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Abstract: The timing and magnitude of the immune response (i.e., the immunodynamics) associated
with the early innate immune response to viral infection display distinct trends across influenza
A virus subtypes in vivo. Evidence shows that the timing of the type-I interferon response and
the overall magnitude of immune cell infiltration are both correlated with more severe outcomes.
However, the mechanisms driving the distinct immunodynamics between infections of different virus
strains (strain-specific immunodynamics) remain unclear. Here, computational modeling and strain-
specific immunologic data are used to identify the immune interactions that differ in mice infected
with low-pathogenic H1N1 or high-pathogenic H5N1 influenza viruses. Computational exploration
of free parameters between strains suggests that the production rate of interferon is the major driver
of strain-specific immune responses observed in vivo, and points towards the relationship between
the viral load and lung epithelial interferon production as the main source of variance between
infection outcomes. A greater understanding of the contributors to strain-specific immunodynamics
can be utilized in future efforts aimed at treatment development to improve clinical outcomes of
high-pathogenic viral strains.

Keywords: viral strains; ODE modeling; systems biology

1. Introduction

Infections with different influenza A viruses reveal distinct trends in the observed
timing and magnitude of immune system dynamics, which correlate to the severity of
clinical outcomes [1]. Seasonal influenza viruses, usually of the H1N1 subtype, cause
~700,000 hospitalizations and ~56,000 deaths in the US annually [2]. Occasionally, high
pathogenic subtypes emerge, which can result in deadly, worldwide pandemics such as
the 1918 Spanish Flu and 1968 Flu pandemics. Of particular concern is the threat that
avian H5N1 influenza viruses pose to public health [3]. An estimated 60% of human H5N1
infections end in death, the majority of which unexpectedly occur in those under the age of
65 [4]. Infections with H5N1 viruses are characterized by higher viral loads, longer viral
clearance times, and increased levels of inflammation and tissue damage in comparison
with low-pathogenic influenza viruses [5].

Although it remains unclear how H5N1 and other highly pathogenic viruses induce
a more severe inflammatory response, there are several potential explanations. One pos-
sibility is that H5N1 viruses replicate more quickly, and that observed differences in the
immune response are driven primarily by the viral replication rate [6]. Another possibility
is that H5N1 viruses may antagonize the immune system differently during the early
stages of infection. A specific candidate mechanism involves the influenza virus’ nonstruc-
tural protein 1 (NS1). NS1 is well-established as an antagonist of intracellular immune
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signaling through the inhibition of retinoic acid-inducible gene I (RIG-I) activity, which
leads to a delayed type-I interferon response [7,8]. By introducing mutations to the NS1
protein, some studies have shown that the NS1 protein of H5N1 viruses may more strongly
antagonize cellular antiviral responses [9,10]. Another factor that may contribute to the
H5N1 virus’ enhanced pathogenicity is that H5N1 can more readily infect lung resident
macrophages, though there is conflicting evidence on whether infected macrophages lead
to enhanced inflammation [11] or not [12]. Given the many factors contributing to H5N1′s
pathogenicity, there is an opportunity to use dynamical mathematical modeling to analyze
time-course infection data and identify the processes (factors) that differ between infections
with different viruses.

Dynamic mathematical models have been used to better understand the mecha-
nisms driving in vitro and in vivo immunodynamics observed during influenza infection
(see [13,14] for reviews of some relevant models). To date, most mathematical models of
influenza infection consist of ordinary differential equations (ODEs) that systematically
link virus replication and the availability of host target cells (cells that can be infected) to
intracellular immune signaling (interferon responses) and/or immune cell activity. These
models have been used to explore a variety of areas: to provide possible explanations as to
why a double peak in the viral load may be observed [15], to prioritize therapeutic targets
to optimally reduce inflammation while controlling viral load [15–18], to provide evidence
that interferon paracrine signaling is the primary factor regulating hypercytokinemia [19],
and to determine why viral titers rebound during bacterial co-infection [20]. Separately,
agent-based models (ABMs), a rule-based approach that treats each cell as an individual
entity while considering spatial effects and stochasticity, have been used to reveal the
optimal experimental conditions for examining infection-induced interferon production,
to quantify the benefits of noisy intracellular immune signaling [21], and to elucidate
the effect of spatial aspects on infection outcomes [22]. An engineering-based approach
that employed a reduced ODE model of virus replication, and treated measurements of
key immune factors as system inputs, suggested that increased levels of interferon-α/β
promoted slower viral growth, and limited immune cell stimulation in aged mice [23].
As in these previous studies, mathematical modeling is a knowledge-driven, integrative
approach well-suited to explore the regulatory mechanisms responsible for the differences
observed between mild and severe influenza infections.

To elucidate the biological mechanisms that contribute to the distinct immunody-
namics observed between H1N1 and H5N1 influenza virus infections, we developed
mechanism-based, dynamic mathematical models of the innate immune response,
and performed several parameterizations to identify the biological processes (parameters)
that are most likely to be differentially regulated between the two infections. The model
parameters were fit to viral load and immunologic data from mice that had been infected
with either an H1N1 or H5N1 virus. Comparing model fits to the data using the Akaike
Information Criteria (AIC) suggests that the optimal model is achieved when the parameter
representative of the production rate of interferon is distinct between the two infections.
Using parameterization to test the contribution of macrophage activity in interferon pro-
duction and viral suppression reveals that the inclusion of these mechanisms negatively
impacts model quality. In total, this modeling-based approach determines that the distinct
rate of interferon induction in H5N1 infections is the most likely candidate mechanism for
explaining the distinctive immune response observed in H5N1 infections.

2. Materials and Methods
2.1. Model Development Rationale and Equations

Studies have established that many innate immune processes are differentially regu-
lated in mild and severe influenza infections [24–29]. As such, we focused on developing
simple models of the early immune response. We first describe the relevant immunology,
and then describe how virus replication and innate immunity are mathematically modeled.
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Lung epithelial cells, as well as lung-resident innate immune cells (i.e., macrophages
and neutrophils), display pattern recognition receptors to detect viral RNA at the site of
infection [30,31]. Pattern-recognition toll-like receptors 7 and 9 (TLR7/9) [32], retinoic
acid-inducible gene I (RIG-I) [33], and the pro-inflammatory NF-kB [34] pathway work in
concert to activate the type-I interferon response [8]. These pattern recognition receptors are
antagonized by the invading virus to strain-specific degrees [35,36]. Interferons induce the
transcription of interferon-stimulated genes (ISGs) that are responsible for establishing an
antiviral state in the cells near infected cells [37], and activating several components of the
immune system. Studies suggest that the timing of the type-I interferon response is key in
limiting viral replication and recruiting an appropriate pro-inflammatory response [38–40].
Induction of interferon production is also partially responsible for regulating the activity
of innate immune cells such as macrophages and neutrophils. The precise role of these
immune cells in viral clearance is still debated: though macrophages can engage in several
inflammatory processes [41] and are important for enhancing interferon induction [42], they
may also be targeted for infection by highly pathogenic viruses such as H5N1 influenza,
altering their overall activity [11,12].

