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Abstract

The interaction between phenotypic plasticity, e.g. learning, and evolution is an important

topic both in Evolutionary Biology and Machine Learning. The evolution of learning is com-

monly studied in Evolutionary Biology, while the use of an evolutionary process to improve

learning is of interest to the field of Machine Learning. This paper takes a different point of

view by studying the effect of learning on the evolutionary process, the so-called Baldwin

effect. A well-studied result in the literature about the Baldwin effect is that learning affects

the speed of convergence of the evolutionary process towards some genetic configuration,

which corresponds to the environment-induced plastic response. This paper demonstrates

that learning can change the outcome of evolution, i.e., lead to a genetic configuration that

does not correspond to the plastic response. Results are obtained both analytically and

experimentally by means of an agent-based model of a foraging task, in an environment

where the distribution of resources follows seasonal cycles and the foraging success on

different resource types is conditioned by trade-offs that can be evolved and learned. This

paper attempts to answer a question that has been overlooked: whether learning has an

effect on what genotypic traits are evolved, i.e. the selection of a trait that enables a plastic

response changes the selection pressure on a different trait, in what could be described as

co-evolution between different traits in the same genome.

1 Introduction

The so called Baldwin effect [1] is a much debated theory in the literature of evolution [2]

about how new features are inherited by an individual with phenotypic plasticity [3–5]. Bald-

win proposed this new “factor in evolution” [1] to explain how complex features such as an eye

can evolve [6–8], as an alternative to the then-popular Lamarckian evolution which assumed

that traits acquired by an individual through phenotypic plasticity would be transferred

directly to its offspring’s genome [9]. This idea went unnoticed until the late 1990s, when it

caught the interest of the fields of Psychology, in reference to the evolution of human learning,

and Computer Science, in reference to evolutionary computation, machine learning, and
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artificial life. Only from the mid-2000s did the Baldwin effect start taking ground in the field of

Evolutionary Biology. [10].

Given the long debate surrounding the Baldwin effect, there are different definitions of it

with different levels of generality, e.g. “The Baldwin Effect, states that learned behavior and

characteristics at the level of individuals can significantly affect evolution at the level of species”

[11], Schull relates the Baldwin effect to statements such as “individual developmental

responses will necessarily lead to directed and non-random evolutionary change” [12]. The

open peer commentaries of [12] highlight different conflicting stances regarding the Baldwin

effect and its definition. The working definition of the Baldwin effect used in this paper is: plas-

ticity is a “positive driving force of evolution” that affects the selection pressure such that

“standing genetic variation can be selected upon so that evolution can proceed in the direction

of the induced plastic response” [8]. According to this definition, the Baldwin effect describes

the evolution of a “target” genotypic trait that corresponds to the environment-induced plastic

response at the phenotypic level. In other words, the induced plastic response determines the

direction towards which the genotype evolves. This definition is especially relevant when con-

sidering biologically inspired optimization techniques [13].

A well-known example of the Baldwin effect is that learning, i.e. an instance of phenotypic

plasticity, affects the evolutionary process by either speeding up or slowing down the evolution

of the “target” genetic configuration.

This work demonstrates that this definition is too restrictive, as a genotypic trait is shown

to evolve that differs from the environment-induced plastic response. The term Baldwin veer-
ing effect is introduced to refer to this new finding and defined as follows: a change in the selec-

tion pressure of genetic variations, caused by phenotypic plasticity and induced plastic

responses, leads evolution in a different direction from that indicated by the induced plastic

response. In other words, the Baldwin veering effect happens when a trait evolves by effect of

plasticity that does not correspond to the environment-induced plastic response.

In order to demonstrate the existence of the Baldwin veering effect, the following two con-

ditions have to be verified:

• A trait evolves that differs from the induced plastic response, i.e. the genome and the pheno-

type converge towards different trait values.

• The evolution of such trait is caused by plasticity, i.e. the genome converges towards differ-

ent trait values in presence or absence of plasticity.

The effect of plasticity—we choose learning among many potential mechanisms, e.g.

polyphenism [14]—on evolution is studied both computationally by means of an agent-

based model of a foraging task, modeled after previous work [15, 16], and analytically by

means of a mathematical model [17]. Computational experiments and analytical results in a

cyclically-changing environment demonstrate the existence of both the Baldwin effect and

of the Baldwin veering effect. Specifically, it is found that in a quickly-changing cyclical envi-

ronment, learning agents evolve a generalist foraging strategy that allows them to adapt

quickly to changes in the resource distribution. A generalist configuration is never induced,

i.e. learned, at the phenotypic level. Analytical results confirm that plasticity changes the fit-

ness landscape in a way that makes a generalist configuration a global optimum in the space

of genotypes.

The novelty of this result is to expand the understanding of the effect of plasticity on evolu-

tion by demonstrating that plasticity can affect both the speed and the outcome of evolution.

A fundamental difference of this result from previous work [14, 18, 19] is that learning is not

only shown to change the phenotype but the genotype as well.
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The main contributions of this paper are to show that in a cyclically-changing environment:

(I) the well-known Baldwin effect is present, (II) the novel Baldwin veering effect is present,

(III) a mathematical model captures this new effect and confirms the experimental findings,

and (IV) the existence of this new effect depends only on the relation between the speed of

learning and the frequency of change in the environment.

2 Methods

The computational model follows the agent-based methodology [20] by studying the inter-

actions of a population of software agents, subject to an evolutionary process [21], that

perform a foraging task [15, 22], i.e. search the environment for food in a grid like environ-

ment. This model builds on the extensive research in the artificial life community, where

software agents have been provided with learning mechanisms [11, 23–26] in an evolution-

ary context. The time-step driven simulation model is based on previous work [27] and

favors simplicity over realism. Modeling realistic entities and ecosystems is outside the

scope of this work.

This section provides an overview of the essential components of the computational

model, the possible phenomenon occurring at every simulated abstract time-unit, and a

detailed description of the environment, agents, decision making, and evaluation metrics.

