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Abstract

Renalase decreases circulating catecholamines concentration and is important in maintain-

ing primary cellular metabolism. Renalase acts through the plasma membrane calcium

ATPase 4b in the heart, which affects pressure overload but not exercise induced heart

hypertrophy. The aim of this study was to test the association between a functional polymor-

phism Glu37Asp (rs2296545) of the renalase gene and left ventricular hypertrophy in a large

cohort of patients with aortic stenosis. The study group consisted of 657 patients with aortic

stenosis referred for aortic valve replacement. Preoperative echocardiographic assessment

was performed to obtain cardiac phenotypes. Generalized-linear models were implemented

to analyze data using crude or full model adjusted for selected clinical factors. In females,

the Asp37 variant of the Glu37Asp polymorphism was associated with higher left ventricular

mass (p = 0.0021 and p = 0.055 crude and full model respectively), intraventricular septal

thickness (p = 0.0003 and p = 0.0143) and posterior wall thickness (p = 0.0005 and

p = 0.0219) all indexed to body surface area, as well as relative wall thickness (p = 0.001

and p = 0.0097). No significant associations were found among the male patients. In conclu-

sion, we have found the association of the renalase Glu37Asp polymorphism with left ventri-

cle hypertrophy in large group of females with aortic stenosis. The Glu37Asp polymorphism

causes not only amino-acid substitution in FAD binding domain but may also change binding

affinity of the hypoxia- and hypertrophy-related transcription factors and influence renalase

gene expression. Our data suggest that renalase might play a role in hypertrophic response

to pressure overload, but the exact mechanism requires further investigation.

Introduction

Left ventricular hypertrophy (LVH) which develops in patients with aortic stenosis (AS) is

associated with increased mortality and morbidity before and after aortic valve replacement.
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The hypertrophic response to pressure overload from AS is heterogeneous and may depend

on many factors including gender and genetic predisposition[1]. The familial predisposition

of LVH was found in many studies[2]. A number of genetic loci were identified in case-con-

trol and wide-genome association studies in the general population or in hypertensive

patients. Most of the associations failed to replicate in other cohorts[3, 4] which may be due

to the fact that the degree of LVH is low in those populations and each study requires a very

large number of participants to gain statistical power. Marked LVH and its poor correlation

with pressure load[5] makes patients with AS a perfect population to study the genetics of

heart hypertrophy. In 2005 a new circulating protein expressed in the kidney and heart was

discovered and named renalase[6]. Originally, it was suggested that renalase could possibly

affect the cardiovascular system by catabolizing circulating catecholamines[7], yet the oxida-

tive properties of the enzyme were recently questioned[8]. New data suggests that renalase is

an intracellular molecule important in maintaining primary metabolism[9]. Recently the

plasma membrane calcium ATPase 4b (PMCA4b) was identified as a receptor for extracellu-

lar renalase. The PMCA4b mediates renalase dependent cell signaling and cytoprotection,

which are not related to intrinsic enzymatic activities of renalase[10]. Interestingly, PMCA4b

affects pressure overload but not exercise induced heart hypertrophy[11]. The renalase gene

(RNLS) is located on chromosome 10 at q23.31 and its polymorphisms were associated with

essential hypertension, type 1 diabetes and stroke[12–15]. In subjects diagnosed with coro-

nary artery disease (CAD) a functional missense polymorphism Glu37Asp (rs2296545) in

RNLS gene was associated with increased risk of LVH, ventricular dysfunction, reduced exer-

cise capacity and inducible ischemia[16]. We studied the association between the most com-

mon genetic variation in the RNLS locus resulting in glutamic to aspartic acid change at

amino acid residue 37 (Glu37Asp; rs2296545; NM_001031709.2:c.111G>C) and LVH in a

large cohort of patients with AS.

Materials and methods

The study group consisted of 657 patients (387 men and 270 women) referred to the

Department of Acquired Cardiac Defects at the Institute of Cardiology in Warsaw for

surgical intervention due to severe AS over the years 1995 to 2006. Patients with coexisting

mitral and/or tricuspid valve disease or moderate/severe aortic regurgitation were excluded

from the study. This study was approved by the Human Ethics Committees of the Medical

University of Warsaw (KB/106/2007, KB/74/2012, KB/119/A/2013) and the Institute of

Cardiology (959, 1169, 1448) and conformed to the ethical guidelines of the 1975 Declara-

tion of Helsinki. Written informed consent was obtained from all study participants.

All patients with a history of angina or aged >50 years underwent coronary arteriography.

Significant coronary artery disease was defined as a reduction of at least 70% in the

diameter of a major coronary artery or a 50% reduction in the left main coronary artery

diameter.

