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Abstract

The high expression of PACAP (pituitary adenylate cyclase-activating polypeptide)-

preferring receptor PAC1 is associated with nerve injury and tumors. Our previous

report (Yu R, et al. PLoS One 2012; 7: e51811) confirmed the dimerization of PAC1

and found that the M-PAC1 mutation in the N-terminal first Cys/Ala lost the ability to

form dimers. In this study, Chinese hamster ovary (CHO-K1) cells overexpressing

wild-type PAC1 (PAC1-CHO) had significantly higher anti-apoptotic activities

against serum withdrawal-induced apoptosis associated with a lower caspase 3

activity and a higher Bcl-2 level in a ligand-independent manner than those of CHO

cells overexpressing the mutant M-PAC1 (M-PAC1-CHO). PAC1-CHO had

significantly higher b-catenin, cyclin D1 and c-myc levels corresponding to the

Wnt/b-catenin signal than did M-PAC1-CHO. In addition, the Wnt/b-catenin

pathway inhibitor XAV939 significantly inhibited the anti-apoptotic activities of

PAC1-CHO. Top-flash assays demonstrated that PAC1-CHO had a significantly

stronger Wnt/b-catenin signal than did M-PAC1-CHO. Acetylcysteine (NAC) as an

inhibitor of the dimerization of PAC1 inhibited the anti-apoptotic activities that were

endowed by PAC1 and decreased the Wnt/b-catenin signal in Top-flash assays.

In the PAC1 Tet (tetracycline)-on inducible gene expression system by doxycycline

(Dox), higher expression levels of PAC1 resulted in higher anti-apoptotic activities

that were associated with a stronger Wnt/b-catenin signal. A similar correlation was

also found with the down-regulation of PAC1 in the Neuro2a neuroblastoma cell.
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BiFC combined with fluorescence confocal imaging indicated that during

serum-withdrawal-induced apoptosis, PAC1 dimers displayed significant

endocytosis. These findings indicate that PAC1 has ligand-independent and dimer-

dependent intrinsic/basal activity, conferring cells with anti-apoptotic activities

against serum withdrawal, which is involved in the Wnt/b-catenin signal and is

associated with the endocytosis of PAC1 dimers. The discovery and study of the

dimer-dependent basal activity of PAC1 not only help us understand the

physiological and pathological role of PAC1 but also promote the development of

drugs targeting PAC1.

Introduction

PAC1, the neuropeptide pituitary adenylate cyclase-activating polypeptide

(PACAP)-preferring receptor, belongs to the class B G protein-coupled receptor

(GPCR) family [1, 2]. PACAP is a member of the vasoactive intestinal polypeptide

(VIP)/secretin growth hormone/releasing hormone/glucagon superfamily. Except

for the PACAP-specific receptor PAC1, which has an affinity for PACAP of

approximately 1000-fold higher than that for VIP, PACAP shares two receptors,

VPAC1 and VPAC2, with VIP in equal affinity [2]. PAC1 mediates the effects of

PACAP in neurotransmitting, neuron-regulating and neuron-protectant func-

tions, such as the inhibition of apoptosis [3] and the regulation of proliferation

and differentiation [4]. PAC1 is highly expressed in the central/peripheral nervous

system and neuroendocrine organs and tissues, and the elevated expression of

PAC1 is associated with several physiological and pathological changes. For

example, PAC1 is highly expressed in neuroendocrine tumors, such as gliomas

and medulloblastomas [5, 6]. The levels of PAC1 increase significantly in aged rat

brains [7], impaired monkey thymuses [8] and degenerative mouse thymuses [9].

The PAC1 genotype is also correlated with chronic stress [10] and post-traumatic

stress disorder [11]. The overexpression of the human PAC1 receptor leads to

dose-dependent hydrocephalus-related abnormalities in mice [12]. The over-

expression levels of PAC1 in several physiological and pathological processes, in

our opinion, are closely related to its roles in regulating apoptosis, cell

proliferation and differentiation.

The ligand-independent intrinsic/basal activity of GPCRs has been recognized

and is considered associated with the basal neural activity of GPCRs in vivo [13].

Therefore, it was inferred that PAC1, as a dominant GPCR for neurotransmitter

PACAP, may also have ligand-independent intrinsic (also called basal) activity; in

other words, PAC1 may be activated independently of the ligand. It was

hypothesized that the overexpression of PAC1 would produce ligand-independent

basal activity, which would endow the cells with anti-apoptotic activity in a

ligand-independent manner. We considered that the confirmation and char-
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acterization of the basal activity of PAC1 may help to clarify the role of elevated

levels of PAC1 in specific physiological and pathological processes.

The N-terminal first Cys residue of PAC1 is not included in the three conserved

cysteines of the extracellular N-terminal domain of class B GPCRs and has not

been reported to form any known disulfide bonds. Using bimolecular fluorescence

complementation (BiFC) and bioluminescence resonance energy transfer (BRET)

assays, our previous research confirmed that this N-terminal first Cys is essential

for the dimerization of PAC1; the replacement of this Cys residue with Ala (to

produce the mutant M-PAC1) results in failed receptor dimerization (Yu R, Plos

One. 2012; 7(12): e51811) [14]. It was found in this research for the first time that

