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Abstract. Tissue factor (TF) expressed at the protein level 
includes two isoforms: The membrane-bound full-length TF 
(flTF) and the soluble alternatively spliced TF (asTF). flTF is 
the major thrombogenic form of TF, whereas asTF is more 
closely associated with tumor growth, angiogenesis, metastasis 
and cell growth. In order to further investigate the different 
expression and functions of TF splice variants, the expression 
of these two splice variants were detected in numerous cell 
strains and tissues in the present study. Quantitative polymerase 
chain reaction was used to measure the transcript levels of the 
TF variants in 11 human cell lines, including cervical cancer, 
breast cancer, hepatoblastoma, colorectal cancer and umbilical 
vein cells, and five types of tissue specimen, including 
placenta, esophageal cancer, breast cancer, cervical cancer 
(alongside normal cervical tissues) and non-small cell lung 
cancer (alongside adjacent and normal tissues). Furthermore, 
the effects of chenodeoxycholic acid (CDCA) and apolipo-
protein M (apoM) on the two variants were investigated. The 
results demonstrated that flTF was the major form of TF, and 
the mRNA expression levels of flTF were higher than those of 
asTF in all specimens tested. CDCA significantly upregulated 
the mRNA expression levels of the two variants. Furthermore, 
overexpression of apoM promoted the expression levels of 
asTF in Caco‑2 cells. The mRNA expression levels of asTF 
in cervical cancer tissues were significantly higher than in the 

corresponding normal tissues. To the best of our knowledge, 
the present study is the first to compare the expression of flTF 
and asTF in various samples. The results demonstrated that 
CDCA and apoM may modulate TF isoforms in different 
cell lines, and suggested that asTF may serve a role in the 
pathophysiological mechanism underlying cervical cancer 
development. In conclusion, the TF isoforms serve important 
and distinct roles in pathophysiological processes.

Introduction

Tissue factor (TF) is a 47‑kD transmembrane cell‑surface 
glycoprotein, which is primarily known as the initiator of the 
blood coagulation cascade (1). Human TF is genetically encoded 
by the TF gene, which is transcribed to TF premature mRNA. 
Alternative splicing of TF results in three naturally occurring 
protein isoforms: Full‑length (fl)TF, alternatively spliced (as)TF 
and TF‑A. asTF and flTF serve important and distinct roles in 
various biological processes that involve vessel formation and 
maturation, and initiation of the blood coagulation cascade (2). 
asTF, which arises from exclusion of the fifth exon of the 
primary TF transcript, exhibits low prothrombogenic potential 
but is more closely associated with tumor growth, angiogenesis, 
metastasis and cell growth (3‑5). TF‑A, another splice variant, 
is only expressed at the mRNA level in a number of cancer 
cell lines and in endothelial cells (Fig. 1). To the best of our 
knowledge, the biological function of TF‑A mRNA is currently 
unknown; therefore, this splice variant was not taken into 
account in the present study (6‑8).

Few studies regarding TF expression have discriminated 
between flTF and asTF; therefore, it is necessary to investi-
gate the expression status of these two isoforms in different 
diseases. Bile acids are strong signaling molecules that are 
capable of influencing various biological processes, including 
inflammation, apoptosis, cancer progression and atheroscle-
rosis. Chenodeoxycholic acid (CDCA) is a bile acid that has 
been demonstrated to enhance ectopic vessel formation (9). 
Similarly, apolipoprotein M (apoM), which was discovered 
by Xu and Dahlbäck in 1999 (10), is mainly located in 
high‑density lipoprotein in the blood and has been demon-
strated to be associated with tumor growth, atherosclerosis 
and thrombosis (11‑13). In order to investigate the association 
between TF variants and CDCA/apoM, the difference in the 
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expression of TF variants in various cell strains and tissues 
was examined in the present study. The results of this study 
may contribute to further studies on the function and mecha-
nism of TF in associated diseases.