A three-state ODE model, referred to as Model 1, was developed using the immuno-
logical knowledge of the early innate immune response to a primary influenza A virus
infection (i.e., the animal’s first exposure, no antibodies for the virus present) described
above (See Section 3 for a schematic of the model contained in Equations (1)–(3)). The units
of each state (V, I, and M) are discussed in Section 2.2.

dV
dt

= rV,VV
(

1− V
KV,V

)
− rV,IV I − rV,MV M− dVV (1)

dI
dt

= rI,VV + rI,M M− dI I (2)

dM
dt

=
r M,I In

K M,I + In − dM M (3)

Virus production is modeled in Equation (1). V, the concentration of virus in lung
tissue, is modeled as logistic growth with a constant of proportionality, rV,V, and a carrying
capacity, KV,V. This form of virus production was selected over target-cell-based modeling
approaches because data concerning the number of available target cells in the lung are not
available, limiting the viability and accuracy of training a model. The effect of interferon-
regulated inhibition of virus replication is modeled using mass action kinetics, where rV,I
is the corresponding rate constant. The inhibition of virus production via macrophage is
also modeled with mass-action kinetics, where rV,M is the rate constant. Virus degrades at a
rate, dV.

Type-I interferon production is modeled by Equation (2), where I is the concentration of
interferon in the lung. Interferon is produced at a rate, rI,V, relative to viral load, and decays
at rate, dI. Upregulation of interferon production via macrophages was modeled as a first-
order mass-action kinetic with a rate, rI,M.

Macrophage production is modeled in Equation (3), where M is the number of
macrophages in the lung. Interferon induction of macrophage production is modeled
using a Hill kinetic with a production rate, rM,I, and an apparent dissociation constant,
KM,I. Instead of the classic interpretation of the Hill coefficient, n, as cooperativity in ligand
binding [43], it can be interpreted in this context as an activation threshold representing
the threshold of interferon needed to induce macrophage production. This is similar to the
activation threshold that must be exceeded to induce T cell cytokine production [44,45].
The parameter, KM,I, is not raised to the Hill-like coefficient, n, to improve parameter fitting.
Macrophage decays at a rate of dM.

Equations (1)–(3) define the dynamic behavior of Model 1. We also developed reduced
models, Models 2–4, in which select interactions were removed to consider additional
hypotheses on how the immune system in the lung might be regulated. For example,
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in CCR2-/- mice, there is conflicting evidence concerning whether inhibited macrophage
infiltration into the lung of infected mice affects viral load [46,47]. In addition, although
macrophage upregulation of interferon is well justified, it is not guaranteed that parameters
associated with this interaction can be estimated from the data. In Model 2, M induction
of I is removed. In Model 3, M inhibition of V is removed. In Model 4, both M induction
of I and M inhibition of V are removed. These models were each fit to the experimental
data to determine which model (and, therefore, which combination of biological processes)
optimally fits the data based on the goodness of fit and the number of parameters estimated
(degrees of freedom, DoF).

2.2. Experimental Data Collected from Literature and Relating the Data to the Model

Measurements of the viral load, interferon concentration, and a surrogate measure-
ment of macrophage counts were collected and organized from Shoemaker et al. [1]. Briefly,
female C57BL/6J mice were infected with a low pathogenic A/Kawasaki/UTK-4/09 H1N1
virus (H1N1) or high pathogenic A/Vietnam/1203/04 H5N1 virus (H5N1) at 105 PFU.
A control group was mock-infected with PBS. At 14 time points spanning the first week of
infection, three animals per infection group were sacrificed. Their lungs were harvested and
analyzed by a variety of techniques to quantify the viral load and the state of the immune
system. The H5N1-infected animals died between days 5 and 7. As such, only the first
13 measurements spanning days 0–5 are included in this work. In all, 234 measurements
(78 for each model state) were collected and organized for model parameterization.

The specific measurements used from [1] and their relationship to the mathematical
models are as follows: Viral titers were determined via plaque assay, resulting in units of
plaque-forming units per mg of lung tissue (PFU/mg). In Equation (1), V is the log10 of
PFU/mg. To represent the change in interferon concentration over time in Equation (2),
log2 fold change of the gene expression of Ifnb1 relative to mock-infected, time-matched
samples (unitless) was used. Full details on normalizing the gene expression can be found
in the original work [1]. Whole lung macrophage counts were determined at only four time
points in the original work, spread across several days [1]. As a result, the concentration of
MCP1 (measured using ELISA assay) was selected to act as a surrogate measurement of
macrophage cell count (M). Supplementary Figure S1 shows a linear regression of the log10
macrophage cell count and log2 MCP1 concentration (R2 = 0.98, with a slope of 0.613).
The conversion between macrophage and MCP1 is, therefore, given by Equation (4):

log10(M) = 0.6301 log2(MCP1) (4)

where M is the macrophage cell count in the lung, and MCP1 has units of pg/mL. During
parameter training, the macrophage state (Equation (3)) is fit to the log2 of MCP1 mea-
surements. Equation (4) is then used to transform MCP1 predictions into estimates of
macrophage counts in the lung.

2.3. Parameter Training

Basin Hopping (BH) [48], via SciPy [49], and Parallel Tempering Markov chain Monte
Carlo (PT MCMC) [50] were employed as global optimization algorithms to train parameter
values. BH rapidly identifies a single estimate of parameter values, whereas PT MCMC
characterizes the parameter space over an extended number of samples. The objective
function used (Equation (5)) is the weighted sum of squared error, and is referred to
hereafter as energy, following Metropolis et al. [51]).

Energy = ∑X
x=1 ∑T

t=0
(Mx,t −Ox,t)

2

2Ox,t
(5)

Mx,t and Ox,t are the model output and the average of triplicate observed data points,
respectively, for each state, x, and time point, t, across all states, X, and time points, T.
Each time point was divided by the corresponding data point, Ox,t, to normalize energy
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values. All MCMC simulations ran across six chains of temperature (0.99, 0.9, 0.8, 0.4, 0.2,
and 0.05) to ensure adequate exploration of parameter space. Parameters were unbounded,
and priors were defined as uniform between zero and +∞.

2.4. Model and Scenario Prioritization

Though an energy function conveys the quality of the fit achieved by parameterization
for a given model, it is incapable of comparing models with varying numbers of parameters
(differing degrees of freedom). The Akaike Information Criterion (AIC) was used to
compare models with different numbers of parameters, and determine the superior model
based on a tradeoff between the model’s fit to training data (energy) and the number of
free parameters used to achieve the fit. The optimal model is the model that reports the
lowest AIC value. As AIC is relative, a difference greater than 2 was considered significant
when comparing two outcomes. AIC is defined [52] as:

AIC = −2 ∗ ln(MLE) + 2 ∗ Pf ree (6)

where MLE is the maximum likelihood estimate, and Pfree is the number of parameters being
fit. The number of free parameters in a model depends on the scenario being considered,
which is described in the Section 3. The maximum likelihood, MLE, is defined as:

MLE = exp(−Energy) (7)

2.5. Sensitivity Analysis

An extended Fourier Amplitude Sensitivity Testing (eFAST) global sensitivity analy-
sis [53,54] was performed in Python Version 3.8.10 with Sensitivity Analysis Library (SALib)
Version 1.4.5 [55] to determine the output variance of each state (Equations (1)–(3)) as a
function of input variance to each parameter. The output of the method is First-Order
indices that represent the outcome variance of each system state that can be attributed to
the perturbation in a single parameter, p. High First-Order indices imply that a single pa-
rameter has a significant role in controlling system outcomes, whereas low values indicate
a less significant impact. To determine the overall system sensitivities, the output variance
of each state (V, I, M), for each parameter p, was determined at 100 time points between
0 and 5 days. The average of these sensitivity indices over all time points is reported.