Echocardiographic examination and calculations were done as previously described[17].

Briefly, the left ventricular mass (LVM) was calculated according to the Penn Convention

modified by Devereux LVM (g) = 1.04[(IVST + LVEDD + PWT)3—LVEDD3] - 13.6 where

LVEDD is the left ventricular end-diastolic diameter, IVST is the intraventricular septal thick-

ness in diastole, and PWT is the posterior wall thickness in diastole. The body surface area

(BSA) was calculated using the modified DuBois formula: BSA = (height (m)0.73 × body weight

(kg)0.4 × 71.84)/10,000. The relative wall thickness (RWT) was calculated as RWT = PWT/

(0.5) LVEDD. The left ventricular geometry was classified as proposed by Duncan et al.[18]:

a) concentric hypertrophy, increased LVM/height and increased RWT; b) eccentric
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hypertrophy, increased LVM/height and normal RWT; c) concentric remodeling, normal

LVM/height and increased RWT; and d) normal geometry, normal LVM/height and normal

RWT. An LVM/height of 143 g/m or less for men and of 102 g/m or less for women and an

RWT equal to at most 0.45 were considered normal.

DNA was isolated from frozen peripheral blood samples with QiaAmp DNA Mini Kit (Qia-

gen). The ViiA™ 7 Real-Time PCR System was used to perform genotyping of rs2296545 poly-

morphism using the 5’ nuclease allelic discrimination assay according to the manufacturer’s

protocol (TaqMan assay, Life Technologies, USA). The assay number C__15753060_10 was

designed on forward strand, therefore reference allele C corresponded to G in renalase’s

mRNA and finally Glutamic Acid (Glu) at amino acid residue 37 of the protein (since RNLS

gene is located on reverse strand), consequently reference allele G corresponded to C in the

mRNA sequence and Aspartic Acid (Asp) in the protein. Ten percent of randomly selected

samples were done in duplicates.

We used a Supplementary Data Set 1. SNPs tested for imbalance in DNA accessibility,

which can be retrieved from http://www.nature.com/ng/journal/v47/n12/extref/ng.3432-S5.txt

[19]. Additional data from ENCODE is available from Gene Expression Omnibus (GEO)

(GSE18927, GSE26328, GSE29692 and GSE55579 for DNase-seq data and GSE30263 for

ChIP-seq data).

For the computational identification of transcription factor which binding sites are affected

by rs2296545 a MAPPER2[20, 21] the platform that combines TRANSFAC[22] and JASPAR

[23] motifs with the search power of profile hidden Markov models, was used (http://genome.

ufl.edu/mapper/).

The Statistical analysis was performed as previously described[17]. The echocardiographic

parameters were not Gaussian distributed and were therefore natural log-transformed before

analysis[24]. We tested the departure from the Hardy-Weinberg equilibrium using Haploview

4.0[25]. The primary quantitative outcome variable of the association analyses was LVM/BSA

and the principal explanatory variable was rs2296545. The SNP was coded into three classes

(major allele homozygote = 0, heterozygote = 1 or minor allele homozygote = 2) and analyzed

under an additive genetic model. If the test for additive model was significant at the 0.05 sig-

nificance level, then the dominant and recessive models were examined to see if they signifi-

cantly improve the fit. Generalized linear models (PROC GLM in SAS software version 9.4;

SAS Institute Inc, Cary, NC, USA) were used to analyze the effects of genetic and clinical

covariates on a continuous outcome. The crude model tested the effect of SNP only, but the

full model included the following clinical variables selected in our previous work[17]: gender,

age, ejection fraction and maximal aortic gradient. P-values < 0.05 were designated as signifi-

cant. The mean values presented in the text are back-transformed to the original scale from

the natural log-transformed data shown in tables. We used Quanto[26, 27] to estimate the

power of a statistical test: the minor allele frequency of rs2296545 is 44.7%, the sample size is

657, the overall mean value of the natural logarithm of LVM/BSA is 5.8980 and standard devi-

ation is 0.2903, at a significance level of 0.05 the power is�80% when the risk-associated SNP

explains at least 4.5%, 6.9% or 8.0% of the variance in additive, dominant or recessive model

respectively.

Results

Patient characteristics

The study group was described previously[17]. The demographic and echocardiographic data

for patients with AS are summarized in Table 1.
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Genotyping

Genotyping was successful for 99.38% of the samples. Concordance rate between replicates

was as high as 100%. The genotypes distribution was consistent with Hardy-Weinberg equilib-

rium (p = 0.99).