Materials and methods

Cell lines and cell culture. Human cervical cancer cell lines 
[C‑33A, human papilloma virus (HPV)‑negative; HeLa, 
HPV18‑positive; and SiHa, HPV16‑positive], human breast 
cancer cell lines (ZR‑75‑1, luminal A subtype; MCF‑7, luminal 
A subtype; BT‑474, luminal B subtype; MDA‑MB‑468, 
basal‑like subtype; and MDA‑MB‑231, basal‑like subtype), a 
human hepatoblastoma cell line (HepG2), a human colorectal 
cancer cell line (Caco-2) and a human umbilical vein cell 
line (EA.hy926) were purchased from the Cell Bank of Type 
Culture Collection of the Chinese Academy of Sciences 
(Shanghai, China). All cells were cultured according to their 
respective conditions and maintained in the Comprehensive 
Laboratory of The Third Affiliated Hospital of Soochow 
University (Changzhou, China).

The C‑33A, HeLa, SiHa, Caco‑2 and HepG2 cells were 
cultured in minimum essential medium (Gibco; Thermo 
Fisher Scientific, Inc., Waltham, MA, USA), and the MCF‑7 
and EA.hy926 cells were maintained and cultured in 
Dulbecco's modified Eagle's medium (Gibco; Thermo Fisher 
Scientific, Inc.). The BT‑474 and ZR‑75‑1 cells were cultured 
in RPMI‑1640 media (Gibco; Thermo Fisher Scientific, Inc.), 
whereas the MDA‑MB‑468 and MDA‑MB‑231 cells were 
cultured in Leibovitz's L‑15 medium (Gibco; Thermo Fisher 
Scientific, Inc.). All of the complete media were supplemented 
with 10% fetal bovine serum (Gibco; Thermo Fisher Scientific, 
Inc.) and 1% penicillin/streptomycin, and 10% non‑essential 
amino acid solution was added for the culture of cervical cancer 
cell lines. All cells were incubated at 37˚C in an atmosphere 
containing 5% CO2, with the exception of the MDA‑MB‑468 
and MDA‑MB‑231 cells, which were cultured at 37˚C in a 
humidified atmosphere containing 100% air.

The HepG2 and EA.hy926 cells were seeded in 6‑well 
plates with the concentration of 2x105 cells/well, and allowed 
to grow to 80‑90% confluence. Subsequently, they were 
washed and incubated in serum-free medium containing 
50 µM CDCA (Sigma‑Aldrich; Merck KGaA, Darmstadt, 
Germany) with 0.1% ethanol for 24 h at 37˚C. Total RNA was 
then extracted.

The apoM coding sequence was obtained by polymerase 
chain reaction (PCR) amplification from human genomic DNA 
(forward primer, 5'-GAG GAT CCC CGG GTA CCG GTC GCC 
ACC ATG TTC CAC CAA ATT TGG GCA GC‑3'; reverse 
primer, 5'-TCC TTG TAG TCC ATA CCG TTA TTG GAC AGC 
TCA CAG GCC TC-3') and was inserted into the Ubi-MCS- 
3FLAG‑CMVEGFP vector (cat. no. GV365; Shanghai 
Genechem Co., Ltd., Shanghai, China). Empty lentiviral vectors 
with green fluorescent protein (GFP) and lentivirus‑mediated 
human apoM overexpression vectors with GFP were prepared 
by Shanghai GeneChem Co., Ltd. In brief, 20 µg/ml of GV365 
vector, 15 µg/ml of pHelper 1.0 and 10 µg/ml of pHelper 2.0 
(Shanghai Genechem Co., Ltd.) were cotransfected into 293T 
cells (Cell Bank of Type Culture Collection of the Chinese 
Academy of Sciences, Shanghai, China) with enhanced 

infection solution and polybrene (Shanghai Genechem Co., 
Ltd.,), cultured at 37˚C for 48 h at 70% confluence. Lentiviral 
particles [1x109 transducing units (TU)/ml] were obtained from 
supernatants following centrifugation at a speed of 75,000 x g 
for 2 h at 4˚C. Subsequently, Caco‑2 and EA.hy926 cells at 50% 
confluence were incubated with the lentiviral vector (multi-
plicity of infection, 50; 3.75x108 TU) in dishes. After 12 h, 
culture medium containing the lentivirus was aspirated from 
the wells and fresh complete medium was added. The expres-
sion intensity of GFP was observed 3 days later and apoM 
overexpression was confirmed using reverse transcription- 
quantitative PCR (RT‑qPCR). Caco‑2 and EA.hy926 cells 
transfected with empty vectors (multiplicity of infection=50) 
were set up as the corresponding negative control (NC) groups.