3. Results
3.1. In Silico Screenings of Candidate Innate Immune Models Find That H5N1 and H1N1 Viruses
Induce Interferon Production at Different Rates In Vivo

The goal of this work is to determine the innate immune processes that are differ-
entially regulated in animals infected with a moderate H1N1 or severe H5N1 influenza
virus. These processes can be represented as differences in the values of a parameter of
the mathematical model. To identify differentially regulated processes, four biologically
informed mathematical models with structural differences surrounding macrophage activ-
ity were developed, and a series of parameter fittings were performed to determine which
parameter(s) must take on different values to optimally fit experimental data derived from
H5N1- and H1N1-infected animals.

The models are shown in Figure 1A, wherein four different regulatory structures link
the concentration of virus (V), the level of interferon (I), and the number of macrophages
(M) in the lung (see Section 2 for the rationale and mathematical equations for each
model). The primary distinction between the four models involves the role of macrophages.
In Model 1, macrophages can induce interferon production and suppress virus replication.
However, experimental evidence suggests that macrophages may not play a major role
in suppressing virus replication [47]. As such, we constructed four models of the innate
immune response. In Model 2, macrophage induction of interferon production is removed.
In Model 3, macrophages do not directly suppress virus replication, and in Model 4, both
macrophages’ ability to induce interferon and suppress virus replication are removed.
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Figure 1. (A) Model schemes of the four models considered in this work. V, I, and M represent virus
concentration, interferon concentration, and macrophage cell count in the lungs of infected mice.
Arrows represent activating interactions; lines ending in crosses represent inhibiting interactions.
The parameters involved in each interaction are indicated in Model 1 (degradation reactions not
shown). Model 1 is the fully connected model of the innate immune response model. Models 2–4 are
reduced versions of Model 1, wherein select interactions were removed. (B) Each model is analyzed
for its goodness of fit to experimental data under three different scenarios. Schemes of the model
emphasize the different outcomes that occur under each scenario. Black arrows indicate parameters
that retain the same value when fitting the model to H5N1 and H1N1 infection data. Red, broken
arrows identify parameters that take on different values when training two copies of a model to the
H5N1 and H1N1 infection data.

All four models were compared under three scenarios using the AIC as the discrim-
ination metric. The overall strategy of the approach is illustrated in Figure 1B. In the
“No strain-specific differences” (NSSD) scenario, parameters have equal values in both
infections. A single copy of each model is trained to the H5N1 and H1N1 data, resulting in
one trained (parameterized) model. In the “One strain-specific difference” (OSSD) scenario,
we assume that a single interaction or process may be differentially regulated in the two
infections. To consider this, we train two copies of a model to the data, one copy for
the H5N1 data and another for the H1N1 data, but only allow one parameter to take on
different values between each copy (referred to as independent parameters, similar to the
approach used in [18]). All other parameters must maintain the same value. This results
in an H1N1- and an H5N1-specific parameterized version of a model, each of which has
identical parameter values except for the strain-specific parameter under consideration.
Lastly, we considered the “All different” (AD) scenario in which all parameters can take
on different values when training a model to the H1N1 or H5N1 data, resulting in an
H1N1- and an H5N1-specific parameterized version of the model in which all parameters
have different values. AD provides a benchmark of the equations’ ability to capture the
dynamics of each strain individually, whereas NSSD benchmarks the goodness of fit for
when each infection is considered to be mechanistically identical. All four models were
parameterized under each scenario using a basin hopping algorithm. AIC scores were used
to determine which model and scenario results in the best fit to the data.

Comparing the AIC results after training each model to the experimental data under
each scenario suggests that H5N1 and H1N1 viruses induce the production of interferon at
different rates. Figure 2 shows the energy (goodness of fit) and the AIC for all combinations
of model and scenario. Generally, all four models can attain similar goodness of fits to the
immunologic data. Model 4 tends to have the lowest AIC, a result of both low energy fits
and the fact that Model 4 has the fewest parameters. The lowest energy is achieved by all
four models under the AD scenario, which is expected, as this scenario has the highest
degree of freedom for fitting the models to the data. However, the lowest AIC values are
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not achieved under the AD scenario. The minimum AIC occurs in the OSSD scenario,
where the parameter representative of interferon production rate, rI,V, takes on H5N1-
and H1N1-specific values. All four models achieve their lowest AIC under this condition
(noted in Figure 2), with Model 4 achieving the lowest AIC overall. This suggests that virus-
induced interferon production is regulated in a strain-dependent manner, a proposition
that is independent of the model, and therefore, macrophage activity, employed. These
findings also suggest that Model 4 is the best model for regressing against the H5N1 and
H1N1 immunologic data.

Figure 2. Energy versus AIC values for all four model structures under different parameterization
scenarios (All Different (AD), One Strain-Specific Difference (OSSD), and No Strain-Specific Difference
(NSSD)). The Model 4 OSSD rI,V scenario yields the global minima.

3.2. Strain-Specific Interferon Production Is Not an Artifact of Parameter Sensitivity

A challenge associated with this type of in silico screen is to determine if the screening
methods have merely identified the most sensitive model parameter as the best parameter
to take on different values and provide the best fit to the data. We next investigated the
parametric sensitivity of the candidate models to determine if rI,V was the most sensitive
model parameter. We conducted a sensitivity analysis of all the models to each of their
constituent parameters using the eFAST algorithm [53,54]. The sensitivity of each state is
reported in the form of fractional variance that can be explained by the variance of a single
parameter, p. These indices are shown in Figure 3.
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Figure 3. First-order indices of the eFAST sensitivity analysis for each model as described in Figure 1A.
Indices are reported as the normalized change for each model state, for each parameter.

Parametric sensitivity analysis for each model shows that the most sensitive parame-
ters differ across the candidate models. In Model 1, the concentration of interferon (I) and
number of lung macrophages (M) are most sensitive to macrophage-associated parameters
(rM,I and rI,M), whereas the concentration of virus (V) is primarily dependent on the rate
of interferon induction by the virus, rI,V. This trend holds for Models 2 and 3. In Model
4, the concentration of interferon (I) and the macrophage count (M) are most sensitive to
the rate of interferon induction by the virus, rI,V, whereas the concentration of virus (V) is
most sensitive to rV,V. This establishes that the four model structures have unique control
schemes, i.e., the most sensitive parameters differ between the different models. This also
demonstrates that the minimum AIC values of rI,V OSSD models during the in silico screen
were not simply the result of rI,V being the most sensitive parameter. Thus, the remainder
of this work comprises further analyses using Model 4 to understand the parameter space
associated with the model fitting to H5N1- and H1N1-specific data.

3.3. Deep Exploration of Model 4’s Parameter Space Using PT MCMC

Preliminary in silico screens and sensitivity analyses establish that Model 4 provides
the best fit to the immunologic data when rI,V is allowed to take on H5N1- and H1N1-
specific values. However, further exploration of the parameter space using Parallel Temper-
ing Markov Chain Monte Carlo (PT MCMC) parameterization was needed to determine
the breadth of the parameter space that supported Model 4’s best fit to H5N1 and H1N1
data. Using PT MCMC, we re-evaluated all of the scenarios described in Figure 1B for
Model 4. For each MCMC optimization, 2 million iterations were run.