Table 1. Demographic characteristics and echocardiographic data for patients with aortic stenosis.

Female (N = 270) Male (N = 387)

Mean ± SD Mean ± SD P

Age, y 63.83 ± 10.66 59.78 ± 10.39 <0.0001

Height, cm 160.16 ± 5.83 172.19 ± 5.86 <0.0001

Weight, kg 68.94 ± 12.60 77.28 ± 11.58 <0.0001

BMI, kg/m2 26.88 ± 4.82 26.06 ± 3.69 0.0312

EF, % 66.77 ± 11.89 60.56 ± 15.07 <0.0001

Maximal aortic gradient, mm Hg 103.91 ± 27.32 95.96 ± 27.47 0.0010

Mean aortic gradient, mm Hg 64.73 ± 18.66 58.95 ± 18.05 0.0007

LVM, g 325.42 ± 86.09 418.29 ± 117.02 <0.0001

LVM/BSA, g/m2 190.74 ± 52.89 221.01 ± 63.36 <0.0001

LVM/height, g/m 203.43 ± 54.54 243.09 ± 68.41 <0.0001

LVM/height2.7, g/m2.7 91.83 ± 26.42 96.93 ± 29.40 0.0198

LVEDD, mm 48.31 ± 6.03 53.91 ± 7.63 <0.0001

LVEDD/BSA, mm/m2 28.34 ± 4.19 28.51 ± 4.60 0.8917

LVEDD/height, mm/m 30.19 ± 3.86 31.32 ± 4.43 0.0040

IVST, mm 13.98 ± 2.25 14.71 ± 2.49 0.0001

IVST/BSA, mm/m2 8.21 ± 1.50 7.78 ± 1.44 <0.0001

IVST/height, mm/m 8.74 ± 1.46 8.56 ± 1.53 0.0435

PWT, mm 13.20 ± 1.88 13.83 ± 1.98 <0.0001

PWT/BSA, mm/m2 7.76 ± 1.36 7.31 ± 1.15 <0.0001

PWT/height, mm/m 8.25 ± 1.25 8.04 ± 1.19 0.0162

RWT 0.56 ± 0.11 0.52 ± 0.11 0.0006

(IVST+PWT), mm 27.17 ± 3.82 28.53 ± 4.15 <0.0001

(IVST+PWT)/BSA, mm/m2 15.97 ± 2.71 15.09 ± 2.44 <0.0001

(IVST+PWT)/height, mm/m 17.00 ± 2.52 16.60 ± 2.54 0.0222

Left ventricular geometry, N (%)

concentric hypertrophy 232 (85.9%) 287 (74.1%) 0.0003

eccentric hypertrophy 38 (14.1%) 90 (23.3%) 0.0036

concentric remodeling 0 (0.0%) 9 (2.3%)

normal geometry 0 (0.0%) 1 (0.3%)

Hypertension, N (%) 127 (49%) 129 (35%)

Diabetes, N (%) 13 (5%) 25 (6%)

Significant coronary artery disease 44 (17%) 93 (25%)

NYHA, N (%)

I 11 (4%) 28 (7%)

II 54 (21%) 107 (29%)

III 113 (44%) 138 (37%)

IV 71 (27%) 84 (22%)

BMI, body mass index; BSA, body surface area; EF, ejection fraction; IVST, intraventricular septal thickness in diastole; LVEDD, left ventricular end-

diastolic diameter; LVM, left ventricular mass; NYHA, New York Heart Association Heart Failure Classification; PWT, posterior wall thickness in diastole;

RWT, relative wall thickness; P, p value for difference between men and women.

https://doi.org/10.1371/journal.pone.0186729.t001
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Associations between rs2296545 polymorphism and LVM/BSA

The analysis (Table 2) of all of the patients, identified a significant genetic association with

high LVM/BSA for the Asp37 variant of rs2296545, and an additive genetic model was sug-

gested (crude model, mean: 191.5 for Glu/Glu variant, 202.6 for Glu/Asp, and 209.3 for Asp/

Asp, p = 0.0039). The association was moderately reduced by the adjustment for age, sex, ejec-

tion fraction, and maximal aortic gradient (full model, p = 0.0469).

The gender-specific analyses showed a significant association of the Asp37 variant of

rs2296545 (Table 2 and Fig 1) with high LVM/BSA in the crude model (mean: 173.3 for Glu/

Glu variant, 186.0 for Glu/Asp, and 199.5 for Asp/Asp, p = 0.0021) and a suggestive association

in the full model (p = 0.0551) in females. No significant associations were found among the

male patients.