Subsection 2.1 describes the cyclically-changing environment, the resources to be foraged

and their seasonality. Subsection 2.2 describes the agent most relevant parameters (aptitude

and skill) and the trade-offs that these parameters cause during foraging, the relation

between foraging and energy levels, and how energy levels affect fitness, reproduction, and

death. Subsection 2.3 details the agent behavior (reactive and learning); additionally, it is

explained how reproduction affects the parameters related to the decision making process.

Finally, subsection 2.4 defines the measures used to evaluate the agents’ behavior. Table 1

contains an overview of the notation used throughout the description of the model. The

results presented in this paper are the outcome of 300 Monte Carlo type simulations for each

specific scenario.

2.1 Environment

The environment is modeled as a square grid of size m × m with continuous boundary condi-

tions in which agents can move. Every grid cell can contain one of the two resource types, i.e.

|R| = 2, whose proportions vary over time [28] such that in every “season” a specific resource is

more abundant than the other.

2.1.1 Food sources. The number of cells with resources, |Ft|, is constant at every point

in time: whenever one cell is emptied, a random quantity �
t
i;r of resources of the same type

spawns at a random location. New food sources are initialized to contain a random quantity of

food, driven by the parameter F that determines the abundance of food.

2.1.2 Seasons. The environment cycles periodically between two different configurations,

named seasons [14, 28], which determine what resources are available for agents to forage. For-

aging of different resource types is subject to trade-offs: the more an agent specializes in the

gathering and consumption of one resource, the less effectively it forages the other resource,

e.g. due to neophobia [29], a non-transferable skill set or other constraints, e.g. energy or

memory constraints. This trade-off is modeled by a single skill parameter that determines the

probability of success of foraging two resource types [30]. Environmental change is a known

requirement for the evolution of learning, and seasons offer enough predictability for learning

to be effective [31].
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2.2 Agents

The agents serve as an abstract model for simple biological entities, which require to find food

and forage in order to survive and reproduce. Agents are able to perceive their surroundings,

i.e., defined as their range one Moore neighborhood, in the grid-like environment; the percep-

tion vector is denoted as I . A range one Moore neighborhood in a two-dimensional square

grid is comprised of eight surrounding cells (horizontal (2), vertical (2) and two diagonals(4)).

Agent actions can either be a movement, that displaces them by one cell in the environ-

ment, or foraging, that consumes any available food in their current location. A foraging

action fails if the current cell does not contain any resource, or randomly with probability

1 � Pf ða; st
a; rÞ otherwise (for agent a with skill level s at time t for resource type r).

2.2.1 Aptitude and skill. The foraging strategy of an agent is determined by two parame-

ters: (i) aptitude, which defines the value encoded in the genome and inherited from the par-

ent, and (ii) skill, which defines the corresponding phenotypic expression and models the

trade-off of specialization in a specific resource type [30] by influencing the probability of suc-

cessful foraging.

Table 1. Summary of the mathematical notation used in order of appearance in the text. Notation used for indexes

has been slightly abused for the sake of brevity.

Math symbol Description

A ¼ fa0; :::; aNg The set of all N agents ever alive in the simulation

R = {r0, . . ., rM} The set of M resource types

Ft ¼ f�
t
i;r 2 Et : �

t
i;r > 0g Set of all cells containing resources

F The maximum quantity of resource that any cell can contain

�
t
i;r 2 N�0

The quantity of resources of type r in cell i at time t

Et ¼ f�
t
i;r : 1 � i � m�m; r 2 Rg The configuration of the environment at time t

T ¼ ft 2 N0;�Lg The time steps, t of the simulation

st
a 2 ½0; 1� : a 2 At The skill level of agent a at time t

At
¼ fa 2 A : a is alive at timestep tg The population at time t

f ða; tÞ : At
� T ! R The fitness function

� 2 R Energy level increased by successful foraging

gða; st
a; rÞ : At

� R�0;�1 � R! f0; 1g The foraging success function of agent a for resource type r

Bða; tÞ : At
� T ! O The decision function which determines the behavior of agent a at time t

O = {o1, . . ., on} The set of n possible actions

Pf ða; st
a; rÞ : At

� T � R! ½0; 1� The probability at time t of agent a to forage resources of type r

Prða; t; crÞ : At
� T ! ½0; 1� The probability of reproduction of agent a at time t, capped at cr

cr The normalization constant of reproduction

Pdða; t; cdÞ : At
� T ! ½0; 1� The probability of death of agent a at time t, capped at cd

dða; tÞ : At
� T ! N0;�L The age function, linearly increasing in time.

cd The normalization constant of death

I t
a ¼ fi 2 Et : i is visible to a } The perception vector of agent a at time t

Ht
a;r ¼

P
t�j2Ta;r

gða; sj
a; rÞ The foraging history of agent a and resource type r at time t

Ta,r = {t 2 T: a choses to eat r} The times at which agent a executes a foraging action on a resource of

type r
L 2 N>0 The simulation length

l 2 N>0 The length of seasons

Ht
a ¼

P
r2RHt

a;r The foraging history of agent a at time t

b : I ! Rn
The behavior function which assigns a value to every action

https://doi.org/10.1371/journal.pone.0219502.t001
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For this reason, the skill of an agent is a determinant factor for the energy intake, their abil-

ity to reproduce, and consequently the fitness of the agents. The aptitude remains constant

during the whole lifetime of an individual and changes only between generations via random

mutations during reproduction. The initial value of skill at birth is determined by the inherited

value of aptitude. If the skill parameter is plastic, i.e. adapts to the environment during the

agent’s lifetime, then the value of aptitude influences only indirectly the energy intake of learn-

ing agents.

2.2.2 Energy level. The energy level of an individual depends on three factors: (i) the

availability of resources in the environment at each given time, (ii) the individual skill which

determines the probability of successful foraging, and (iii) the individual behavior which deter-

mines what actions to execute for a given configuration of the environment.

More formally, the fitness function f(a, t) of an agent a 2 A at time t is defined as the total

energy intake:

f ða; tÞ ¼
X

t2T

�Ht
a ð1Þ

Where Ht
a is the foraging history and � is the energy level increase factor.

