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Abstract: Two aggregation-induced emission (AIE) macrocycles (DMP[5]-TPE and PCP[5]-TPE)
were prepared by embedding Tetraphenylethene (TPE) unit into the skeletons of Dimethoxypil-
lar[5]arene (DMP[5]) and [15]Paracyclophane ([15]PCP) at meso position, respectively. In crystal,
the PCP[5]-TPE showed a distorted cavity, and the incubation of hexane inside the DMP[5]-TPE
cavity caused a distinct change in the molecular conformation compared to PCP[5]-TPE. There was
no complexation between PCP[5]-TPE and 1,4-dicyanobutane (DCB). UV absorption experiments
showed the distorted cavity of DMP[5]-TPE hindered association with DCB.

Keywords: pillararene; [15]Paracyclophane; aggregation-induced emission; meso functionalization;
host–guest

1. Introduction

Macrocyclic molecules are the most important supramolecular hosts, with multivalent
binding sites and ring-like structures [1]. Pillararenes are new generation macrocyclic
molecules, made up of hydroquinone units linked by methylene bridges [2–5]. The struc-
tures of pillararenes are similar to that of calixarenes, but are much more symmetrical [1].
Pillararenes show excellent host–guest binding properties, which can not only recognize
ionic guests [6,7], but also interact strongly with selective neutral objects [8,9]. [15]Para-
cyclophane ([15]PCP) received a great deal of attention since the first report by Huang in
2018 [10]. [15]PCP is a new carbon-bridged macrocycle, and its structure is similar to that
of pillar[5]arene. [15]PCP can be synthesized by the hydrodeoxygenation of pillar[5]arene
via aryl fluorosulfonate intermediates with a high yield.

There are several potential modification positions in pillararene, such as rims [4,11–14],
meta, and bridging meso positions [15]. Current explorations of function pillararene still
focus on the meta or rim positions. However, the functionalization of pillararene at the
meso position has not been as extensively explored as that of their meta or rim positions.
Meanwhile, due to the absence of the alkoxy groups, there are fewer modification sites
than pillararenes, so the modification of the meso position of [15]PCP is particularly
important [16]. Unlike the rim positions, the modifications at the meso positions may
distort the cavity of the pillararene, which depends on the structure of the introduced
substituents [15,17]. Meanwhile, a distorted cavity may exhibit different host–guest binding
properties. Therefore, it is important to explore the host–guest binding properties of the
meso position of pillararene.

Tetraphenylethylene (TPE) is an aggregation-induced emission (AIE) molecule that
has been extensively studied. The TPE skeleton owns propeller-like conformation with one
double-bond stator and four phenyl rotors [18–22]. The TPE unit can be embedded into the
skeletons of pillararenes by a few reactions. To maintain the lower-energy state of the TPE
unit, the skeletons of pillararene are deformed to keep their propeller-like conformation [15].
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2. Results and Discussion

In this research, we report two macrocycles (DMP[5]-TPE and PCP[5]-TPE) prepared
by embedding the TPE unit into the meso position of the skeletons of Dimethoxypil-
lar[5]arene (DMP[5]) and [15]PCP, respectively.

As shown in Scheme 1, DMP[5] the meso position anion was generated by deprotona-
tion of DMP[5] with 5.0 eqiv. of n-butyllithium. Then, the DMP[5] anion proceeded to the
nucleophilic addition reaction with 6.0 equiv. of benzophenone, which was followed by
dehydration using p-toluenesulphonic acid as a catalyst in the refluxing toluene, resulting
in DMP[5]-TPE with an overall yield of 6.7% (Figures S1–S4). The synthesis of PCP[5]-TPE
was carried out in the same way as for the synthesis of DMP[5]-TPE, but [15]PCP was used
instead of DMP[5], and 4,4’-dimethoxybenzophenone instead of benzophenone, resulting
in PCP[5]-TPE with an overall yield of 95% (Figures S5–S8). Unexpectedly, under the same
experimental procedures, the yield of DMP[5]-TPE was much lower than PCP[5]-TPE.
Two main reasons may account for this significant difference: (1) In common solvents for
lithiation reactions, DMP[5] is only slightly more soluble in THF, and so a large amount of
undissolved DMP[5] could not participate efficiently in the lithiation reaction. Contrarily,
[15]PCP has good solubility in THF. (2) The structure of DMP[5] contains ten methoxy
groups, and these electron-donating groups could increase the electron density of the meso
position and decrease the lithiation reaction yield. The identities of the above-mentioned
products were all unequivocally confirmed by NMR spectroscopy and high-resolution
mass spectroscopy.
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Scheme 1. Synthesis of DMP[5]-TPE and PCP[5]-TPE. PTSA = p-toluenesulphonic.