Associations between rs2296545 polymorphism and echocardiographic

parameters

The subsequent detailed analysis of the echocardiographic parameters in females (Table 3)

revealed a significant association of the Asp37 variant of rs2296545 with high LVM/height

(p = 0.0023), LVM/height2.7 (p = 0.0005) in the crude model and suggestive association in full

model (p = 0.0586, p = 0.0167, respectively) in the additive genetic model. Furthermore the

Asp37 variant in the same genetic model was strongly associated (p value range from 3.48 x

10−05 to 0.0008) with higher thickness of the cardiac walls regardless of indexation method and

the associations remained significant after adjustment for clinical factors in the full model. The

association of the Asp37 variant with higher RWT was better described by dominant genetic

model (p = 0.0012 and p = 0.0097, for crude and full model respectively).

No significant associations were found among the male patients except borderline associa-

tion of the Asp37 variant with high IVST (p = 0.0499) (S1 Table).

Table 2. Association between functional SNP in the RNLS gene and natural logarithm of LVM/BSA.

Mean (SE) [N]

Crude Adjusted*

All Female Male All Female Male

Tagging SNPs:

rs2296545 Additive

Glu/Glu 5.255 (0.020) [189] 5.155 (0.027) [88] 5.341 (0.027) [101] 5.265 (0.018) [187] 5.188 (0.025) [87] 5.344 (0.025) [100]

Glu/Asp 5.311 (0.014) [344] 5.226 (0.022) [134] 5.366 (0.018) [210] 5.296 (0.013) [340] 5.215 (0.020) [134] 5.370 (0.017) [206]

Asp/Asp 5.344 (0.025) [120] 5.296 (0.037) [48] 5.376 (0.032) [72] 5.324 (0.022) [120] 5.272 (0.033) [48] 5.376 (0.029) [72]

PADD 0.0039 0.0021 0.3887 0.0469 0.0551 0.3905

rs2296545 Dominant

Glu/Glu 5.255 (0.020) [189] 5.155 (0.027) [88] 5.341 (0.027) [101] 5.266 (0.018) [187] 5.188 (0.025) [87] 5.344 (0.025) [100]

Glu/Asp or Asp/Asp 5.320 (0.012) [464] 5.244 (0.019) [182] 5.368 (0.016) [282] 5.303 (0.011) [460] 5.230 (0.017) [182] 5.372 (0.015) [278]

PDOM 0.0064 0.0087 0.3908 0.0820 0.1761 0.3535

rs2296545 Recessive

Glu/Glu or Glu/Asp 5.291 (0.011) [533] 5.198 (0.017) [222] 5.358 (0.015) [311] 5.285 (0.010) [527] 5.204 (0.015) [221] 5.362 (0.014) [306]

Asp/Asp 5.344 (0.025) [120] 5.296 (0.037) [48] 5.376 (0.032) [72] 5.324 (0.022) [120] 5.271 (0.033) [48] 5.376 (0.029) [72]

PREC 0.0606 0.0190 0.6135 0.1250 0.0725 0.6739

SE, standard error; N, number of individuals; BSA, body surface area; LVM, left ventricular mass; SNP, single nucleotide polymorphism; PADD, p value for

additive model; PDOM, p value for dominant model; PREC, p value for recessive model;

*Adjusted for gender, age, ejection fraction, maximal aortic gradient.

https://doi.org/10.1371/journal.pone.0186729.t002
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In females, rs2296545 x CAD interaction included in crude and full models was not signifi-

cant for any of the echocardiographic parameters.

Homogeneity of the effect of rs2296545 on LVM/BSA and RWT across

clinically relevant subgroups

To test for homogeneity of the effect of rs2296545 on LVM/BSA and RWT across clinically rel-

evant subgroups, we divided the cohort into two groups. The first group consisted of patients

without significant coronary artery disease or hypertension, with EF> = 50% and transaortic

maximum velocity > = 4.0 (symptomatic severe high-gradient AS) which accounted for 40%

of patients (n = 243). The remaining patients formed the second group (n = 362) which

included the other subgroups: symptomatic severe high-gradient AS with at least one of the

following characteristic: reduced EF, hypertension, significant coronary artery disease

(n = 244); symptomatic severe low-flow/low-gradient AS with reduced EF (n = 25); symptom-

atic severe low-gradient AS with normal EF or paradoxical low-flow severe AS (n = 24).