Fitness depends on the foraging success function g:

gða; st
a; rÞ ¼

1 with probability Pf ða; st
a; rÞ

0 otherwise

(

ð2Þ

2.2.3 Foraging, reproduction, death, and fitness. The experimental design introduces a

trade-off between the foraging success of different resource types, determined by the skill st
a:

agents can either become generalists, i.e. be able to forage both resources with a low probabil-

ity, or specialize, i.e. be able to forage one resource with a high probability and lose the ability

to forage the other.

Successful foraging increases the energy of an individual which determines the probability

of reproduction. As agents compete for the same limited resources, efficient foraging translates

to high reproduction rate.

The probabilities of foraging Pf, reproduction Pr and of death Pd are defined as:

Pf ða; st
aÞ ¼ ðs

t
aÞ

q

Prða; t; crÞ ¼ f ða; tÞ=cr if f ða; tÞ < cr else 1

Pdða; t; cdÞ ¼ dða; tÞ=cd if dða; tÞ < cr else 1

ð3Þ

With a linear relation between skill and probability of foraging success, i.e. q = 1, the aver-

age total intake of an agent is equivalent to the average resource distribution: a specialist agent

forages with certainty one type of resources but none of the other, while a generalist agent

forages each resource with 50% probability. Assuming a non-linear relation between skill

and foraging probability instead, i.e. q> 1, then a specialization leads to higher fitness than a

generalization.

The effects of these values can be found in the supplementary material, S3–S5 Figs.

The framework determines the reproduction and death events by means of a genetic opera-

tor called roulette wheel selection with stochastic acceptance (as in Torney et al. 2011 [32]),

according to which agents reproduce asexually with a probability Pr proportional to their fit-

ness and die with a probability Pd proportional to their age. Upon reproduction, the energy
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level � of the parent is split equally between the parent and the offspring and the offspring

inherits a randomly-mutated copy of the parent’s genetic configuration.

2.3 Agent behavior

An agent’s desired behavior Bða; tÞ ¼ arg maxo2OðbðI
t
aÞÞ associates the desired action to each

perception vector I , containing a representation of the surroundings that informs about the

location and presence of resources. This mapping between perception and action can be

achieved by different techniques, e.g. an artificial neural network. The success of the desired

action is determined by the skill value, which is defined as the phenotypic expression of the

aptitude genotype.

The aptitude and the mapping B(a, t) changes from one generation to the next due to ran-

dom mutations, and learning allows the inherited skill and the phenotypic expression of the

mapping B(a, t) to be more suited to the current state of the environment.

2.3.1 Agent types and learning. Two types of agents are introduced: reactive agents keep

their behavior and skill constant throughout their lifetime, as they are a direct expression of

the genotype, while learning agents adapt their behavior and skill according to their experience

via reinforcement learning [16, 25, 26, 33–35]. Learning optimizes the expected reward associ-

ated with successfully foraging a resource of any type. Different reinforcement learning archi-

tectures are evaluated: Q-Learning [36], reinforcement learning based on a Restricted

Boltzman Machine [37], Deep Reinforcement Learning [38] and reinforcement learning based

on a single feed forward perceptron. The results presented in the main text are based on a sin-

gle feed forward perceptron, see the supplementary material for further details, Section B in

S1 File).

If learning is disabled (reactive agents), weights and skills cannot be learned and remain

constant and equal to the inherited value for the whole lifetime of the individual, hence indi-

viduals are selected based on their inherited aptitude value. If learning is enabled, the behavior

can adapt to changes in the environment. Specifically, the adaptation process happens through

directly increasing the skill value after every successful foraging event and by using the success-

ful foraging event as a reward signal in the reinforcement learning algorithm.

2.3.2 Genotype and mutations. Upon reproduction, an offspring is generated that con-

tains a mutated copy of the parent’s genome, consisting of the initial weights of the neural net-

work, prior to any learning, and an additional gene called aptitude. These values are used to

initialize the phenotype of the offspring.

2.3.3 Reinforcement learning. Although, modeling biologically realistic entities is outside

the scope of this paper; the study of the biological feasibility of different learning techniques

including different versions of reinforcement learning, have shown that reinforcement learn-

ing is being able to reproduce certain human decision-making process and equilibrium [39–

41]. More recently it has been shown that human level strategies can arise from reinforcement

learning-based systems, even without human data [42]. In the case of this implementation of

reinforcement learning, the behavior function of an agent a takes the form of bðI t
aÞ ¼ Qð�; I t

aÞ

which indicates the Q-values for all actions and state I t
a. The mapping between perceptions

and actions is done via a neural network. Agents perceive their the environment, specifically,

they are able to see a subset of the grid centered at their location (range one Moore neighbor-

hood) and are able to identify food sources within this visual range, I . For the current model,

a 3 × 3 region is observable and the food sources are observable but without the specificity of

the amount of food contained. Based on this perception and using the neural network based

choice model agents chose an action from their action space: move (north, south, east, west) or

eat. Agents with different learning algorithms (Neural Network type) behave differently when
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faced with a variable environment, in terms of convergence and adaptation to change (see the

supplementary material, Sections B and C in S1 File).

The agent skill is learned by increasing its value by ΔS after every time it performs foraging

successfully, while for the choice of action the learning algorithms are based on the Reinforce-

ment Learning approach, Q-Learning [36]. The Q-Table, a mapping from states/perceptions I
and possible actions O to the quality value of each action for that state QðI ;OÞ, of the original

Q-Learning approach is replaced by a Q-Network as per [38] and the corresponding algorithm

for the specific Q-Network structure is used for its training. The following equation describes

the update to the quality values:

DQ ¼ rt� 1|{z}
reward

þ g
|{z}

discount factor

�max
O

QðI t;OÞ
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{

learned value

� QðI t� 1;Ot� 1Þ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
old value

0

B
@

1

C
A ð4Þ

QðI t� 1;Ot� 1Þ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
new desired value

 QðI t� 1;Ot� 1Þ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
old value

þ arlearn

|ffl{zffl}
learning rate

� DQ ð5Þ

The results presented in the main text are based on Reinforcement learning using a single

layer feed forward perceptron as its network architecture to “store” and query the Q-values,

trained with backpropagation (PQL). The Q-network structure is bðIÞ ¼W � I þ b where I
is an input vector, W are the weights of the neural network and β the biases associated to the

input layer. Further details about the variations depending on different neural network struc-

tures can be found in the supplementary material, Sections B and C in S1 File.

