has been associated with the illegal trans-

port of untested horses across the borders. In the current study, we

demonstrate that most transportation events were between munic-

ipalities in proximity to each other, with movements from and to

high-risk areas being shorter than movements among municipalities

of low risk (Figure S7). Therefore, our result suggests that EIAV dis-

seminationmay remain to be containedwithin high-riskmunicipalities,

which for the most part may be explained by the structure of the

between-farm contact networks with most movements within the

same risk areas (Martínez-López et al., 2014; Sintayehu et al., 2017).

In the same vein, a previous study described how glanders was dis-

seminated among farms within the same study area, with most cases

within one network step from infected farms (Cárdenas et al., 2019).

Nevertheless, we cannot exclude the changes in EIAV dissemination

into low-risk areas, since those areas have suitable environmental

conditions and host a wide range of EIAV vector species (Hemming-

Schroeder et al., 2018) while also receiving approximately 6.16% of

horses from high-medium risk areas. Ultimately, our results suggest

that the risk of further spatial propagation of EIAV seems to be lim-

ited. Restricting the movement within the same risk level to minimize

long-distance transmission appears to be the next logical step in reduc-

ing EIAV infections. The highest number of horses is located in the

southern region of the state, with some specific exceptions in the

municipalities of ‘Capão da Canoa’ and ‘Chuvisca’, where the popula-

tion was high in proportion with their area (Figure S8). Interestingly,

the horse density was not correlated with the high-risk areas, suggest-

ing that animal density is not related to the high-risk areas of EIAV at

themunicipality level.

5 LIMITATIONS AND FURTHER REMARKS

This study had some limitations. First, the selection of control farms

was sampled from sites that moved at least one animal between 2015

and 2017. However, we cannot exclude the possibility that there were

other animals in the place of origin, which may be infected with EIAV

(Machado et al., 2021). Additionally, the EIAV tests are valid for 6

months, which does not guarantee that negative animals will remain

negative for the entire six months. On the other hand, due to the

volume of horses that are tested from 495 municipalities, we are con-

fident that the data used here were able to capture the spatial pattern

of the disease. Even though the literature suggests the effect of sea-

sons in the dissemination of EIAV, often driven by the increase in the

population of EIAV competent vectors (e.g., horse flies) (Lucas et al.,

2020), we remark on the challenges in explaining the role of iatro-

genic transmission. Another limitation was the lack of accounting for

illegal or unreported movements and their influence on the network.

Legal movements can be detected and banned when cases are caught.



CARDENAS ET AL. e2765

However, the unlawful movements could contribute to the EIAV

spread. In addition, we may have missed infected movements coming

from other states. Despite great efforts from the local government to

improve the current movement data system, the quality of the data

precluded the proper identification of the farm of origin and destina-

tion. For this reason, we work at the municipality level, which manages

to capture the equine movement patterns at the state level quite

well. Finally, combining Bayesian hierarchical non-stationary barrier

mode and social network analysiswarrants further research andwould

benefit from an in-depth evaluation compared to more traditional

approaches (vanNiekerk et al., 2022). In addition,we cannot inform the

stability of these areas over large periods of time given variations due

to climate change and animal movement patterns. Therefore, future

work will be necessary to support or update these findings.

6 CONCLUSION

Our proposed methodological approach that combines social network

analysis and non-stationary spatial regression not only sheds light on

where EIAVmay persist but also demonstrates the risk of transporting

animals between different risk areas. The current study demonstrated

a methodological approach that combined social network analysis and

non-stationary spatial regression to determine where EIAV may per-

sist and determine the risk of transporting animals into specific areas.

The majority of the movements were contained within municipalities

of high-risk areas, which could explain the restricted number of EIAV

in those areas (n = 112 cases). EIAV is hard to control, mainly because

infected animals show little to no clinical signs; thus, infected individu-

als aredetectedvia passive surveillance, serological testing, and testing

necessary for movement permits. Such delay in detection reinforces

the need for a better understanding of EAIV distribution, which may

be achieved by estimating the spatial and spatiotemporal patterns of

thedisease.Animal health authoritiesmayuse this information tomake

decisions about animal movement permits by restricting or enhanc-

ing the monitoring of horses transported from high-risk municipalities

into low-risk municipalities. The approach established here may be

applied in the future at a larger scale in other Brazilian states, and the

results may be integrated intomovement permits of other food-animal

systems.
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