Belonging to the first (1) or the second (0) group was used as an interaction term with

rs2296545. In females, the tested interaction was not significant for LVM/BSA (p = 0.47 and

p = 0.32 for crude and full model, respectively) in the additive genetic model as well as for

RWT (p = 0.14 and p = 0.38, for crude and full model respectively) in the dominant genetic

Fig 1. Echocardiographic parameters of left ventricular hypertrophy classified by genotype at rs2296545 and gender. BSA, body

surface area; IVST, intraventricular septal thickness in diastole; LVEDD, left ventricular end-diastolic diameter; LVM, left ventricular mass;

PWT, posterior wall thickness in diastole; RWT, relative wall thickness; *P < 0.05, **P < 0.005, ***P < 0.0005; crude model; generalized

linear models. (A) Association between rs2296545 and natural logarithm of LVM/BSA in the additive genetic model. (B) Association between

rs2296545 and natural logarithm of RWT in the dominant genetic model. (C) Natural logarithm of LVEDD/BSA based on rs2296545 in the

additive genetic model. (D) Association between rs2296545 and natural logarithm of (IVST+PWT)/BSA in the additive genetic model.

https://doi.org/10.1371/journal.pone.0186729.g001
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model. The above interactions were not significant in males as well. These results allowed us to

conclude that the effect of rs2296545 on LVM/BSA or RWT is not different in the two groups.

Transcription factor binding site analysis

C allele on the reference DNA strand, which corresponds to Asp at amino acid residue 37,

increased the predicted DNA binding affinity of the following transcription factors: ATF,

CBF2, CREB, GATA-1, Nkx5-1, PEBP, TGA1, TREB-1, but decreased binding probability for

CACCC-binding factor, COUP-TF2, GCN4, HNF-4, Nrf-2.

Discussion

In the present study of 657 patients with severe AS, we found an association of Asp37 variant

at amino acid residue 37 of renalase protein with left ventricular hypertrophy in female sub-

jects in an additive genetic model. In another study reported by Farzaneh-Far et al, Asp37 vari-

ant was associated with higher cardiac mass in recessive genetic model in patients with stable

coronary disease[16]. However, that study included 84.7% male subjects (compared to our

population which was 57.7% male, and unfortunately gender-specific data are not shown. Dif-

ferences in LVH based on rs2296545 genotypes in our population can be detected in the entire

group but they are solely caused by female data. Also, our study subjects with significant CAD

comprised a substantially smaller group (21.0%), but results in patients with or without CAD

are similar. A common factor between the CAD population and AS patients is a hypoxia of

ventricular cardiomyocytes. Additionally, pressure overload due to diminished aortic valve

Table 3. Mean values of the echocardiographic parameters based on rs2296545 genotypes in females.

Crude Adjusted*

Glu/Glu

(N = 88)

Glu/Asp

(N = 134)

Asp/Asp

(N = 48)

PADD Glu/Glu

(N = 87)

Glu/Asp

(N = 134)

Asp/Asp

(N = 48)

PADD

log LVM/BSA, g/m2 5.155 (0.027) 5.226 (0.022) 5.296 (0.037) 0.0021 5.188 (0.025) 5.215 (0.020) 5.272 (0.033) 0.0551

log LVM/height, g/m 5.221 (0.027) 5.292 (0.022) 5.359 (0.037) 0.0023 5.252 (0.025) 5.281 (0.020) 5.334 (0.033) 0.0586

log LVM/height2.7, g/m2.7 4.411 (0.028) 4.492 (0.023) 4.579 (0.038) 0.0005 4.445 (0.026) 4.481 (0.020) 4.553 (0.034) 0.0167

log LVEDD, mm 3.879 (0.013) 3.859 (0.010) 3.880 (0.017) 0.7889 3.881 (0.012) 3.858 (0.009) 3.881 (0.016) 0.7635

log LVEDD/BSA, mm/m2 3.337 (0.014) 3.323 (0.012) 3.358 (0.020) 0.5936 3.341 (0.013) 3.321 (0.010) 3.359 (0.018) 0.6546

log LVEDD/height, mm/m 3.403 (0.013) 3.389 (0.010) 3.421 (0.017) 0.6182 3.406 (0.012) 3.387 (0.009) 3.422 (0.016) 0.6690

log IVST, mm 2.580 (0.016) 2.640 (0.013) 2.664 (0.021) 0.0008 2.599 (0.014) 2.635 (0.011) 2.647 (0.019) 0.0312

log IVST/BSA, mm/m2 2.038 (0.018) 2.103 (0.014) 2.143 (0.024) 0.0003 2.059 (0.016) 2.098 (0.013) 2.125 (0.022) 0.0143

log IVST/height, mm/m 2.104 (0.016) 2.170 (0.013) 2.206 (0.022) 0.0001 2.124 (0.014) 2.164 (0.011) 2.187 (0.019) 0.0074