Figure 4 shows the fits of Model 4 under the “all different” (AD) and “no strain-specific
differences” (NSSD) scenarios plotted against the H5N1 and H1N1 in vivo mouse data.
Standard deviation intervals of the top 1000 solutions (i.e., the 1000 lowest energy parameter
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sets that were identified) are narrow for the model’s fits under both the AD (black) and
NSSD (blue) scenarios, indicating a range of possible model trajectories with similar energy.
The resultant trajectory for the NSSD scenario is the average of the two strains’ datasets
and, expectedly, fits neither strain. The AD scenario fits reproduce the observed dynamics
for each strain very well, showing that the Model 4 equations are capable of producing
known in vivo behavior, and strain-specific parameterizations can improve model energy
at the cost of higher degrees of freedom.
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3.4. MCMC-Based Parameter Exploration Again Finds That H5N1 and H1N1 Viruses Induce
Interferon Production at Different Rates In Vivo

We next considered Model 4’s goodness of fit to the H5N1 and H1N1 data under the
OSSD scenario. The energy and AIC for all scenarios tested are reported in Table 1. For
completeness, we show the time course trajectories of the best fit achieved for Model 4 under
all OSSD scenarios in Figure 5. Energy per iteration for both AD and NSSD scenarios are
shown in Supplemental Figure S3, whereas best-fit parameter values and units are provided
in Appendix A. The lowest AIC is achieved when the rate of virus induction of interferon,
rI,V, is allowed to have strain-specific values. Minimum energy values fall between 9 and 13
except in the case where the rate of interferon production, rI,V, is independently estimated,
which yields a minimum energy of 6.65. Though this is closest to the minimum AD energy
for Model 4 (3.33), AIC calculations reveal that the resulting value of 35.30 for rI,V is not
only lower than the results of the other nine OSSD parameterizations of Model 4, but is
lower than that of the high degree of freedom AD results. Overall, using MCMC instead
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of basin-hopping for data fitting did not lead to a different conclusion with regards to the
optimal solution occurring when rI,V is independently estimated for H5N1 and H1N1.

Table 1. The minimum energy, degrees of freedom (DoF), and AIC values achieved by Model 4
for each scenario. The independent parameter column identifies the parameter allowed to take on
different values while training two copies of the model to the H5N1 and H1N1 data.

Scenario Independent Parameter Energy DoF AIC

NSSD None 15.04 10 50.08

AD All 3.33 20 46.66

OSSD

rV,I 10.83 11 43.66

rV,V 9.37 11 40.74

KV,V 9.79 11 41.59

dV 9.65 11 41.31

rI,V 6.65 11 35.30

dI 10.3 11 42.61

rM,I 12.36 11 46.73

kM,I 12.29 11 46.57

n 12.28 11 46.57

dM 12.37 11 46.75

Figure 5. Model 4 output for the minimum energy parameter set (lines) for OSSD parameterizations
and corresponding training data (markers) for H1N1 (top row) and H5N1 (bottom row). Data from
Shoemaker et al. [1] are shown with the standard deviation associated with triplicate data points per
time point.
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In total, the model fits in Figure 5 capture some trends of the in vivo data, falling
short in the inability to capture V after day 1 and late infection behavior for all three
states. However, the rI,V OSSD scenario shows a distinct improvement in fit over the NSSD
results. When each parameter is allowed to differ between strains, histograms can inform
whether the strains’ parameter distributions are unique. Focusing on the rI,V OSSD scenario
histograms, a comparison of the resultant top 1000 parameter distributions across strains
yields a significant difference between distribution means (Mann–Whitney test p < 0.001 for
rI,V between H1N1 (blue) and H5N1 (red), Figure 6), indicating that the strains have unique
values for this parameter. All other parameter distributions for OSSD models overlap
significantly (Supplemental Figure S4), except for dI. Combined with the AIC results in
Table 1, these results highlight that rI,V OSSD achieves the most statistically defensible fit to
the datasets.

Figure 6. Posterior density distributions for all parameters for Model 4, with rI,V varying between
strains. Only rI,V can have strain-specific values. All other parameters have the same value when
fitting the model to H5N1 and H1N1 data. The x axis is given in log10 Parameter Value. Distributions
result from the 1000 lowest energy solutions identified using PT MCMC. Narrow posterior distribu-
tions indicate that the parameter had a small range of values under which the model optimally fit the
data, whereas broad distributions indicate that a range of values would yield fits of the same energy.

3.5. Independent Estimation of Virus Parameters per Strain Does Not Improve Model AIC

Because it would be computationally intractable to fit all possible combinations of
parameter values, this study focused largely on observing the effect that differences in
single parameters while training to two infection datasets have on model quality. However,
we hypothesized that disparate immune dynamics between viral strains may be related
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to all virus-based rates, such as growth rate, rV,V, or death rate, dV. To test this, Model 4
was parameterized such that the viral state parameters, rV,V, KV,V, rV,I, and dV (denoted
{V}), could take on different values when training to the H5N1 and H1N1 data, while all
other parameters remained shared between strains. Six additional “Virus-Host” param-
eterizations were performed with the addition of one of the non-viral state parameters,
{V} +OSSD (DoF: 15).

The model solutions for each parameterization are found in Figure 7. Qualitatively,
the resulting fits are more indicative of the expected dynamic trends, including during
late infection. Model fits follow similar trends to Figures 4 and 5, with {V} + rI,V achiev-
ing the best fit to data. Corresponding minimum energy and AIC values are found in
Table 2. A comparison of the top 1000 parameter distributions per strain yields significant
differences between distribution means, except for rV,I in {V} + KM,I (Mann–Whitney test
p < 0.001 for all independently estimated parameters). This indicates that virus-related
kinetic parameters likely vary between strains. Minimum energies associated with the
{V} + OSSD parameterizations are lower than that of {V} alone, with a minimum energy of
5.55, associated with the independent fitting of {V} + rI,V. Compared to the AD and NSSD
scenarios, {V} + rI,V results in a lower AIC value, reiterating the role of interferon produc-
tion rate in strain-specific infection dynamics. Although strain-specific viral parameters
are demonstrably present in the datasets, {V} + rI,V has a higher AIC than the rI,V OSSD
scenario. This attributes great importance to strain-dependent interferon production rate
over simple strain-dependent viral kinetics and implies that increased degrees of freedom
are detrimental to model quality. Investigations with higher degrees of freedom were not
performed due to the computational time required for each MCMC fit to run 2 million
samples per study.

Figure 7. Model 4 output for minimum energy parameter set (line) for virus-related parameter inde-
pendent ({V}) and corresponding training data (markers) for H1N1 (top row) and H5N1 (bottom row).
{V} is representative of four viral parameters: rV,V, KV,V, rV,I,, and dV. Data from Shoemaker et al. [1]
are shown with the standard deviation associated with triplicate data points per time point.
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Table 2. The minimum energy, degrees of freedom (DoF), and AIC values for all seven viral subset
({V}) studies. {V} is representative of four viral parameters: rV,V, KV,V, rV,I and dV. Model scenarios
are given in Figure 1. Independent parameter identifies the parameters allowed to take on different
values when training to the H5N1 and H1N1 data.