2.4 Measures

The degree of specialization of a population is measured with different metrics:

(I) the distribution of individual aptitudes across the population, according to which a

higher frequency of extreme values corresponds to a more specialized population, (II) the indi-

vidual foraging history, i.e. the frequency of successful foraging actions for a specific resource

type, according to which extreme values indicate a specialized diet, (III) standard measures of

group behavior that quantify the rate of consumption of resources ([43], page 241).

The degree of specialization of the population is measured by the distribution of aptitudes

(I) at each given timestep, normalized by the population size at that timestep:

MIðv; tÞ ¼ jfa 2 At
: st

a ¼ vgj=jAt
j ð6Þ

The foraging history (II) of the population at value x is measured as the frequency of indi-

viduals in the population who, during their lifetime, foraged a specific proportion of type r
resources corresponding to x:

MIIðx; rÞ ¼ jfa 2 A : HL
a;r=HL

a ¼ xgj=jAj ð7Þ

Additionally, standard measures of group behavior (III), taken from [43], page 241, are

used to quantify the specialization of the population. The measures are defined and explained

in the supplementary materials, Section H in S1 File.

While (I) measures the characteristics of the genotype, (II) and (III) measure the behavior

of the agents which is determined by the phenotype.
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3 Results: Computational model

3.1 The Baldwin effect

Previous work in the literature about the Baldwin effect found that the evolutionary process

can be either speed up or slowed down [2] depending on the learning mechanism, the fitness

function and the starting conditions of the population. Simulations are performed to verify

whether or not the Baldwin effect exists in a cyclical environment, a question that, to the best

of our knowledge, has not been answered before [17].

The existence of the Baldwin effect is evaluated by means of simulation by comparing the

speed of genetic assimilation of phenotypic features as a function of the learning ability.

Fig 1 shows a comparison over time of three agent types in terms of the genetic assimilation

of aptitude values due to changes in skill value:

• Reactive agents: baseline, i.e. unable to learn.

• Learning (Actions): agents that can modify their own actions through learning, a speedup in

the genetic assimilation is observed.

• Learning (Actions & Skill): agents that can modify their own actions and their skill through

learning, a slowdown in the genetic assimilation is observed.

The only difference between agent types concerns what traits can be learned. All other

parameters of the learning algorithms are constant across types. The dependence of the speed

of genetic assimilation on the degree of learning confirms the presence of the Baldwin effect.

3.2 A new effect: The Baldwin veering effect

This experiment investigates whether the Baldwin veering effect exists, i.e. a trait evolves by

effect of plasticity that does not correspond to the plastic response induced by a cyclically-

changing environment.

Slowly-changing environments allow populations to adapt via natural selection. Learning

helps natural selection traversing the space of genetic configurations [44], and does so on a

shorter timescale, therefore learning might speed up or delay this process. In quickly-changing

environments, which change faster than the evolutionary timescale, learning and natural selec-

tion take on two different roles: Learning improves the behavior of agents in response to envi-

ronmental variability, while natural selection improves the efficiency of learning.

The Baldwin veering effect is present if the following two conditions are verified: (i) the

evolved trait differs from the environment-induced plastic response, i.e. genome and the phe-

notype converge towards different values, and (ii) this effect is determined by the presence of

plasticity, i.e. the genetic configuration evolved by learning agents differ from that evolved

under the same conditions by reactive agents.

Two genetic configurations are considered: a specialist configuration is defined as a genome

whose aptitude evolves to one of the extreme values, i.e. specializes in either resource type, gen-
eralist configuration is defined as a genome whose aptitude evolves to an intermediate value.

Different genetic configurations correspond to different initial learning efforts in terms of

time required to adapt to the environment; assuming that an individual has the same probabil-

ity of being born in either season, the optimal genetic configuration should reduce equally the

effort of learning either skill.

The first condition is verified in Fig 2 by comparing the evolution over time of the inher-

ited aptitude of populations of learning agents in a slowly-changing (Left) and in a quickly-

changing environment (Right). Being able to quickly adapt to changes in the environment,

the phenotype of learning agents tracks changes in resource availability, hence the induced
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plastic response is a specialized strategy corresponding to the most abundant resource type.

In a slowly-changing environment, the genetic trait evolves towards the induced plastic

response, while in a quickly-changing environment, the genetic trait evolves an intermedi-

ate value that corresponds to a generalist strategy which is not induced at the phenotypic

level.

The second condition is verified in Fig 3 by comparing the evolution over time of the inher-

ited aptitude of a population of reactive agents (Left) with that of a population of learning

agents (Right). Both populations are initialized with an intermediate aptitude value, which

evolves over time until it converges to some configuration after around 4000 timesteps. Reac-

tive agents evolve extreme aptitude values, i.e. a specialist configuration. Specifically, half of

the population evolves a high aptitude value (specialist in one type of resource) and the other

half a low aptitude value (specialist in the other type of resource). The foraging success of reac-

tive agents is determined directly by the static skill as inherited from the aptitude value, hence

each half of the population specializes in foraging one or the other type of resource. For learn-

ing agents the foraging success is determined by the skill level, whose initial adaptation effec-

tiveness is determined by the aptitude value. As a consequence, learning agents evolve an

intermediate aptitude value, i.e. a generalist configuration, which allows them to adapt quickly

to any environmental condition. Fig 4 highlights the difference between genetic configurations

evolved by the two populations at the end of the simulation.

In the following section, we present further supporting evidence for these results.