log PWT, mm 2.523 (0.014) 2.590 (0.011) 2.598 (0.020) 0.0007 2.541 (0.013) 2.584 (0.010) 2.581 (0.017) 0.0323

log PWT/BSA, mm/m2 1.981 (0.017) 2.053 (0.014) 2.076 (0.024) 0.0005 2.001 (0.016) 2.047 (0.013) 2.059 (0.022) 0.0219

log PWT/height, mm/m 2.046 (0.015) 2.119 (0.012) 2.139 (0.021) 0.0001 2.066 (0.013) 2.114 (0.011) 2.122 (0.018) 0.0079

log (IVST+PWT), mm 3.246 (0.014) 3.310 (0.011) 3.326 (0.019) 0.0003 3.264 (0.012) 3.305 (0.010) 3.309 (0.016) 0.0175

log (IVST+PWT)/BSA, mm/m2 2.704 (0.017) 2.773 (0.013) 2.805 (0.023) 0.0002 2.724 (0.015) 2.768 (0.012) 2.787 (0.020) 0.0109

log (IVST+PWT)/height, mm/m 2.770 (0.015) 2.840 (0.012) 2.868 (0.020) 3.48 x 10−05 2.789 (0.013) 2.834 (0.010) 2.850 (0.017) 0.0035

Glu/Glu

(N = 88)

Glu/Asp or Asp/Asp

(N = 182)

PDOM Glu/Glu

(N = 87)

Glu/Asp or Asp/Asp

(N = 182)

PDOM

log RWT -0.664 (0.021) -0.580 (0.015) 0.0012 -0.647 (0.019) -0.587 (0.013) 0.0097

Data are expressed as the mean and (standard error). N, number of individuals; BSA, body surface area; IVST, intraventricular septal thickness in diastole;

LVEDD, left ventricular end-diastolic diameter; LVM, left ventricular mass; PWT, posterior wall thickness in diastole; RWT, relative wall thickness; log,

natural logarithm; PADD, p value for additive model; PDOM, p value for dominant model;

* adjusted for age, ejection fraction, maximal aortic gradient.

https://doi.org/10.1371/journal.pone.0186729.t003
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area greatly potentiates the effect of concomitant pathological stimuli. This effect is reflected

by LVH since mean LVM/BSA in our group doubled the mean value in the CAD population

described by Farzaneh-Far et al. As described later, one can hypothesize that Asp37 variant

effect is pronounced under hypoxia and pressure overload condition when glycolysis is

increased and renalase becomes more important to preserve primary metabolism. Thus, 2

Asp37 variants were needed to produce an effect on LVM/BSA in the CAD population, but in

AS the effect was evident with each dose of Asp37 variant. These 2 studies included different

populations yet an association between Asp37 variant and left ventricular hypertrophy was

confirmed, suggesting a potential causal relationship.

In women Asp37 variant was strongly associated with thickness of the posterior wall and

interventricular septum as well as LVM, regardless of indexation method. Women heterozy-

gous or homozygous for Asp37 had also higher RWT. In males, only a weak association of

IVST with renalase Asp37 variant was observed. In previous studies we also reported sex-

related differences in the association between common genetic polymorphism of the chymase

CMA1 gene[17] and ACE gene[28] with left ventricular mass.

There are significant sex differences in the response to pressure overload. Females develop

more concentric hypertrophy with greater RWT, IVST/BSA, PWT/BSA and a better systolic

function and higher transvalvular gradients than males as we previously described using a

large number of patients with AS[17]. Observations have shown that after valve replacement,

LVH reversed more frequently and faster in women than in men[29].

Hypertrophic response to pressure overload initially comprises an increase in cardiomyo-

cyte size and amount of contractile proteins without cellular proliferation. Hypertrophy later

becomes maladaptive with an increased formation of fibrotic tissue, resulting in dilatation

and impaired function of the left ventricle[29, 30]. Differences in the hypertrophic response

between the sexes may be due to the different molecular mechanism involved. Regitz-Zagrosek

et al.[31] performed genome-wide expression profiling of myocardial samples from subjects

undergoing aortic valve replacement. Transcriptome analysis revealed that fibrosis-related

genes were upregulated in overloaded male ventricles, while extracellular matrix-related and

inflammatory genes were downregulated in female samples. These gene expression patterns

were associated with the tissue content of collagen and inflammatory cells detected with

immunostaining. It is plausible that sex-related response to pressure overload may be modu-

lated by ischemia.

Renalase circulates in peripheral blood and is strongly expressed in the heart and kidney.

There are no data on sex-related differences in these organs and circulating levels of renalase.