Tissue sample collection. Placenta tissue specimens from 
20 women (age, 24‑33 years); esophageal cancer tissue 
specimens from 18 men and two women (age, 56‑72 years); 
14 breast cancer tissue specimens (age, 46‑74); 34 cervical 
cancer specimens (age, 35‑75 years) and 16 normal cervical 
control samples (age, 38‑65 years); and non‑small cell lung 
cancer (NSCLC) tissues and adjacent/normal tissues from 
seven men and nine women (age, 48‑76 years) were collected 
at the Third Affiliated Hospital of Soochow University 
between July 2014 and September 2016. The patients had not 
received preoperative radiotherapy and/or chemotherapy. The 
experimental protocols were approved by the Institutional 
Ethics Committee of the Third Affiliated Hospital of Soochow 
University and all patients provided written informed consent 
for this study. All patients had undergone modified radical 
operations. All tissue samples including placental tissues, 
esophageal cancer tissues, breast cancer tissues, cervical 
cancer tissues, normal cervical tissues, NSCLC tissues and 
their adjacent/normal tissues were excised and quickly frozen 
in liquid nitrogen until subsequent analysis.

RNA isolation and RT‑qPCR. Total RNA was extracted from 
cells and tissues using the total RNA purification kit (Shenergy 
Biocolor Biological Science & Technology Company, 
Shanghai, China), according to the manufacturer's protocol. 
cDNA was synthesized, according to the manufacturer's 
protocol, using the RevertAid First Strand cDNA Synthesis 
kit (Thermo Fisher Scientific, Inc.). Primers and TaqMan 
probes (labeled with carboxyfluorescein) for human flTF 
and asTF were designed using Primer Premier version 5.0 
(Premier Biosoft International, Palo Alto, CA, USA) and were 
synthesized by Sangon Biotech Co., Ltd. (Shanghai, China) 
(Table I). The mRNA expression levels of flTF and asTF were 
quantified relative to the mRNA expression levels of GAPDH, 
and quantification was performed using a LightCycler® 480 
Instrument II (Roche Applied Science, Penzberg, Germany) 
in a final volume of 25 µl. PCR reactions, purchased from 
the Shenergy Biocolor BioScience and Technology Company 
(Shanghai, China), were performed using the following 
mixture: 2.5 µl MgCl2 (25 mM; with 4 µl MgCl2 in the asTF 
PCR reactions), 2.5 µl PCR buffer (10X), 0.5 µl 4X dNTP 
(10 mM), 0.25 µl Taq DNA polymerase (5 units), 0.04 µl each 
primer and probe (100 µM), 2 µl cDNA template (replaced 
by water in no template controls) and nuclease‑free water to 
a final volume of 25 µl. Thermal cycling was performed under 
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the following conditions: 3 min of initial denaturation at 95˚C, 
followed by 40 cycles at 95˚C for 5 sec (temperature transition 
rate 4.4˚C/sec) and 60˚C extension for 25 sec. Samples were 
amplified simultaneously in triplicate in a single assay run. 
mRNA expression levels are presented as a ratio between the 
target gene and GAPDH gene expression; the fold‑change was 
calculated using 2-ΔΔCq (14).

Statistical analysis. Statistical analysis was performed using 
GraphPad Prism software version 5.0 (GraphPad Software, Inc., 
La Jolla, CA, USA). All data are expressed as the means ± stan-
dard deviation or standard error of the mean. Data were analyzed 
using Student's t‑test or one‑way analysis of variance (ANOVA). 
Tukey's multiple comparison test was conducted following 
ANOVA to compare multiple groupse (NSCLC tissues and their 
adjacent/normal tissues). P<0.05 was considered to indicate a statis-
tically significant difference.

Results

mRNA expression levels of TF variants in human cell lines 
and tissues. As shown in Fig. 2A, the mRNA expression levels 

flTF were compared with those of asTF in 11 human cell lines, 
including human cervical cancer (C‑33A, HeLa and SiHa), 
breast cancer (ZR‑75‑1, MCF‑7, BT‑474, MDA‑MB‑468 and 
MDA‑MB‑231), hepatoblastoma (HepG2), colorectal cancer 
(Caco‑2) and umbilical vein (EA.hy926) cells. The expression 
levels were also compared in five types of tissue specimen, 
including placenta, esophageal cancer, cervical cancer, lung 
cancer and breast cancer tissues (Fig. 2B). The results demon-
strated that flTF and asTF exist in a wide range of human tissues 
and cells, and the mRNA expression levels of flTF were signifi-
cantly higher compared with asTF in all samples tested (P<0.05).