Fig 1. The Baldwin effect: Speed of genetic assimilation (genotype). Genetic assimilation of aptitude over time in

two different learning populations, compared to a baseline of reactive agents. The simulations show that the speed of

genetic assimilation changes with respect to the baseline, depending on the configuration of the learning algorithm,

demonstrating that the Baldwin effect can speed up or slow down the genetic assimilation of aptitude. The dashed

vertical line indicates a change of season, i.e. resource availability. Confidence intervals at the 95% confidence level are

not shown as their size is negligible.

https://doi.org/10.1371/journal.pone.0219502.g001
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3.3 Differences in individual behaviors

In order to verify that a difference in genetic configuration actually results in different behav-

iors, in this section, we analyze reactive agents instantiated with the genetic configurations of

the agents that are alive during the last time-step of the previous simulations (see Fig 4). In

order to produce a fair comparison, reproduction is also disabled, this way the only variable in

the simulations is the genetic configuration which remains constant during these simulations

and is expressed directly in the phenotype.

The goal of these new simulation set is to quantify the difference between genetic configura-

tions evolved by different populations, this is achieved by evaluating the behavior that such

configurations encode.

In these new simulations, the environment is set to have only one season and contains an

equivalent quantity of both types of resources. An abundance of both resource types allows

any foraging strategy to perform at its best, hence contributing to a fair comparison of different

foraging strategies in terms of foraging success. The behavior of individuals is compared with

the measures of foraging history and of group behavior, which are described in Section 2.4.

Fig 5 shows the foraging history of the two populations of study. Additionally, it shows the

foraging history of 2 baseline populations. These baseline populations are also reactive agents

instantiated with genetic configurations specifically aimed to produce specialist behavior

(being able to eat only one food type with high probability) and generalist behavior (being able

to eat both food types with 50% probability). The foraging history shows that the behaviors in

Fig 2. Comparison of aptitude distributions (genotype) of plastic agents in environments with different season

length. The graphs show the change in the distribution of aptitude values across genomes of individuals in the

population (horizontal-axis, Aptitude) over the course of the simulation (depth-axis, Time). Each point in the graph

represents the frequency at which a specific aptitude value was present in the population (vertical-axis, % of the

population) at a given time. The plot shows plastic agents during a long season (left) and short season (right) scenarios.

During long seasons the population tracks the plastic induced response, while during short seasons the genetic trait

evolves towards an intermediate value distribution. “k” denotes thousand abstract time-units.

https://doi.org/10.1371/journal.pone.0219502.g002
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the two populations of study differ (cf. Fig 5), namely the population instantiated with the last

reactive configuration is split into two groups of comparable size, each of which is specialized

in foraging one type of resource, while the population instantiated with the last learning con-

figuration has a more uniform foraging pattern which includes more generalists. The measure

of individual foraging history is quantified by the frequency of foraging resources of type one,

e.g. a value of 90% indicates that 90% of all resources foraged by the agent were of type one,

and the remaining 10% of type two. These values are then aggregated across the population to

determine the frequency of different values of foraging history. The inset of Fig 5 reports the

L2 Norm between the distributions; learning configuration agents distribution is closer to the

generalists’ distribution (0.19) while reactive configuration agents distribution is closer to the

specialist distribution (0.25).

Besides the measure of foraging history, different standard measures of group behavior [43]

are used to compare the behavior of the populations (cf Fig 6). The interpretation of these mea-

sures is not straightforward, so baselines are added for reference: the dashed line represents

the value of a population where half of the agents specialize in one resource and the other half

in the other resource, while the continuous line represents a population of generalists.

The measures confirm that the learning configuration agents develop a generalist foraging

strategy, both on the group level (among-resource diversity) and on the individual level

(within-individual diversity). In contrast, last reactive configuration agents develop a more

Fig 3. Comparison of aptitude distributions (genotype) between reactive and plastic agents in environments with

short seasons. The graphs show the change in the distribution of aptitude values across genomes of individuals in the

population (horizontal-axis, Aptitude) over the course of the simulation (depth-axis, Time). Each point in the graph

represents the frequency at which a specific aptitude value was present in the population (vertical-axis, % of the

population) at a given time. The left plot shows a population of reactive agents while the right plot a population of

plastic agents, the populations evolve two different distributions, confirming that plasticity/learning can change the

outcome of evolution. “k” denotes thousand abstract time-units.

https://doi.org/10.1371/journal.pone.0219502.g003
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specialized foraging strategy on the group level (among-resource diversity). Understanding

whether or not reactive configuration agents develop a specialized foraging strategy on the

individual level is not straightforward, as a high value of among-resource diversity can either

mean that different agents have different specialized diets or that agents have generalized diets.

Combining this measure with that of within-individual diversity, which indicates a specialized

diet on the individual level, allows us to conclude that specialization occurs also on the group

level.

4 Results: Analytical model

The results outlined in the previous section showcase the existence of the Baldwin veering

effect, but give little information about the process behind it. This section introduces and ana-

lyzes the predictions of an analytical model, inspired by previous work [45], which gives possi-

ble explanations to the simulation results and identify the conditions under which the Baldwin

veering effect manifests. The model defines a fitness function for a generic individual, the evo-

lutionary process is not explicitly modeled so evolutionary outcomes are inferred from consid-

erations about the relative fitness of different individuals. Time and location of agents are not

explicitly modeled, this abstraction is sensible because of the deterministic nature of seasonal

changes, i.e. the environment displays the same conditions on average over each seasonal

cycle. More fine-grained results about evolution and its dynamics might be obtained by pair-

ing the fitness function with an existing model of evolution, e.g. [45, 46], such effort is outside

the scope of this paper and is left for future work.

Fig 4. Comparison of final aptitude distribution (genotype) between reactive and plastic agents in environments

with short seasons. The graphs show the average distribution of aptitude values (x-axis) across genomes of individuals

in the population for the last 1000 iterations of the simulation, shaded areas represent confidence intervals at the 95%

confidence level. The lines indicate the frequency at which a given aptitude occurs in the population. Plastic agents

evolve a different distribution than reactive agents, confirming that learning can change the configuration to which

evolution converges.

https://doi.org/10.1371/journal.pone.0219502.g004
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4.1 Description of the analytical model

The environment contains two types of resources, j = {0, 1}, whose proportion is denoted by π0

and π1.