Until now, renalase was considered a kidney-derived enzyme degrading catecholamines. In

experimental models lower expression of the renalase gene was associated with higher blood

pressure and administration of recombinant protein had a hypotensive effect in Dahl salt-sen-

sitive rats[7]. Nephrectomy induces a fall in plasma levels of renalase. After 5/6 nephrectomy

male rats develop higher blood pressure and left ventricular hypertrophy with increased con-

tent of collagen. These changes were significantly ameliorated by administration of renalase

[32]. In humans, renalase blood levels correlate with glomerular filtration rate and after bilat-

eral nephrectomy patients have no renalase expression and no detectable plasma level and

activity[6]. Many studies reported a correlation between plasma renalase level and systolic

blood pressure, age and presence of heart failure (reviewed in[33]). Based on the postulated

mechanism, renalase was considered an enzyme which protects tissues in the state of adrener-

gic activation and excess of catecholamines.

Catecholamines promote hypertrophy of cardiac myocytes and hyperplasia of cardiac fibro-

blasts and they can arrive to the heart from the periphery or can be synthesized locally[34].

Both local release of norepinephrine from cardiac sympathetic nerves and epinephrine from
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adrenal glands could be involved in the left ventricle remodeling in AS. Chronic pressure over-

load induces adrenal hypertrophy and increases epinephrine synthesis[35]. Elevated cardiac

epinephrine content and plasma norepinephrine concentrations were also described in rats

after transverse aortic constriction[36].

In our study Glu37Asp polymorphism was strongly associated with the thickness of the left

ventricle walls but not with its internal dimension. Therefore adrenergic stimulation of cardio-

myocytes seems more important for this pattern of LVH than catecholamine-related activation

of cardiac fibroblasts, resulting not only in fibrosis but also in collagen degradation in mice

[37].

Recent findings question the role of renalase as a catecholamine degrading enzyme. Studies

by Moran et al suggest that the metabolic function of renalase is to oxidize isomeric NAD(P)H

molecules 2- and 6-dihydroNAD (which are potent inhibitors of primary metabolism dehy-

drogenases) to β-NAD(P)+ and thereby eliminating potential injury to intracellular respiratory

activity[9, 38].

Among the three dehydrogenases tested, both 2- and 6-dihydroNAD had high affinity for

lactate dehydrogenase (LDH) but no significant affinity for lipoamide dehydrogenase. 6-dihy-

droNAD had exceedingly high affinity for malate dehydrogenase (MDH) but 2-dihydroNAD

had only a modest inhibitory effect for this enzyme[9]. MDH is an important enzyme for mito-

chondrial oxidative metabolism. LDH converts pyruvate to lactate by utilizing the NADH gen-

erated from glycolysis. This is an efficient manner to oxidize cytosolic NADH to NAD+, which

allows for an increase in the glycolytic rate as the regeneration of NAD+ is a rate-limiting step

for glycolysis[39]. It is a widely held belief that hypertrophied and failing hearts demonstrate

increased glycolysis[40], and lactate dehydrogenase activity has been shown to increase in

experimental models of cardiac hypertrophy[41, 42]. Therefore the primary metabolism

appears to be a switch from mitochondrial oxidative metabolism to an increase in glucose

uptake and glycolysis[43]. Interestingly, a gender-related difference in glycolysis was found in

hypertrophied rat hearts subjected to ischemia[44]. We can hypothesize that lower renalase

availability could cause an increase in 2- and 6-dihydroNAD and subsequently greater inhibi-

tion of LDH which will lead to decreased concentration of NAD+ and increased NADH. The

data from ischemia–reperfusion injury in vivo model where the myocardial levels of NAD+

and ATP decreased when renalase was knocked down by siRNA[45] seem to support the

above thesis. Agonist-induced cardiac hypertrophy is associated with loss of intracellular levels

of NAD but not with exercise induced physiologic hypertrophy. Exogenous addition of NAD

was capable of maintaining intracellular levels of NAD and blocking the agonist-induced car-

diac hypertrophic response in vitro as well as in vivo. NAD treatment mediated through acti-

vation of SIRT3 blocked the activation of pro-hypertrophic Akt1 signaling and augmented the

activity of anti-hypertrophic LKB1-AMPK signaling in the heart, preventing subsequent

induction of mTOR-mediated protein synthesis[46].