Take the 1H NMR of DMP[5]-TPE as an example (Figure S1). The resonance at
δ = 7.02 ppm as a single peak was assigned to the phenyl protons of the TPE unit outside
the skeleton of pillar[5]arene. The resonance peaks of ∆ = 6.72, 6.66, 6.65, 6.36 and 6.18 ppm
were assigned to the phenyl protons of the pillar[5]arene, the δ = 3.81 and 3.72 resonance
peaks were assigned to the remaining meso protons, and the δ = 3.66, 3.61, 3.54, 3.38,
and 2.65 ppm resonance peaks were assigned to the methoxy groups protons. Remarkably,
the resonance of the six protons of the methoxy groups at δ = 2.65 ppm as a single peak
showed a high-field shift, which indicated that the two methoxy groups rotated in the
cavity of the pillar[5]arene due to the propeller-like conformation of the TPE unit.

Fortunately, the crystal of DMP[5]-TPE and PCP[5]-TPE was obtained by slowly evap-
orating the mixed solutions of dichloromethane and petroleumether. As shown in Figure 1,
the TPE unit was embedded in the skeletons of the pillararenes successfully. With no com-
plexation with the guest, the pillar scaffold of PCP[5]-TPE adopts an exceedingly distorted
conformation (Figure 1a and Figure S9). The dihedral angles between the phenyl moieties
of the TPE unit and the ethylene plane are 37.98◦, 47.2◦, 52.31◦, and 62.13◦, respectively.
In contrast, due to the complexation with hexane, DMP[5]-TPE shows an almost symmet-
rical cavity identical to that of DMP[5] (Figure 1b and Figure S11). The dihedral angles
between the phenyl groups and the planes constructed by the five-pillar meso carbons are
44.21◦, 74.04◦, 87.40◦, and 87.75◦, respectively. These results indicate that the combination
of host–guest will induce a significant change in the molecular conformation.
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of PCP[5]-TPE and DMP[5]-TPE (c,d), Hexane solvent molecules are omitted for clarity.

PCP[5]-TPE crystalizes in a monoclinic P21/n space group. Short ArH- contacts
exist between the adjacent TPE units (Figure 1c and Figure S10). These intermolecular
contacts make the molecules more tightly connected and further restrict the intramolec-
ular movement of the TPE units, leading to the intense fluorescence in the polymerized
state. Further measurements of the molecular arrangements revealed the intermolec-
ular ArH- interaction with a minimum contact distance of 3.206 Å. The same study
for DMP[5]-TPE showed that DMP[5]-TPE crystalized in an orthorhombic Pbca space
group, and that there was an intermolecular ArH- interaction with a minimum contact
distance of 3.058 Å (Figure 1d and Figure S12). Therefore, DMP[5]-TPE is packed more
tightly than PCP[5]-TPE.

The fluorescent emission properties of DMP[5]-TPE and PCP[5]-TPE were investi-
gated in the THF–H2O mixture at excitation of 300 nm. As shown in Figure 2, dilute
solution of 1 × 10−5 mol/L DMP[5]-TPE in THF still presented a weak fluorescence emis-
sion, and the dilute solution of PCP[5]-TPE in THF emitted no light. This was most likely
due to the steric hindrance exerted by the methoxy groups in the TPE unit embedded
in the skeleton of DMP[5]-TPE, which leads to a greater restriction on the TPE phenyl
groups’ rotational freedom. With the gradual addition of water into the dilute solution
of DMP[5]-TPE in THF, when the f w (the volume percentage of H2O in the THF–H2O
mixture) was below 70%, the fluorescence emission remained almost unchanged in profile.
However, when f w increased to over 80%, the fluorescence intensity significantly increased
(Figure 2a,b, Figures S13 and S14). Meanwhile, the PCP[5]-TPE solution in the THF–
H2O mixture displayed a significant enhancement in fluorescence when f w exceeded 90%
(Figure 2c,d, Figures S15 and S16). In addition, in terms of the fluorescence wavelength,
with the f w increasing from 90% to 99%, the aggregation-induced fluorescence of
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DMP[5]-TPE showed a 12 nm blue shift from 460.2 nm to 448.2 nm. At the same time,
PCP[5]-TPE showed a 3.4 nm blue shift from 475 nm to 471.6 nm. In the same experiments
for free TPE, a remarkable fluorescence enhancement was observed when f w increased to
95% (Figure 2e,f, Figures S17 and S18). The f w increase from 95% to 99% was accompanied
by a blue shift in the emission wavelength of 1.1 nm from 462.3 nm to 460.2 nm. The earlier
fluorescence emission enhancement of DMP[5]-TPE and PCP[5]-TPE compared to free
TPE suggested that the pillararene structure strongly restricted the rotational freedom of
the TPE phenyl groups.
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in THF excitation at 300 nm).