The fitness Wi of a reactive agent i is formulated as follows:

Wi ¼ p0 � ri;0 þ p1 � ri;1 ¼ p0 � s
q
i;0 þ p1 � s

q
i;1 ð8Þ

Where the foraging success ri;j ¼ sq
i;j is determined by the agent’s skill si,j 2 [0, 1] (which is

equal to the aptitude level, being it a reactive agent) and by a parameter q 2 N�0 which defines

the relation between skill and foraging success. If the parameter q = 1, specializing on one

resource and generalizing on two resources lead to the same foraging success. If q< 1 generali-

zation becomes more beneficial than specialization as intermediate aptitudes produce a higher

foraging success than extreme ones. Vice versa, specialization is more beneficial when q> 1 as

the reward function is concave, a requirement for the co-existence of specialists and generalists

in the same environment [47].

Following the design of the computational model, the two skills of an agent, as well as the

resource proportions, are assumed to be complementary, i.e. si,0 + si,1 = 1, π1 + π0 = 1, therefore

Fig 5. Comparison of foraging history (phenotype). The plots show the frequency at which a given value of foraging

history occurs in the population. Foraging history is computed as the percentage of successful foraging actions or

resources of type 0. A frequency of 0.2 associated to a value of foraging history of 0.4 means that 20% of individuals in

the population foraged during their lifetime 40% of the time resources of type 0 and 60% of the time resources of type

1. In this simulation, all agents are reactive without the ability to reproduce and their genetic configuration is

initialized from the distribution obtained from the second experiment (see Fig 4). Distributions of foraging actions

resemble the distributions of aptitudes, confirming that different aptitude distributions produce different behaviors.

Dashed lines represent baseline populations, where all agents have an aptitude value of 0.5 (generalist configuration) or

half of the population has an aptitude value of 0.05 and the other half 0.95 (specialist configuration). Shaded areas (of

negligible size) represent confidence intervals at the 95% confidence level. Inset is the L2-Norm between the different

distributions.

https://doi.org/10.1371/journal.pone.0219502.g005
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the notation can be simplified by defining si ≔ si,0, 1 − si ≔ si,1 and π1 = 1 − π0 which leads to:

Wi ¼ p0 � s
q
i þ ð1 � p0Þ � ð1 � siÞ

q
ð9Þ

In order to model learning agents, a new parameter δ is introduced which represents plas-

ticity. The parameter c determines the cost of plasticity [48, 49]. A learning agent is not con-

strained by its inherited aptitude α, as its skill can adapt to changes in the environment. The

value of δ determines the skills an agent can express by defining the maximum and minimum

skill values: this range is centered on the aptitude and spans in both directions (cf. Fig 7), si =

αi ± δ. Given that the skill value is limited in the domain [0, 1], the previous expression for the

bounds of skill values s is limited as follows, si = min(1, αi + δ) for the beneficial side and si =

max(0, αi − δ) for the dis-favorable effect. For example an individual with aptitude 0.1 and δ =

0.6 can express any skill value in the range [0, 0.7]. As the aptitude is also constrained to the

range [0, 1] the range of meaningful δ is also between [0, 1]. In this model, we consider only

the effect of plasticity that increases the skill level (i.e learning that improves a skill):

Wi ¼ p0 �minð1; ðai þ dÞÞ
q
þ ð1 � p0Þ �minð1; ð1 � ai þ dÞÞ

q
� c � d ð10Þ

For simplicity, the model assumes that agents adapt instantaneously to the environment by

adopting the best available skill value for each resource type, i.e. skill of si = αi + δ for resource

type π0 and skill of si,1 = αi,1 + δ = 1 − (αi − δ) for resource type π1, which maximize the fitness

Fig 6. Measures quantifying the behavior of the population (phenotype). Left: among-resource diversity (ARD)

quantifies the behavior of the population, both populations display a similar generalist behavior. Right: within-

individual diversity (WID) quantifies the behavior of individual agents, learning agents behave more generalist than

reactive agents. In this simulation, all agents are reactive without the ability to reproduce and their genetic

configuration is initialized from the distribution obtained from the second experiment (see Fig 4). These results

confirm that a difference in aptitude distribution corresponds to an actual difference in behavior. The solid line

represents a baseline population in which all agents have an aptitude value of 0.5, the dashed line represents a baseline

population in which each half of the agents have an aptitude value of 0.05 and 0.95 respectively.

https://doi.org/10.1371/journal.pone.0219502.g006
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function. The speed of learning, also called time lag, is modeled by reducing the value of δ (cf.

Fig 8). In practice the value of δ depends on the ratio between the speed of learning and the

season length: a slower learning mechanism reduces the distance to which the value can

change, similarly, a shorter season reduces the number of experiences an agent has during a

season.

4.2 Analysis: Baldwin veering effect

Fig 9 shows how different aptitudes compare, in terms of fitness, for varying values of plasticity

δ. A combination of aptitude and plasticity associated with a higher fitness value produces

more fit individuals that are favored by natural selection. The red circles represent the globally

optimum aptitudes for a given value of δ, i.e. the attractors in genetic configuration space of

Fig 7. A sketch explaining the skill range δ. Skill ranges obtained with a fixed value of δ and different aptitudes.

https://doi.org/10.1371/journal.pone.0219502.g007

Fig 8. A sketch of modeling assumptions. The graph shows the change in skill level over time of a hypothetical

learning individual. The shaded area represents the cost of adaptation: the loss in fitness caused by adapting to the

environment with respect to an already adapted individual (specialist). Learning requires time to adapt, defined by the

speed of learning α. This delay is modeled by reducing the plasticity δ such that the size of area A is the same.

https://doi.org/10.1371/journal.pone.0219502.g008
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the evolutionary process. If δ< 0.5 agents evolve a specialist configuration, as opposed to a

generalist configuration if δ = 0.5. Note that the configuration with δ = 0.5 and aptitude αi =

0.5 maximizes the fitness as it allows agents to choose any skill value in the range [0, 1], hence

allows agents to forage both resource types with certainty. This condition is observable in the

agent-based model simulation when the speed of learning is as fast as the frequency of change

in the environment, i.e. an agent adapts its skill to a new environmental state but does so too

slowly to remain specialized for a long time before the environment changes again. This con-

firms the existence of the “Baldwin veering effect”, as any value of δ> 0 changes the fitness

landscape such that fitness is maximized by a different aptitude, which is then selected. These

results hold even for asymmetric seasons, i.e. when the probability of one season is higher (cf.