Scenario Independent Parameter Energy DoF AIC

{V} {V} 9.34 14 46.68

{V} + OSSD

{V}+ rI,V 5.55 15 41.11

{V}+ dI 8.38 15 46.75

{V}+ rM,I 8.86 15 47.72

{V}+ KM,I 8.89 15 47.79

{V}+ n 8.92 15 47.85

{V}+ dM 8.89 15 47.78

4. Discussion

In this work, four distinct, three-state ODE models of the early innate immune re-
sponse to influenza virus were used to investigate the mechanistic roots of differential
immunoregulatory behavior observed in vivo between low- and high-pathogenic H1N1
and H5N1 strains. Several mechanisms have been hypothesized to explain differential
immunoregulation between low- and high-pathology infections. Three specific mecha-
nisms are that high-pathogenic viruses may simply replicate more quickly, high-pathogenic
viruses may differently interact with antiviral signaling pathways (i.e., interferon signaling),
or high-pathogenic viruses may infect and/or alter the behavior of macrophages (see intro-
duction for further details). Prior modeling efforts implicated the infection of macrophages
as a driving factor for strain-dependent pathogenicity [18]; however, the study did not
consider alternative mechanisms, and further exploration was needed [46,47]. The in silico
screen used here is an unbiased approach that allows several candidate mechanisms to
compete, with the most likely candidate mechanism being selected based on the model’s
goodness of fit to H5N1 and H1N1 training data. The infection data originate from identical
lineage-, age-, and gender-matched murine subjects, minimizing inter-individual variabil-
ity, and increasing the likelihood that differences observed between infections are due to
strain-specific immunoregulation or virus replication.

Of the three hypotheses for why H5N1 viruses induce distinct immune responses,
the primary finding from the in silico screen (Figure 2) is that the rate of interferon pro-
duction by infected lung cells is likely different in H1N1- and H5N1-infected animals.
The lowest AIC was achieved when the interferon-associated parameter, rI,V, was allowed
to take on different values while training to each infection cohort—regardless of the model
employed. The robustness of this finding is further supported by the wide distribution of
parameter values which optimally fit the data, quantified by the MCMC analysis, and by
the results of the sensitivity analysis. One concern about our in silico screening approach,
and indeed in model-based analysis in general, is that the most sensitive parameters are
often identified as the most important for maintaining phenotypes, as they are the easiest
to use for tuning system dynamics. Across the four models considered here, the top pa-
rameters to which the model outputs are sensitive differed (Figure 3). Nonetheless, rI,V
was identified as the most likely candidate across all four models. Finally, in Figure 5,
MCMC analysis showed that the best fit for the scenario with strain-specific rI,V values
could be achieved for a wide range of parameter values. It was found that the rate of
interferon production, rI,V, is approximately 2–3 times faster in H5N1-infected lung cells.
Additional analyses were performed to consider strain-specific virus replication rates
combined with strain-specific immune rates (Table 2; Figure 7). Our work demonstrates
that strain-dependent differences arise from host–virus interactions and immunological
reactions, rather than strain-specific viral replication behavior.



Viruses 2022, 14, 906 14 of 17

It is important to note that although the in silico screen identifies strain-specific inter-
feron production as the key mechanism for differential immunodynamics, this does not
fully negate the possibility of other mechanisms. Each of the three mechanisms discussed
are supported by some studies and contradicted by others. For example, with regards to
macrophages, studies have shown that macrophages are susceptible to high-pathogenic
viruses [56], and H5N1 viruses can replicate in human macrophages cultured from mono-
cytes [57]. However, it has also been shown that macrophages collected from human donors
can be infected by H5N1 viruses, but do not produce virus nor inflammatory cytokines [12].
With regards to strain-specific regulation of interferon, there is evidence that H5N1 viruses
may upregulate interferon production early in infected cells in vitro [58]. Our in silico
screen considers several possible mechanisms for why H5N1 and H1N1 immunodynam-
ics may differ, and though we conclude that strain-specific interferon production is the
most likely mechanism, we only considered two or more possible mechanisms occurring
simultaneously. Given the complexity of the immune system, future efforts will focus on
considering more complex candidate mechanisms.

The caveats of this study primarily relate to the available data and parameter iden-
tifiability. Insufficient macrophage count data were available, and the concentration of
MCP1 was used as a surrogate measurement. Although data were available to assess the
accuracy of using MCP1 as a surrogate, there remains the possibility that macrophage
counts differed from our estimates. With regards to parameter identifiability, in highly
connected systems, such as Model 1, it is often difficult to reasonably estimate values for all
parameters. This can be improved in future work by incorporating data from knockout
mice studies wherein feedback in immune signaling can be removed. The shared parameter
optimization framework is highly generalizable to other cohorts of data, including age-,
race-, and sex-specific studies, making it a highly valuable tool for investigating disparate
kinetics between groups of interest and the drivers of observed clinical behavior [59,60].
Additionally, conclusions from cohort-specific studies may prove useful for informing and
simplifying future modeling work with additional cohorts.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/v14050906/s1, Figure S1: Macrophage and MCP1 correlation;
Figure S2: Models 2 and 3 predictions; Figure S3: AD and NSSD model 4 energy plots; Figure S4: AD,
NSSD, and OSSD model 4 parameter posterior density distributions.
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Appendix A

Table A1. AD Minimum energy parameter values and units for each strain in Model 4.

Parameter H1N1 H5N1 Unit

rV,V 1.22 1.21 days−1

KV,V 3.65 × 101 7.80 × 102 log10(PFU/mg)

rV,I 1.20 × 10−1 1.07 × 10−1 days−1

dV 1.61 × 10−1 1.10 × 10−5 days−1

rI,V 7.70 × 10−1 3.06 [log10(PFU/mg) hours]−1

dI 9.59 × 10−1 3.22 days−1

rM,I 2.16 × 107 9.71 × 103 Macrophage Cell Count
days

KM,I 1.90 × 105 1.04 × 109 unitless

dM 8.80 × 103 6.18 × 10−1 days−1

n 5.47 9.98 unitless

rV,M N/A [Macrophage Cell Count days]−1

rI,M N/A [Macrophage Cell Count days]−1

References
1. Shoemaker, J.E.; Fukuyama, S.; Eisfeld, A.J.; Zhao, D.; Kawakami, E.; Sakabe, S.; Maemura, T.; Gorai, T.; Katsura, H.;

Muramoto, Y.; et al. An Ultrasensitive Mechanism Regulates Influenza Virus-Induced Inflammation. PLoS Pathog. 2015,
11, e1004856. [CrossRef]

2. 2016–2017 Estimated Influenza Illnesses, Medical Visits, Hospitalizations, and Deaths Averted by Vaccination in the
United States|CDC. Available online: https://www.cdc.gov/flu/vaccines-work/burden-averted-2016-17.htm (accessed on
2 March 2022).

3. Kawaoka, Y. H5N1: Flu Transmission Work Is Urgent. Nature 2012, 482, 155. [CrossRef]
4. CDC Highly Pathogenic Asian Avian Influenza A(H5N1) in People|Avian Influenza (Flu). Available online: https://www.cdc.

gov/flu/avianflu/avian-in-humans.htm (accessed on 2 March 2022).
5. Guarner, J.; Falcón-Escobedo, R. Comparison of the Pathology Caused by H1N1, H5N1, and H3N2 Influenza Viruses. Arch. Med.