The plasma membrane calcium/calmodulin dependent ATPase (PMCA4b)is an extracellu-

lar receptor of renalase. The action mediated through this receptor promotes cell survival and

defense against cisplatin toxicity through phosphorylation of p38 (MAPK) in human kidney

embryonic cell line (HK-2). This was established using PMCA4b-targeting siRNAs and Calox-

in1b, a peptide inhibitor of PMCA4b[10]. PMCA4b gene expression in the renalase knockout

mouse was 11.4 fold lower than in wild type (WT) control; corresponding PMCA4b protein

expression in the renalase knockout was 63.5±7.5% lower than in WT[10]. It was found that

PMCA4b affects pressure-overload hypertrophy in a cell specific manner[11, 47].

Interestingly, PMCA4b is involved in the regulation of catecholamine secretion by the rat

adrenal medulla cells[48] and is itself regulated by 17β-estradiol[49].
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It was initially suggested that a conserved amino acid change at residue 37 (glutamic to

aspartic acid) is located within the flavin-adenine dinucleotide-binding domain and Asp37

variant is associated with a 24-fold decrease in affinity for NADH, a 2.3-fold reduction in max-

imal renalase enzymatic activity and a lower catecholamine degradation rate[16]. Recently,

direct catecholamine catabolism by renalase[38] and the functionality of the FAD domain[8]

were questioned. Moreover the 20 amino acid renalase peptide (RP-220, aa 220–239), which is

conserved in all known isoforms but is devoid of any detectable oxidase activity and lacks the

FAD domain, was as effective as intact renalase protein at protecting HK-2 cells and WT mice

against toxic and ischemic injury[50] and acts through PMCA4b[10]. The question then arises

as to the functional meaning of the Glu37Asp polymorphism for the RNLS gene itself and for

the pathophysiology of pressure overload hypertrophy. Binding of transcription factors to

regulatory DNA regions in place of canonical nucleosomes triggers chromatin remodeling

and results in nuclease hypersensitivity[51]. Interestingly, according to data available from

ENCODE consortium, rs2296545 polymorphism is located in the DNase I–hypersensitive site

[19], which is important for gene expression regulation.

Approximately 15% of human codons are dual-use codons (“duons”) that simultaneously

specify both amino acids and transcription factor recognition sites[52]. Single-nucleotide vari-

ants within duons can cause not only amino acid change but can also directly alter transcrip-

tion factor binding[19]. The computational prediction revealed that rs2296545 affects few

transcription factor binding sites including CREB[53] and ATF[54]–known factors involved

in pathological hypertrophic response of the myocardium–and could influence RNLS gene

expression in this mechanism.

In analysis of over 114 cell and tissue types and states sampled from 166 individuals,

rs2296545 did not directly influence the chromatin architecture of individual regulatory

regions in an allele-specific fashion[19], but only healthy fetal and adult heart tissues were rep-

resented among the analyzed samples. In AS, left ventricular tissue is subjected to pressure

overload and hypoxia which induce a specific set of transcription factors. Some of those factors

in which transcription factor binding sites are affected by rs2296545 may be absent in normal

cardiac tissue. It is postulated that each cell/tissue contains a specific set of gene regulators[51]

out of the known 1400 human transcription factors[55] and this could be especially true for

pathological tissue.

There are some limitations in our study which should be taken into consideration. First, we

did not investigate the functional consequences of the polymorphism in individual patients at

the left ventricular tissue level, such as RNA and protein concentration. Functional studies

using animal models of pressure overload hypertrophy are required to elucidate the molecular

mechanism through which rs2296545 affects the RNLS promoter activity in cardiac cells sub-

jected to pressure overload, cardiac catecholamine concentration, cardiac primary metabo-

lism, and finally cardiac hypertrophy in gender-related manner. Second, the present study

consisted solely of Caucasians and the results may not apply to other populations. Third, the

AS patient population is heterogeneous[56] but the effect of rs2296545 on LVM/BSA or RWT

in our study was not different in the group consisting of patients with symptomatic severe

high-gradient AS without significant coronary artery disease or hypertension, compared to the

group formed by the remaining patients. Fourth, due to the extreme hypertrophy present in

some of our patients, one could question its etiology differences, such as hypertrophic cardio-

myopathy (HCM). We did not perform exome sequencing in patients with extreme values of

LVM/BSA to rule out HCM, but with the prevalence of 1/200 to 1/500 in the general popula-

tion, HCM would have only a small effect on our results. Moreover all patients with the LVM/

BSA above 90 quantile (LVM/BSA> 282.2 g/m2) reduced LVM after surgery, which makes

diagnosis of HCM very unlikely in these patients.
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In conclusion, we have found the association of the renalase Glu37Asp polymorphism with

left ventricle hypertrophy in large group of females with AS. Our data suggest that renalase

plays a role in the hypertrophic response to pressure overload, however, the exact mechanism

requires further investigation.
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