Fig 9 right).

For values of δ> 0.5, learning makes an increasingly large range of aptitude values equiva-

lent in terms of evolutionary fitness which could allow agents to generalize, but such a configu-

ration would not evolve in reality as the overall fitness is reduced when compared to δ = 0.5.

These results are confirmed also for c = 0 and q� 1, see the supplementary material, Section G

in S1 File.

Concluding, learning agents evolve an intermediate aptitude, i.e. a generalist configuration,

only if learning speed is proportionate to the season length such that agents can adapt to both

resource types. This result is general and holds independently of the value of q and resource

proportion π0, hence confirms that the Baldwin veering effect depends exclusively on the time-

scales of learning and environmental change.

5 Discussion

A common finding in the literature about the interactions between plasticity and cyclically

changing environments is that plastic individuals, who can adapt to changes in the environ-

ment after a certain time lag, i.e., speed of learning, are more fit than non-plastic individuals,

who are unable to adapt, when the frequency of change in the environment is faster than a

certain threshold. The definition of plasticity varies in the literature: plasticity is modeled as

Fig 9. Fitness corresponding to different combinations of aptitude and δ, for q> 1 and c> 0. The plot shows the fitness predicted by the

analytical model for given values of aptitude and δ. Left: α0 = 0.5, right: α0 = 0.6. The red circles represent the maximum fitness achievable for a given

value of δ, i.e. the attractors of the evolutionary process. Increasing the value of δ from 0 to 1, the optimal aptitude values start at the extremes (0,1)

and move towards the center as δ increases. The maximum fitness is obtained for δ = 0.5, where there is only one maximum for an aptitude of 0.5.

For values of δ> 0.5 a range of aptitudes, centered on and expanding from 0.5, maximizes the fitness. The dotted line corresponds to the fitness of a

specialist individual, which becomes lower than the fitness of learning individuals as values of δ increase. Also note that the introduction of learning,

i.e. δ> 0, changes the aptitude for which fitness is maximized, i.e. the configuration towards which evolution converges.

https://doi.org/10.1371/journal.pone.0219502.g009
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switching between two distinct phenotypes [14, 50], as a change in niche breadth [51], or—as

in this work—as behavioral adaptation through learning [52, 53]. Related work concludes that

similar patterns of specialization and generalization in the phenotype might develop also when

assuming non-reversible plasticity, i.e. a phenotypical trait can assume only one specialized

state in an individual’s lifetime [19]. Although this work focuses on reversible plasticity, i.e. the

same phenotypical trait can change from one specialized state to another, reversibility is not

claimed to be a prerequisite for the existence of the Baldwin veering effect. Our claim about

the existence of the Baldwin veering effect is not invalidated by whether or not the effect

manifests also in the presence of non-reversible plastic traits, this is nevertheless a promising

research question for future work.

It is important to note that although the concepts of specialization, i.e. adaptation to only

one state, and generalization, i.e. trading-off adaptation across more than one state, are con-

sistent across the literature, the concepts of generalist and specialist can differ substantially:

while the definition of specialists adopted by this work implies the ability to specialize in

only one resource, unless the agent is able to learn, other work defines them as able to spe-

cialize simultaneously on many resources [14]. To the best of our knowledge, this work is the

first to investigate the effect of plasticity and cyclical changes in the environment on the evo-

lution of the genetic configuration. Although, [54] considers local variation (cycles) the anal-

ysis is focused on a single movement to an extreme environment; our work is consistent in

terms of the expected genetic assimilation. Previous work investigates the evolution of plas-

ticity by analyzing the co-evolution of populations with different genetic configurations [55,

56], or by analyzing the scaling of plasticity itself [54] while in the current work traits are

either plastic or not. Due to the differences between our models, we cannot make more

extensive claims, i.e. regarding the development of co-evolving populations nor the evolution

of plasticity itself. However, results pertaining to the more general aspects of the Balding

effect, i.e. genetic assimilation, is consistent across the works. Other work [14] predicts that

non-plastic individuals would evolve a genotype that leads to a wide tolerance function, mak-

ing the individual able to adapt to a broader set of environmental configurations. This is in

conflict with our finding that non-plastic individuals specialize in one environmental config-

uration, which leads to a split in the population. We believe this difference is caused by a

modeling assumption that is relaxed in this paper, i.e. each agent can express a different phe-

notype (tolerance function) for each environmental state. The thread of literature looking at

the evolution of artificial neural networks [52, 57] concludes that different levels of plasticity

lead to the evolution of different weights. The main difference with the proposed model is

that the environment changes [52] during an individual’s lifetime [57], hence that model is

not able to capture the effect of the frequency of environmental change on evolution which is

crucial for the results presented in this work.

The results presented in this work rely on the assumption that information about the envi-

ronment is always precise. Relaxing this assumption requires the consideration of imperfect

perceptions. Hence, the agents need to learn an estimate of the environmental state, before

they can begin phenotypic adaptation [58] or while they are adapting [19]. Previous work

finds that agents with imperfect perception learn accurate estimates of the probability distribu-

tion of environmental states and demonstrates genetic assimilation of phenotypic features, i.e.

the Baldwin effect [59]. These results suggest that the Baldwin veering effect does not depend

on the assumption of perception accuracy.

The aim of this paper is to provide a proof of concept, not modeling realistic entities, hence

the model is constrained to only two resources. Increasing the complexity of the environment,

as well as introducing group behavior, is required to model any realistic ecosystem and is left

for future work.