Subsequently, the binding properties of DMP[5]-TPE and PCP[5]-TPE were first
performed by 1H NMR (Figure 3, Figure 4, Figure S19 and S20). As the guest for the host–
guest interaction research, 1,4-dicyanobutane (DCB) was selected. As shown in Figure 3,
The 1H NMR spectra of the solution of DMP[5]-TPE in CDCl3 in the absence and presence
of the DCB guest were recorded. For the complex, on the NMR timescale, a slow exchange
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was observed. The resonances of the new species are consistent with the formation of
an interpenetrated complex. In the presence of 1.0 equivalent DCB, the five resonance
peaks of the phenyl protons of the pillar[5]arene skeleton were merged into a slope-shaped
resonance peak accompanied by a minor low-field shift. At the same time, the resonance
assigned to phenyl protons of the TPE unit outside the skeleton of pillar[5]arene were
shown as multiplet peaks. The remaining meso protons and methoxy groups protons of the
pillararene showed a double peak signal. Especially, the disappearance of the signal of the
methoxy groups at δ = 2.65 ppm suggested that the distortion of the cavity of DMP[5]-TPE
decreased and the cavity became slightly symmetric. Due to the inclusion-induced shielding
effects with the presence of DMP[5]-TPE, the peaks of the methylene protons of the DCB
showed a high-field shift and broadening effects (∆δ = −2.75 and −3.2 ppm for Ha and Hb).
The broadening and field shift of the resonance peaks of DMP[5]-TPE and the DCB mixtures
indicated that the host, DMP[5]-TPE (wheel), was threaded by guest G (axle). DMP[5]-TPE
and DCB could form an inclusion host–guest complex.
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Unexpectedly, for the PCP[5]-TPE, as shown in Figure 4, even with the addition of
two equivalents of DCB, the peaks of PCP[5]-TPE and DCB showed no observable shifts
or broadening. This phenomenon indicated that no complexation, or weak complexation
between PCP[5]-TPE and DCB, could be attributed to the absence of the methoxy groups in
the [15]PCP structure because the dipole–dipole interaction between the methoxy groups
and DCB played a leading role in the host–guest binding [1,23].

The stoichiometry of complexation between DMP[5]-TPE and DCB was further in-
vestigated by Job’s plot method based on the UV-vis absorption experiments (Figure S21).
Which indicated the 1:1 binding stoichiometry between DMP[5]-TPE and DCB. Further-
more, the ESI–MS spectrum of DMP[5]-TPE and DCB equimolar mixture showed one
intense peak at m/z 1022.46 for the 1:1 host–guest complex ([DMP[5]-TPE + DCB]+), which
also indicated the formation of 1:1 host–guest complex between DMP[5]-TPE and DCB
(Figure S22). In order to determine the association constant for DCB ⊂ DMP[5]-TPE in
CHCl3, UV-Vis titration experiments with a constant concentration of DMP[5]-TPE and
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varying concentrations of DCB were carried in CHCl3. The association constant (Ka) of
DCB ⊂ DMP[5]-TPE was determined to be (1.33 ± 0.05) × 104 M−1 (Figure S23). In order
to investigate the changes of the host–guest binding properties of the meso position of
pillararene, DMP[5] was also tested in the same manner. The association constant (Ka) of
DCB ⊂ DMP[5] was determined to be (2.14 ± 0.08) × 104 M−1 (Figure S24). The association
constants for DCB ⊂ DMP[5]-TPE and DCB ⊂ DMP[5] were both in the vicinity of 104 M−1

in CHCl3, and DCB ⊂ DMP[5]-TPE was slightly lower. The 1H NMR spectra of the solu-
tion of DMP[5]-TPE in CDCl3 in the presence of the DCB guest showed the re-symmetry of
the cavity of DMP[5]-TPE. Thus, DCB was required to overcome the hindrances of the dis-
torted cavity during the host–guest binding process. This could possibly be the reason for
the decreased association constant for DMP[5]-TPE compared to the DMP[5] (Table S1).Molecules 2020, 25, x FOR PEER REVIEW 6 of 8 
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Figure 4. (A) 1H NMR spectra of DCB (1 mM), (B) Partial 1H NMR spectra of the mixed solution
of PCP[5]-TPE (1 mM) and DCB (1 mM), (C) Partial 1H NMR spectra of the mixed solution of
PCP[5]-TPE (1 mM) and DCB (2 mM), (D) 1H NMR spectra of PCP[5]-TPE (1 mM). * = solvent.