Res. 2009, 40, 655–661. [CrossRef] [PubMed]
6. Boon, A.C.M.; Finkelstein, D.; Zheng, M.; Liao, G.; Allard, J.; Klumpp, K.; Webster, R.; Peltz, G.; Webby, R.J. H5N1 Influenza Virus

Pathogenesis in Genetically Diverse Mice Is Mediated at the Level of Viral Load. mBio 2011, 2, e00171-11. [CrossRef]
7. Hale, B.G.; Randall, R.E.; Ortin, J.; Jackson, D. The Multifunctional NS1 Protein of Influenza A Viruses. J. Gen. Virol. 2008, 89,

2359–2376. [CrossRef] [PubMed]
8. Sun, L.; Liu, S.; Chen, Z.J. SnapShot: Pathways of Antiviral Innate Immunity. Cell 2010, 140, 436–436.e2. [CrossRef] [PubMed]
9. Li, W.; Wang, G.; Zhang, H.; Xin, G.; Zhang, D.; Zeng, J.; Chen, X.; Xu, Y.; Cui, Y.; Li, K. Effects of NS1 Variants of H5N1 Influenza

Virus on Interferon Induction, TNFα Response and P53 Activity. Cell. Mol. Immunol. 2010, 7, 235–242. [CrossRef]
10. Mok, B.W.-Y.; Liu, H.; Chen, P.; Liu, S.; Lau, S.-Y.; Huang, X.; Liu, Y.-C.; Wang, P.; Yuen, K.-Y.; Chen, H. The Role of Nuclear NS1

Protein in Highly Pathogenic H5N1 Influenza Viruses. Microbes Infect. 2017, 19, 587–596. [CrossRef]
11. Cheung, C.Y.; Poon, L.L.M.; Lau, A.S.; Luk, W.; Lau, Y.L.; Shortridge, K.F.; Gordon, S.; Guan, Y.; Peiris, J.S.M. Induction of

Proinflammatory Cytokines in Human Macrophages by Influenza A (H5N1) Viruses: A Mechanism for the Unusual Severity of
Human Disease? Lancet 2002, 360, 1831–1837. [CrossRef]

12. van Riel, D.; Leijten, L.M.E.; van der Eerden, M.; Hoogsteden, H.C.; Boven, L.A.; Lambrecht, B.N.; Osterhaus, A.D.M.E.; Kuiken, T.
Highly Pathogenic Avian Influenza Virus H5N1 Infects Alveolar Macrophages without Virus Production or Excessive TNF-Alpha
Induction. PLoS Pathog. 2011, 7, e1002099. [CrossRef]

13. Mochan, E.; Ackerman, E.; Shoemaker, J. A Systems and Treatment Perspective of Models of Influenza Virus-Induced Host
Responses. Processes 2018, 6, 138. [CrossRef]

14. Smith, A.M. Validated Models of Immune Response to Virus Infection. Curr. Opin. Syst. Biol. 2018, 12, 46–52. [CrossRef]
[PubMed]

15. Pawelek, K.A.; Huynh, G.T.; Quinlivan, M.; Cullinane, A.; Rong, L.; Perelson, A.S. Modeling Within-Host Dynamics of Influenza
Virus Infection Including Immune Responses. PLoS Comput. Biol. 2012, 8, e1002588. [CrossRef]

16. Price, I.; Mochan-Keef, E.D.; Swigon, D.; Ermentrout, G.B.; Lukens, S.; Toapanta, F.R.; Ross, T.M.; Clermont, G. The Inflammatory
Response to Influenza A Virus (H1N1): An Experimental and Mathematical Study. J. Theor. Biol. 2015, 374, 83–93. [CrossRef]

http://doi.org/10.1371/journal.ppat.1004856
https://www.cdc.gov/flu/vaccines-work/burden-averted-2016-17.htm
http://doi.org/10.1038/nature10884
https://www.cdc.gov/flu/avianflu/avian-in-humans.htm
https://www.cdc.gov/flu/avianflu/avian-in-humans.htm
http://doi.org/10.1016/j.arcmed.2009.10.001
http://www.ncbi.nlm.nih.gov/pubmed/20304252
http://doi.org/10.1128/mBio.00171-11
http://doi.org/10.1099/vir.0.2008/004606-0
http://www.ncbi.nlm.nih.gov/pubmed/18796704
http://doi.org/10.1016/j.cell.2010.01.041
http://www.ncbi.nlm.nih.gov/pubmed/20144765
http://doi.org/10.1038/cmi.2010.6
http://doi.org/10.1016/j.micinf.2017.08.011
http://doi.org/10.1016/S0140-6736(02)11772-7
http://doi.org/10.1371/journal.ppat.1002099
http://doi.org/10.3390/pr6090138
http://doi.org/10.1016/j.coisb.2018.10.005
http://www.ncbi.nlm.nih.gov/pubmed/31723715
http://doi.org/10.1371/journal.pcbi.1002588
http://doi.org/10.1016/j.jtbi.2015.03.017


Viruses 2022, 14, 906 16 of 17

17. Gregg, R.W.; Sarkar, S.N.; Shoemaker, J.E. Mathematical Modeling of the CGAS Pathway Reveals Robustness of DNA Sensing to
TREX1 Feedback. J. Theor. Biol. 2019, 462, 148–157. [CrossRef] [PubMed]

18. Pawelek, K.A.; Dor, D.; Salmeron, C.; Handel, A. Within-Host Models of High and Low Pathogenic Influenza Virus Infections:
The Role of Macrophages. PLoS ONE 2016, 11, e0150568. [CrossRef]

19. Weaver, J.J.A.; Shoemaker, J.E. Mathematical Modeling of Rna Virus Sensing Pathways Reveals Paracrine Signaling as the Primary
Factor Regulating Excessive Cytokine Production. Processes 2020, 8, 719. [CrossRef]

20. Smith, A.M.; Adler, F.R.; Ribeiro, R.M.; Gutenkunst, R.N.; McAuley, J.L.; McCullers, J.A.; Perelson, A.S. Kinetics of Coinfection
with Influenza A Virus and Streptococcus Pneumoniae. PLoS Pathog. 2013, 9, e1003238. [CrossRef]

21. Gregg, R.W.; Shabnam, F.; Shoemaker, J.E. Agent-Based Modeling Reveals Benefits of Heterogeneous and Stochastic Cell
Populations during CGAS-Mediated IFNβ Production. Bioinformatics 2021, 37, 1428–1434. [CrossRef]

22. Aponte-Serrano, J.O.; Weaver, J.J.A.; Sego, T.J.; Glazier, J.A.; Shoemaker, J.E. Multicellular Spatial Model of RNA Virus Replication
and Interferon Responses Reveals Factors Controlling Plaque Growth Dynamics. PLoS Comput. Biol. 2021, 17, e1008874. [CrossRef]

23. Hernandez-Vargas, E.A.; Wilk, E.; Canini, L.; Toapanta, F.R.; Binder, S.C.; Uvarovskii, A.; Ross, T.M.; Guzman, C.A.; Perelson, A.S.;
Meyer-Hermann, M. Effects of Aging on Influenza Virus Infection Dynamics. J. Virol. 2014, 88, 4123–4131. [CrossRef] [PubMed]

24. Peiris, J.S.M.; Cheung, C.Y.; Leung, C.Y.H.; Nicholls, J.M. Innate Immune Responses to Influenza A H5N1: Friend or Foe? Trends
Immunol. 2009, 30, 574–584. [CrossRef] [PubMed]

25. Shinya, K.; Ito, M.; Makino, A.; Tanaka, M.; Miyake, K.; Eisfeld, A.J.; Kawaoka, Y. The TLR4-TRIF Pathway Protects against H5N1
Influenza Virus Infection. J. Virol. 2012, 86, 19–24. [CrossRef] [PubMed]