How learning can change the course of evolution

PLOS ONE | https://doi.org/10.1371/journal.pone.0219502 September 5, 2019 17 / 23

https://doi.org/10.1371/journal.pone.0219502


The Baldwin veering effect can be interpreted as the interaction between two different traits

throughout the evolutionary process. This interpretation could be described as a co-evolution-

ary process between two different traits in the same genotype: (1) the evolutionary selection

pressure on the existence of plasticity implies a specific evolutionary selection pressure on (2)

the aptitude level.

This effect can also be interpreted as an extended form of gene interactions [18] that affects

both the phenotype and the genotype.

Plastic behavior is the outcome of complex interactions between genes, for the sake of trac-

tability, this work abstracts these interactions as the effect of one single gene called aptitude.

This simplification is reasonable to model some simple natural organisms e.g. fish behavior

[60] and foraging in bacteria [61]. Gene interaction has an effect on the model, i.e. the interac-

tion between the aptitude and the gene for plasticity changes the phenotypic expression of

individuals [18]. Nevertheless, the results are more than just a special case of gene interaction

as the presence of a “plasticity gene” causes changes both at the phenotypic and at the geno-

typic level, i.e. a different genetic code evolves in the population, which in turn produces differ-

ent phenotypic traits.

Although this suggests the existence of the hypothesized effect, the theory does not clarify

what processes cause learning agents to evolve a generalist configuration instead of a specialist

configuration. One possible mechanism is that a generalist configuration allows individuals to

have a more constant foraging success than a specialist configuration, as a skill level that oscil-

lates around an average value allows individuals to forage more or less constantly throughout

their lifetime, while a skill level oscillating around any of the extremes would result in periods

of high and periods of low foraging success. An imbalance in foraging success translates to

higher variance in offspring number, which is known to reduce the fitness [62]. Another possi-

ble mechanism for the evolution of a generalist configuration would be to provide indirect

rewards: then, an intermediate aptitude would increase the evolutionary fitness indirectly by

allowing for a faster adaptation to any environmental configuration. A similar mechanism has

been described in the literature about intrinsic motivation, where evolution favors actions that

are providing rewards only indirectly. For example, it has been found that curiosity and play-

fulness at a young age can improve fitness at a later age [63]. Understanding what processes

cause the evolution of a generalist configuration is a worthy result in its own right which

should be addressed in future work.

Another relevant observation is one of the convergent phenotypic outcomes. This phenom-

enon is highlighted in the fact that the neural network weights defining the desired behavior

are initialized randomly and individuals with different genetic composition (weights) converge

to similar behaviors but different weight composition. This shows that the large space of

weights combinations posses a large number of equivalent optimums. Further studies in this

topic might provide deeper insights relevant to the machine learning community.

Future work will also verify the predictions of the analytical model within the agent-based

simulation framework, in particular, that there exists a configuration for which a learning pop-

ulation splits into two groups of specialists with aptitude values in [0, 0.5] and [0.5, 1] respec-

tively, and a configuration in which learning population evolve a uniform distribution of

aptitude values.

6 Conclusions

Plasticity, e.g. learning, is known to influence the speed at which evolution converges to some

“target” configuration. This work, in contrast, addresses the question of whether or not plastic-

ity in a cyclically changing environment can lead to the evolution of a different genetic
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configuration. Following previous work, this question is answered by means of an agent-based

model of a foraging task, with cyclical variability in the resource distribution. Additionally,

this result is confirmed through an analytical model.

Experimental and analytical results show the existence of the Baldwin effect in a cyclical

environment and identify the novel “Baldwin veering effect”, i.e. a trait (generalist configura-

tion) evolves by effect of plasticity that does not correspond to the plastic response induced by

a cyclically-changing environment (specialist configuration) and the conditions under which

it exists. A mathematical model verifies that the introduction of plasticity in the phenotype

changes the fitness landscape in a way such that a generalist configuration becomes the global

optimum in the space of genotypes.

These results are relevant for the literature of Evolutionary Biology, as they expand the

understanding of how phenotypic plasticity influences evolution and present a novel effect

caused by the interaction between learning and evolution. These results might also help to

understand the effect of a fast learning process on a slow learning process in another context,

which has a cyclical component, for example, opinion formation in settings where learning

[64, 65] mediates the rate of exposure to different opinions [66, 67].

6.1 Data availability

The source code used to generate and analyze the data-sets is available on GitHub [68, 69].

Other information, including the parameters and libraries used, is provided in the Supplemen-

tary information, see Sections D and E in S1 File.

Supporting information

S1 Fig. Comparison of different learning algorithms. Each graph represents the frequency

over time of an agent choosing to forage each resource type whenever the corresponding

resource is available. A higher value produces a higher fitness, assuming the corresponding

resource is available in the environment. Each curve is the average of 300 independent simula-

tions. Season length is 3000 and all simulations start in the same season.

(EPS)

S2 Fig. The genetic configuration evolved with different learning algorithms. Top left:

PQL. Top right: QL. Bottom Left: RQL. Bottom right: DRL. All algorithms are able to repro-

duce the main result of the paper, i.e. the evolution of a generalist configuration.

(EPS)

S3 Fig. Fitness for different combinations of aptitude level and δ for q> 1 and plasticity

cost c = 0. Note that values of δ> 0.5 now maximize the fitness so an evolutionary outcome is

possible where a mix of specialists and generalists co-exist. Left: a0 = 0.5, right: a0 = 0.6.

(EPS)

S4 Fig. Fitness for different combinations of aptitude level and δ for q = 1 and plasticity

cost c = 0. Intermediate aptitude levels deliver the same fitness as extreme levels, thus a mixed

population will evolve. An intermediate aptitude level of 0.5 is optimal if δ = 0.5, while an

extreme aptitude level is optimal for high or low values of δ. Left: a0 = 0.5, right: a0 = 0.6.

(EPS)

S5 Fig. Fitness for different combinations of aptitude level and δ for 0< q< 1 and plastic-

ity cost c = 0. Intermediate aptitude levels deliver higher fitness than extreme levels, hence spe-

cialists have always a lower fitness than generalists. An intermediate a aptitude level is optimal
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in any circumstances. Left: a0 = 0.5, right: a0 = 0.6.

(EPS)
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