Effects of CDCA on the mRNA expression levels of TF 
variants in HepG2 and EA.hy926 cells. There was a significant 
increase in the expression levels of flTF in the HepG2 and 
EA.hy926 cells treated with CDCA (Fig. 3A). CDCA also 
promoted the expression of asTF in EA.hy926 cells, but had 
no significant effect on HepG2 cells (Fig. 3B).

Effects of apoM overexpression on the mRNA expres‑
sion levels of TF variants in Caco‑2 and EA.hy926 cells. 
Compared with in the NC (empty vector control) group, 

Table I. Primers and probes for reverse transcription‑quantitative polymerase chain reaction.

Gene Forward primer (5'‑3') Reverse primer (5'‑3') Probe (5'FAM, 3'BHQ‑1)

flTF TGATGTGGATAAAGGAGAA CTACCGGGCTGTCTGTA TTCAAGCAGTGATTCCCTCCC
 AACTACTGT CTCTTC GAACA
asTF ATCTTCAAGTTCAGGAAAGA GCTCTGCCCCACTCCT TTGGAGCTGTGGTATTTGTGG
 AATATTCTAC GCC TCATCATC
GAPDH CAGGGCTGCTTTTAACTC CATGGGTGGAATCATATT TGGATATTGTTGCCATCAATGA
 TGGT GGAAC CCCCT

asTF, alternatively spliced TF; flTF, full‑length TF; TF, tissue factor.

Figure 1. Schematic diagram of TF isoform expression. flTF consists of an intracellular domain, a transmembrane domain and an extracellular domain. asTF 
lacks the transmembrane domain and is therefore soluble. Retention of a part of intron 1 as alternative exon 1A in the mature transcript leads to the generation 
of the third variant, TF‑A. asTF, alternatively spliced TF; flTF, full‑length TF; TF, tissue factor.
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apoM lentivirus transduction increased apoM expression by 
9.95‑fold (P<0.0001) in Caco‑2 cells (Fig. 4A) and 1,379.07‑fold 
(P<0.0001) in EA.hy926 cells (Fig. 4B). As shown in Fig. 5, the 
results demonstrated that the mRNA expression levels of asTF 
were increased in Caco-2 cells overexpressing apoM compared 
with in the NC group (P<0.05); however, no significant effect 
was observed on flTF expression in those cells. In addition, 

apoM overexpression had no significant effect on flTF and asTF 
in EA.hy926 cells.

mRNA expression levels of TF variants in tumor, normal and 
adjacent tissues. To investigate whether the expression of 
individual splice variants differed during the tumor process, 
the expression levels of flTF and asTF were investigated in 

Figure 2. Expression levels of flTF and asTF in human cell lines and tissues. Quantitative polymerase chain reaction analysis revealed that flTF and asTF 
mRNA was expressed in (A) all 11 human cell lines tested and (B) all five types of tissue specimens tested. *P<0.05, **P<0.01 and ***P<0.001 vs. asTF. asTF, 
alternatively spliced TF; flTF, full‑length TF; TF, tissue factor.

Figure 3. Expression levels of flTF and asTF in HepG2 and EA.hy926 cells treated with CDCA (50 µmol). mRNA expression levels of (A) flTF and (B) asTF in 
the CDCA and NC groups (treated with 0.1% ethanol) were quantified using quantitative polymerase chain reaction and normalized to those of GAPDH (n=6). 
*P<0.05 and ***P<0.001 vs. NC. asTF, alternatively spliced TF; CDCA, chenodeoxycholic acid; flTF, full‑length TF; NC, negative control; TF, tissue factor.