26. Neumann, G.; Chen, H.; Gao, G.F.; Shu, Y.; Kawaoka, Y. H5N1 Influenza Viruses: Outbreaks and Biological Properties. Cell Res.
2010, 20, 51–61. [CrossRef]

27. Shinya, K.; Gao, Y.; Cilloniz, C.; Suzuki, Y.; Fujie, M.; Deng, G.; Zhu, Q.; Fan, S.; Makino, A.; Muramoto, Y.; et al. Integrated
Clinical, Pathologic, Virologic, and Transcriptomic Analysis of H5N1 Influenza Virus-Induced Viral Pneumonia in the Rhesus
Macaque. J. Virol. 2012, 86, 6055–6066. [CrossRef]

28. Muramoto, Y.; Shoemaker, J.E.; Mai, L.T.Q.; Itoh, Y.; Tamura, D.; Sakai-Tagawa, Y.; Imai, H.; Uraki, R.; Takano, R.;
Kawakami, E.; et al. Disease Severity Is Associated with Differential Gene Expression at the Early and Late Phases of Infection in
Non-Human Primates Infected with Different H5N1 Highly Pathogenic Avian Influenza Viruses. J. Virol. 2014, 88, 8981–8997.
[CrossRef]

29. Kobasa, D.; Jones, S.M.; Shinya, K.; Kash, J.C.; Copps, J.; Ebihara, H.; Hatta, Y.; Kim, J.H.; Halfmann, P.; Hatta, M.; et al. Aberrant
Innate Immune Response in Lethal Infection of Macaques with the 1918 Influenza Virus. Nature 2007, 445, 319–323. [CrossRef]

30. Diamond, G.; Legarda, D.; Ryan, L.K. The Innate Immune Response of the Respiratory Epithelium. Immunol. Rev. 2000, 173, 27–38.
[CrossRef]

31. Koyama, S.; Ishii, K.J.; Coban, C.; Akira, S. Innate Immune Response to Viral Infection. Cytokine 2008, 43, 336–341. [CrossRef]
32. Petes, C.; Odoardi, N.; Gee, K. The Toll for Trafficking: Toll-like Receptor 7 Delivery to the Endosome. Front. Immunol. 2017, 8, 1.

[CrossRef]
33. Rehwinkel, J.; Gack, M.U. RIG-I-like Receptors: Their Regulation and Roles in RNA Sensing. Nat. Rev. Immunol. 2020, 20, 537–551.

[CrossRef] [PubMed]
34. Liu, T.; Zhang, L.; Joo, D.; Sun, S.C. NF-KB Signaling in Inflammation. Signal Transduct. Target. Ther. 2017, 2, e17023. [CrossRef]

[PubMed]
35. Rajsbaum, R.; Albrecht, R.A.; Wang, M.K.; Maharaj, N.P.; Versteeg, G.A.; Nistal-Villán, E.; García-Sastre, A.; Gack, M.U. Species-

Specific Inhibition of RIG-I Ubiquitination and IFN Induction by the Influenza A Virus NS1 Protein. PLoS Pathog. 2012, 8, e1003059.
[CrossRef] [PubMed]

36. Gack, M.U.; Albrecht, R.A.; Urano, T.; Inn, K.S.; Huang, I.C.; Carnero, E.; Farzan, M.; Inoue, S.; Jung, J.U.; García-Sastre, A.
Influenza A Virus NS1 Targets the Ubiquitin Ligase TRIM25 to Evade Recognition by the Host Viral RNA Sensor RIG-I. Cell Host
Microbe 2009, 5, 439–449. [CrossRef]

37. Koyama, S.; Ishii, K.J.; Kumar, H.; Tanimoto, T.; Coban, C.; Uematsu, S.; Kawai, T.; Akira, S. Differential Role of TLR- and
RLR-Signaling in the Immune Responses to Influenza A Virus Infection and Vaccination. J. Immunol. 2007, 179, 4711–4720.
[CrossRef]

38. Zeng, H.; Goldsmith, C.; Thawatsupha, P.; Chittaganpitch, M.; Waicharoen, S.; Zaki, S.; Tumpey, T.M.; Katz, J.M. Highly
Pathogenic Avian Influenza H5N1 Viruses Elicit an Attenuated Type I Interferon Response in Polarized Human Bronchial
Epithelial Cells. J. Virol. 2007, 81, 12439–12449. [CrossRef]

39. Channappanavar, R.; Fehr, A.R.; Zheng, J.; Wohlford-Lenane, C.; Abrahante, J.E.; Mack, M.; Sompallae, R.; McCray, P.B.;
Meyerholz, D.K.; Perlman, S. IFN-I Response Timing Relative to Virus Replication Determines MERS Coronavirus Infection
Outcomes. J. Clin. Investig. 2019, 129, 3625–3639. [CrossRef]

40. Galani, I.E.; Rovina, N.; Lampropoulou, V.; Triantafyllia, V.; Manioudaki, M.; Pavlos, E.; Koukaki, E.; Fragkou, P.C.; Panou, V.;
Rapti, V.; et al. Untuned Antiviral Immunity in COVID-19 Revealed by Temporal Type I/III Interferon Patterns and Flu
Comparison. Nat. Immunol. 2021, 22, 32–40. [CrossRef]

41. Lee, J.; Adler, F.R.; Kim, P.S. A Mathematical Model for the Macrophage Response to Respiratory Viral Infection in Normal and
Asthmatic Conditions. Bull. Math. Biol. 2017, 79, 1979–1998. [CrossRef]

http://doi.org/10.1016/j.jtbi.2018.11.001
http://www.ncbi.nlm.nih.gov/pubmed/30395807
http://doi.org/10.1371/journal.pone.0150568
http://doi.org/10.3390/pr8060719
http://doi.org/10.1371/journal.ppat.1003238
http://doi.org/10.1093/bioinformatics/btaa969
http://doi.org/10.1371/journal.pcbi.1008874
http://doi.org/10.1128/JVI.03644-13
http://www.ncbi.nlm.nih.gov/pubmed/24478442
http://doi.org/10.1016/j.it.2009.09.004
http://www.ncbi.nlm.nih.gov/pubmed/19864182
http://doi.org/10.1128/JVI.06168-11
http://www.ncbi.nlm.nih.gov/pubmed/22031950
http://doi.org/10.1038/cr.2009.124
http://doi.org/10.1128/JVI.00365-12
http://doi.org/10.1128/JVI.00907-14
http://doi.org/10.1038/nature05495
http://doi.org/10.1034/j.1600-065X.2000.917304.x
http://doi.org/10.1016/j.cyto.2008.07.009
http://doi.org/10.3389/fimmu.2017.01075
http://doi.org/10.1038/s41577-020-0288-3
http://www.ncbi.nlm.nih.gov/pubmed/32203325
http://doi.org/10.1038/sigtrans.2017.23
http://www.ncbi.nlm.nih.gov/pubmed/29158945
http://doi.org/10.1371/journal.ppat.1003059
http://www.ncbi.nlm.nih.gov/pubmed/23209422
http://doi.org/10.1016/j.chom.2009.04.006
http://doi.org/10.4049/jimmunol.179.7.4711
http://doi.org/10.1128/JVI.01134-07
http://doi.org/10.1172/JCI126363
http://doi.org/10.1038/s41590-020-00840-x
http://doi.org/10.1007/s11538-017-0315-0