3. Conclusions

In conclusion, we synthesized two AIE macrocycles (DMP[5]-TPE and PCP[5]-TPE)
by embedding the TPE unit into the skeletons of DMP[5] and [15]PCP at meso position,
respectively. DMP[5]-TPE and PCP[5]-TPE both showed a typical AIE nature. A crystal
structure analysis revealed the distortion of the PCP[5]-TPE cavity, which maintained
the lower-energy state of TPE unit, while the DMP[5]-TPE cavity was nearly symmetric
due to the complexation with the guest. The 1H NMR spectra of the solution of DMP[5]-
TPE CDCl3 in the presence of the DCB guest indicated the host–guest binding between
DMP[5]-TPE. Conversely, PCP[5]-TPE could not form the host–guest complex with DCB,
which was attributed to the absence of alkoxy groups in [15]PCP structure. The association
constant for DCB ⊂ DMP[5]-TPE in CHCl3 was lower than DCB ⊂ DMP[5], due to the
hindrances of the distorted cavity.

Supplementary Materials: The following are available online. Figure S1: 1H NMR spectrum of
DMP[5]-TPE in CDCl3, Figure S2: 13C NMR spectrum of DMP[5]-TPE in CDCl3, Figure S3: HRMS
data for DMP[5]-TPE (Calculated [M + H]+: C58H59O10

+ = 915.4103, Found: 915.3973), Figure S4:
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HRMS data for DMP[5]-TPE (Calculated [M + Na]+: C58H58NaO10
+ = 937.3922, Found: 937.3965),

Figure S5: 1H NMR spectrum of PCP[5]-TPE in CDCl3, Figure S6: 13C NMR spectrum of PCP[5]-TPE
in CDCl3, Figure S7: HRMS data for PCP[5]-TPE (Calculated [M + Na]+: C50H42NaO2

+ = 697.3077,
Found: 697.3122), Figure S8: HRMS data for PCP[5]-TPE (Calculated [M]+: C50H42O2

+ = 674.3179,
Found: 674.3195), Figure S9: Top (a) and side view (b) of crystal structure PCP[5]-TPE, Figure S10:
Molecular packing of PCP[5]-TPE, Figure S11: Top (a) and side view (b) of crystal structure DMP[5]-
TPE. Hexane solvent molecules are omitted for clarity, Figure S12: Molecular packing of DMP[5]-TPE.
Hexane solvent molecules are omitted for clarity, Figure S13: Fluorescence spectra of DMP[5]-TPE
(1 × 10−5 M), Figure S14: Plot of the highest fluorescence intensity in different THF/H2O mixed
solution of DMP[5]-TPE, Figure S15: Fluorescence spectra of PCP[5]-TPE (1 × 10−5 M), Figure S16:
Plot of the highest fluorescence intensity in different THF/H2O mixed solution of PCP[5]-TPE,
Figure S17: Fluorescence spectra of PC[5]-TPE (1 × 10−5 M), Figure S18: Plot of the highest fluo-
rescence intensity in different THF/H2O mixed solution of PCP[5]-TPE, Figure S19: (A) 1H NMR
spectra of DCB (1 mM), (B) Partial 1H NMR spectra of mixed solution of DMP[5]-TPE (1 mM) and
DCB (1 mM), (C) 1H NMR spectra of DMP[5]-TPE (1 mM). * = solvent, Figure S20: (A) 1H NMR
spectra of DCB (1 mM), (B) Partial 1H NMR spectra of mixed solution of PCP[5]-TPE (1 mM) and
DCB (1 mM), (C) Partial 1H NMR spectra of mixed solution of PCP[5]-TPE (1 mM) and DCB (2 mM),
(D) 1H NMR spectra of PCP[5]-TPE (1 mM). * = solvent, Figure S21: Job plot showing the 1: 1 stoi-
chiometry of the complex between DMP[5]-TPE and DCB in CHCl3 by plotting the ∆δ in absorbance
of the 280nm observed by uv-vis against the mole fraction of guest (Xguest). ([host] + [guest] =
2 × 10−5 M, Figure S22: ESI-MS spectrum of the host−guest complex formed between DMP[5]-TPE
and DCB. (Calculated [DMP[5]-TPE + DCB]+: C64H66N2O10

+ = 1022.4712, Found: 1022.4657), Figure
S23: (a) The absorbance of DMP[5]-TPE and DCB mixture. (b) The Red line was obtained from
the nonlinear curve-fitting (Ka = ((1.33 ± 0.05) × 104 M−1, R2 = 0.9923), Figure S24: (a) The ab-
sorbance of DMP[5] and DCB mixture. (b) The Red line was obtained from the nonlinear curve-fitting
(Ka = ((2.14 ± 0.08) × 104 M−1, R2 = 0.9928), Table S1: Association constant for DMP[5], DMP[5]-TPE
and PCP[5]-TPE.
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