Figure 4. ApoM transduction efficiency. ApoM mRNA expression levels in NC (infected with empty vectors) and overexpression groups (infected with 
apoM lentivirus vectors) in (A) Caco‑2 and (B) EA.hy926 cells, as quantified using quantitative polymerase chain reaction. The mRNA expression levels of 
apoM were higher in the apoM overexpression group compared with in the NC group. ****P<0.0001 vs. NC. apoM, apolipoprotein M; NC, negative control.
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cervical and lung cancer specimens. As shown in Fig. 6, there 
was no significant difference in the mRNA expression levels 
of flTF and asTF splice variants among any of the lung cancer 

tissues. There was also no significant difference in the mRNA 
expression levels of flTF between cervical cancer and normal 
cervical tissues; however, asTF was significantly increased 

Figure 6. mRNA expression levels of flTF and asTF in NSCLC and cervical cancer tissues. NSCLC tissues were paired, whereas cervical tissues were unpaired 
due to the lack of paracancerous tissues. (A) flTF and (B) asTF mRNA expression levels in the lung and cervical cancer tissues and adjacent/normal tissues 
were quantified using quantitative polymerase chain reaction. No significant effect was observed on the mRNA expression levels of flTF among the lung and 
cervical tissues and their adjacent/normal tissues. The expression levels of asTF were higher in cervical cancer tissues compared with in the normal group, 
whereas there was no significant difference in asTF expression between lung cancer and adjacent/normal tissues. **P<0.01. asTF, alternatively spliced TF; flTF, 
full length TF; N, normal tissue; NSCLC, non‑small cell lung cancer; P, paracancerous tissue; T, tumor tissue; TF, tissue factor.

Figure 5. Effects of apoM overexpression on the mRNA expression levels of flTF and asTF in Caco‑2 and EA.hy926 cells. (A) flTF and (B) asTF mRNA 
expression levels in the apoM overexpression and NC groups were quantified using quantitative polymerase chain reaction. No significant effect on flTF was 
observed in cells overexpressing apoM. In addition, apoM overexpression promoted the mRNA expression levels of asTF in Caco‑2 cells, but had was no 
significant effect on asTF expression in EA.hy926 cells. *P<0.05 vs. NC. apoM, apolipoprotein M; asTF, alternatively spliced TF; flTF, full length TF; NC, 
negative control; TF, tissue factor.

Table II. Expression levels of flTF and asTF in cell lines and tissues.

 flTF asTF
 ------------------------------------------------------------------ ------------------------------------------------------------------
Cell lines and tissues Group Expression levels P-value  Expression levels P-value 

Caco‑2 ApoM OE group 4.73x10-4±6.22x10-5 0.66 2.29x10-4±4.53x10-5 0.03a

 Control group 4.23x10-4±9.22x10-5  1.19x10-4±1.27x10-5 

EA.hy926 ApoM OE group 1.40x10-4±1.43x10-5 0.24 4.17x10-5±8.43x10-6 0.82
 Control group 1.59x10-4±3.86x10-6  4.50x10-5±1.14x10-5 

HepG2 cells CDCA group 4.20x10-4±4.53x10-5 0.04a 1.23x10-4±1.48x10-5 0.42
 Control group 3.02x10-4±2.34x10-5  1.07x10-4±1.11x10-5 

NSCLC Normal tissues 0.034±0.034 0.97 0.005±0.008 0.54
 Adjacent tissues 0.052±0.067  0.011±0.016 
 Tumor tissues 0.040±0.041  0.008±0.015 
Cervical cancer Normal tissues 0.007±0.006 0.62 0.0003±0.0004 0.001a

 Tumor tissues 0.007±0.007  0.002±0.002 

aStatistically significant difference. ApoM, apolipoprotein M; asTF, alternatively spliced TF; CDCA, chenodeoxycholic acid; flTF, full‑length 
TF; NSCL, non‑small cell lung cancer; OE, overexpression; TF, tissue factor.
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in cervical cancer tissues compared with in normal cervical 
tissues (P<0.01).

Summary of the negative results. Overexpression of apoM 
had little effect on the mRNA expression levels of flTF in the 
Caco‑2 and EA.hy926 cells. In addition, there was no signifi-
cant difference between the mRNA expression levels of flTF 
in the adjacent/normal and tumor NSCLC and cervical cancer 
tissues (Table II). With regards to asTF mRNA expression, 
CDCA had little effect on HepG2 cells and apoM overexpres-
sion did not affect the levels of asTF in the EA.hy926 cells. 
Similarly, there was no statistically significant difference in 
asTF mRNA levels between the adjacent and tumor NSCLC 
tissues.

Discussion

Since asTF and flTF serve important and often distinct roles 
in various biological processes, it is appropriate to study them 
separately. However, as shown in Table III (15‑52), total TF, 
including asTF and flTF, or flTF alone, has been investigated in 
studies over the last decade. Few studies have been conducted 
that have detected asTF and flTF levels separately, according 
to the primer sequences that have been designed. Furthermore, 
the primers used in three of these previous studies (27,29,48) 
are not completely matched with the TF sequence and there-
fore cannot be used to amplify asTF or flTF.