Viruses 2022, 14, 906 17 of 17

42. Kumagai, Y.; Takeuchi, O.; Kato, H.; Kumar, H.; Matsui, K.; Morii, E.; Aozasa, K.; Kawai, T.; Akira, S. Alveolar Macrophages Are
the Primary Interferon-Alpha Producer in Pulmonary Infection with RNA Viruses. Immunity 2007, 27, 240–252. [CrossRef]

43. Weiss, J.N. The Hill Equation Revisited: Uses and Misuses. FASEB J. 1997, 11, 835–841. [CrossRef] [PubMed]
44. Waldrop, S.L.; Davis, K.A.; Maino, V.C.; Picker, L.J. Normal Human CD4+ Memory T Cells Display Broad Heterogeneity in Their

Activation Threshold for Cytokine Synthesis. J. Immunol. 1998, 161, 5284–5295. [PubMed]
45. Itoh, Y.; Germain, R.N. Single Cell Analysis Reveals Regulated Hierarchical T Cell Antigen Receptor Signaling Thresholds and

Intraclonal Heterogeneity for Individual Cytokine Responses of CD4+ T Cells. J. Exp. Med. 1997, 186, 757–766. [CrossRef]
[PubMed]

46. Dawson, T.C.; Beck, M.A.; Kuziel, W.A.; Henderson, F.; Maeda, N. Contrasting Effects of CCR5 and CCR2 Deficiency in the
Pulmonary Inflammatory Response to Influenza A Virus. Am. J. Pathol. 2000, 156, 1951–1959. [CrossRef]

47. Lin, K.L.; Suzuki, Y.; Nakano, H.; Ramsburg, E.; Gunn, M.D. CCR2 + Monocyte-Derived Dendritic Cells and Exudate Macrophages
Produce Influenza-Induced Pulmonary Immune Pathology and Mortality. J. Immunol. 2008, 180, 2562–2572. [CrossRef]

48. Wales, D.J.; Doye, J.P.K. Global Optimization by Basin-Hopping and the Lowest Energy Structures of Lennard-Jones Clusters
Containing up to 110 Atoms. J. Phys. Chem. A 1997, 101, 5111–5116. [CrossRef]

49. Virtanen, P.; Gommers, R.; Oliphant, T.E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.;
Bright, J.; et al. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nat. Methods 2020, 17, 261–272. [CrossRef]

50. Geyer, C.J. Markov Chain Monte Carlo Maximum Likelihood, Computing Science and Statistics. In Proceedings of the 23rd
Symposium Interface, Seattle, DC, USA, 21–24 April 1991; pp. 156–163.

51. Metropolis, N.; Rosenbluth, A.W.; Rosenbluth, M.N.; Teller, A.H.; Teller, E. Equation of State Calculations by Fast Computing
Machines. J. Chem. Phys. 1953, 21, 1087–1092. [CrossRef]

52. Akaike, H. A New Look at the Statistical Model Identification. IEEE Trans. Autom. Control. 1974, 19, 716–723. [CrossRef]
53. Saltelli, A.; Bolado, B. An Alternative Way to Compute Fourier Amplitude Sensitivity Test (FAST); Elsevier: Amsterdam, The

Netherlands, 1998.
54. Marino, S.; Hogue, I.B.; Ray, C.J.; Kirschner, D.E. A Methodology for Performing Global Uncertainty and Sensitivity Analysis in

Systems Biology. J. Theor. Biol. 2008, 254, 178–196. [CrossRef]
55. Herman, J.; Usher, W. SALib: An Open-Source Python Library for Sensitivity Analysis. J. Open Source Softw. 2017, 2, 97. [CrossRef]
56. Perrone, L.A.; Plowden, J.K.; García-Sastre, A.; Katz, J.M.; Tumpey, T.M. H5N1 and 1918 Pandemic Influenza Virus Infection

Results in Early and Excessive Infiltration of Macrophages and Neutrophils in the Lungs of Mice. PLoS Pathog. 2008, 4, e1000115.
[CrossRef] [PubMed]

57. Yu, W.C.L.; Chan, R.W.Y.; Wang, J.; Travanty, E.A.; Nicholls, J.M.; Peiris, J.S.M.; Mason, R.J.; Chan, M.C.W. Viral Replication and
Innate Host Responses in Primary Human Alveolar Epithelial Cells and Alveolar Macrophages Infected with Influenza H5N1
and H1N1 Viruses. J. Virol. 2011, 85, 6844. [CrossRef]

58. Mi, Z.; Ma, Y.; Tong, Y. Avian Influenza Virus H5N1 Induces Rapid Interferon-Beta Production but Shows More Potent Inhibition
to Retinoic Acid-Inducible Gene i Expression than H1N1 in Vitro. Virol. J. 2012, 9, 145. [CrossRef] [PubMed]

59. Cate, T.R. Clinical Manifestations and Consequences of Influenza. Am. J. Med. 1987, 82, 15–19. [CrossRef]
60. Cromer, D.; van Hoek, A.J.; Jit, M.; Edmunds, W.J.; Fleming, D.; Miller, E. The Burden of Influenza in England by Age and Clinical

Risk Group: A Statistical Analysis to Inform Vaccine Policy. J. Infect. 2014, 68, 363–371. [CrossRef]

http://doi.org/10.1016/j.immuni.2007.07.013
http://doi.org/10.1096/fasebj.11.11.9285481
http://www.ncbi.nlm.nih.gov/pubmed/9285481
http://www.ncbi.nlm.nih.gov/pubmed/9820501
http://doi.org/10.1084/jem.186.5.757
http://www.ncbi.nlm.nih.gov/pubmed/9271591
http://doi.org/10.1016/S0002-9440(10)65068-7
http://doi.org/10.4049/jimmunol.180.4.2562
http://doi.org/10.1021/jp970984n
http://doi.org/10.1038/s41592-019-0686-2
http://doi.org/10.1063/1.1699114
http://doi.org/10.1109/TAC.1974.1100705
http://doi.org/10.1016/j.jtbi.2008.04.011
http://doi.org/10.21105/joss.00097
http://doi.org/10.1371/journal.ppat.1000115
http://www.ncbi.nlm.nih.gov/pubmed/18670648
http://doi.org/10.1128/JVI.02200-10
http://doi.org/10.1186/1743-422X-9-145
http://www.ncbi.nlm.nih.gov/pubmed/22862800
http://doi.org/10.1016/0002-9343(87)90555-9
http://doi.org/10.1016/j.jinf.2013.11.013

	Introduction 
	Materials and Methods 
	Model Development Rationale and Equations 
	Experimental Data Collected from Literature and Relating the Data to the Model 
	Parameter Training 
	Model and Scenario Prioritization 
	Sensitivity Analysis 

	Results 
	In Silico Screenings of Candidate Innate Immune Models Find That H5N1 and H1N1 Viruses Induce Interferon Production at Different Rates In Vivo 
	Strain-Specific Interferon Production Is Not an Artifact of Parameter Sensitivity 
	Deep Exploration of Model 4’s Parameter Space Using PT MCMC 
	MCMC-Based Parameter Exploration Again Finds That H5N1 and H1N1 Viruses Induce Interferon Production at Different Rates In Vivo 
	Independent Estimation of Virus Parameters per Strain Does Not Improve Model AIC 

	Discussion 
	Appendix A
	References