In terms of expression, as the major form of TF, the mRNA 
expression levels of flTF were higher than those of asTF in 
all specimens tested in the present study. Furthermore, in 
terms of function, CDCA increased the expression levels of 
flTF in HepG2 cells, whereas those of asTF were not affected. 
Therefore, it was hypothesized that flTF may contribute to the 
onset of liver cancer. The present study also demonstrated that 
CDCA increased the expression levels of flTF and asTF in 
EA.hy926 cells, which indicated that CDCA may be associated 
with vasoconstriction. Furthermore, Kundu et al (9) demon-
strated that CDCA is capable of promoting vessel formation. 
In a previous study, both variants were revealed to mediate 
various physiological and pathological functions, including 
angiogenesis (2). Therefore, CDCA may promote vessel forma-
tion through the upregulation of these two variants; however, 
the possible mechanism requires further investigation.

asTF is associated with the development of numerous types 
of cancer. A previous study demonstrated that the mRNA 
expression levels of apoM in colorectal cancer tissues were 
significantly increased in patients with lymph node metas-
tasis (53). The present study revealed that the expression levels 
of asTF were increased in Caco-2 cells that overexpressed apoM 
compared with the control cells. Conversely, overexpression 
of apoM had little effect on flTF. Consistent with this result, 
Yu et al (54) demonstrated that flTF expression in colorectal 
cancer has no influence on cell proliferation in vitro; however, 
asTF has been reported to promote cell proliferation in vitro and 
tumor growth in vivo (1,36,55). It may therefore be hypothesized 
that asTF, not flTF, contributes to the onset of cancer.

Venteclef et al (56) demonstrated that bile acids suppress 
apoM expression in vitro and in vivo. The results of the present 
study demonstrated that as one of the bile acids, CDCA 
increased the expression levels of the two TF variants in 
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the EA.hy926 cells and apoM increased as TF expression in 
Caco‑2 cells. These data suggested that apoM may be involved 
in the regulation of TF expression induced by CDCA, but this 
requires further investigation.

The mRNA expression levels of flTF were not significantly 
different between the cervical cancer and normal tissues; 
however, those of asTF were markedly increased in cancer 
tissues. Previous studies regarding the coagulant properties 
of asTF have been fairly inconclusive (57,58), but they are 
likely to be essential during angiogenesis associated with the 
development of cancer (59,60). The present study demonstrated 
that the measurement of asTF mRNA may be associated with 
cervical cancer risk. The expression levels of flTF and asTF in 
lung cancer and paracancerous tissues were higher compared 
with in normal control tissues; however, the differences were 
not statistically significant. Rollin et al (61) demonstrated that 
the relative amount of asTF is low. This previous study also 
analyzed the levels of asTF in NSCLC tumors according to 
clinicopathological features; the results revealed that there is no 
association between asTF and sex, age, stage and differentiation 
grade, yet patients with high asTF tumor mRNA expression had 
a poorer prognosis. Therefore, further studies are required to 
investigate the correlation between TF and NSCLC tumors.

A limitation of the present study is that control or paired 
normal esophageal and breast cancer tissues samples were not 
analyzed. Therefore, the role of flTF and asTF in these two 
types of cancer could not be clearly identified.

In conclusion, TF isoforms are able to activate distinct 
signaling pathways (2), leading to the modulation of 
cancer-associated biological processes and nonhemostatic 
pathophysiological processes, including thrombosis, angio-
genesis, tumor growth and metastasis. A previous study 
demonstrated that flTF mediates cell signaling via protease 
activated receptor 2 and downstream signaling proteins, 
including protein kinase C and extracellular signal‑regulated 
kinase 1 and 2, whereas asTF exhibits activity via integrin 
ligation (2,62). To the best of our knowledge, the present study 
is the first to reveal that flTF expression may be increased 
compared with asTF in all tissue specimens tested, and 
suggested that overexpression of apoM and CDCA may affect 
the mRNA expression levels of the two variants. Furthermore, 
the expression levels of the two variants may be different in the 
same cancer tissues. These results provide further information 
regarding the TF system and emphasize the significance of 
flTF and asTF expression in tumor progression and other types 
of disease.
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