Chinese hamster ovary (CHO-K1) cells overexpressing wild-type PAC1 (PAC1-

CHO) had a significantly greater anti-apoptotic ability against serum withdrawal

than did CHO cells overexpressing the N-terminal first Cys/Ala mutant M-PAC1

(M-PAC1-CHO) in a ligand-independent manner. Furthermore, the cysteine

derivative acetylcysteine (NAC), which was confirmed by BRET and BiFC to

inhibit the dimerization of PAC1, inhibited the basal activity of PAC1 against

serum-withdrawal-induced apoptosis. These results suggest that PAC1 has dimer-

dependent basal activity. A related report by Clémence Carron et al. on the

dimerization of the frizzled receptor Xfz3, which is sufficient to activate the Wnt/

b-catenin pathway [15], prompted us to further explore whether the dimer-

dependent basal activity of PAC1 involves the Wnt/b-catenin pathway. Frizzled-3

is a GPCR in mammals that has low but significant sequence similarity to family B

GPCRs and shares a similar cysteine-rich domain in the extracellular N-terminus

with family B GPCRs [16]. After screening for the effects of several signal pathway

inhibitors, we found that the b-catenin pathway inhibitor XAV-939, which is a

small-molecule inhibitor of tankyrase 1 (TNKS1), significantly inhibited the anti-

apoptotic activity of PAC1-CHO. Moreover, the levels of b-catenin and its target

proteins cyclin D1 and c-myc were significantly higher in PAC1-CHO than in M-

PAC1-CHO. Moreover, Top-flash assays, as a b-catenin pathway reporter system,

were also used to confirm the relationship of the PAC1 basal activity with the

Wnt/b-catenin pathway.

The positive correlation of the PAC1 expression level with its basal activity was

further determined using a Tet (tetracycline)-on inducible PAC1 expression

system with the controlled expression of PAC1 by doxycycline (Dox) and using

the down-regulation of PAC1 with shRNA in neuro2a neuroblastoma cells with a

naturally high expression of PAC1. Finally, it was found that the significant

endocytosis of PAC1 dimers was associated with the basal activity of PAC1 during

serum-withdrawal-induced apoptosis.

Materials and Methods

Materials and cell lines

All of the materials for the cell culture and transfection reagents were from

Invitrogen (Carlsbad, USA). The reagents for the molecular biological techniques
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were obtained from Takara (Dalian, China) and QIAGEN (Valencia, Spain). The

peptide PACAP27 was synthesized by Qiangrao Biological Company (Shanghai,

China). A cDNA encoding the mouse PAC1 (Normal/Hop) isoform (a splice

variant with no deletion in EC1 and with a hop insertion in the third intracellular

cytoplasmic (IC3) loop [17]) was from GeneCopoeia via the Funeng Gene

Company (Guangzhou, China). The eukaryotic expression vectors pEYFP

(containing the gene encoding yellow fluorescent protein (YFP)), pRluc

(containing the gene encoding Renilla luciferase (Rlu)) and pcDNA3.0 were

purchased from Yingrun Biological Company (Changsha, China). The pTet-on

advanced vector was used to achieve the intrinsic expression of the tetracycline-

controlled transcriptional transactivator, and the TRE (Tet-responsive element)-

based expression vector pTRE-Tight was used to achieve the Dox-inducible

expression of PAC1; both of these vectors were from Clontech Laboratories

(Takara, China). Charcoal-stripped fetal bovine serum (CS-FBS), which was used

to reduce the interference between the serum and the PAC1 ligands, was from

Biological Industries (Biolnd, European). The Caspase 3 Activity Assay Kit and the

B-cell lymphoma-2 (Bcl-2) Elisa Assay Kit were from Beyotime Bio-technologic

Company (Shanghai, China). The CHO-K1 and neuro2a neuroblastoma cell lines

were from the Chinese Academy of Life Sciences (Shanghai, China).

Plasmids and mutagenesis

The plasmids that were used in this research are listed in Table 1, were

constructed as previously described [14] and were confirmed by re-sequencing. In

brief, the intact PAC1 gene and the M-PAC1 gene were cloned into the vector

pEYFP or pRluc to construct recombinant expression vectors expressing the

receptors PAC1-YFP and M-PAC1-YFP that were tagged at the carboxyl terminus

with YFP or PAC1-YFP and M-PAC1-YFP tagged at the carboxyl terminus with

Rlu. For the BiFC studies, a sequence encoding the 172 N-terminal amino acid

residues of YFP with the TAA termination codon that was added by PCR was used

to replace YFP to produce the expression vector PAC1-Y/N, which produced a

receptor that was tagged at the carboxyl terminus with the 172 N-terminal amino

acid residues of YFP. The recombinant vector PAC1-Y/C, which was used to

Table 1. The plasmids information.

Plasmid name Characters Usage

pEYFP Blank vector with YFP Control in BiFC assay

PAC1-YFP M-PAC1-YFP Wild type PAC1 and mutant Cys/Ala PAC1 combined with YFP at C-terminus Receptor overexpression; BRET assay

pRluc Blank vector with Rlu Control in Top-flash assay

PAC1-Rlu M-PAC1-Rlu Wild type PAC1 and mutant Cys/Ala PAC1 combined with Rlu at C-terminus BRET assay

PAC1-Y/N M-PAC1-Y/N Wild type PAC1 and mutant Cys/Ala PAC1 combined with the N-terminal
fragment of YFP

BiFC assay

PAC1-Y/C M-PAC1-Y/C Wild type PAC1 and mutant Cys/Ala PAC1 combined with the C-terminal
fragment of YFP

pTRE-Tight-PAC1-YFP PAC1-YFP cloned into pTRE-Tight Tet-on inducible expression

doi:10.1371/journal.pone.0113913.t001
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create receptors that were tagged at the carboxyl terminus with the 67 C-terminal

amino acid residues of YFP, was constructed in the same way.

For the Tet-on inducible gene expression of PAC1, the DNA fragment encoding

PAC1 that was C-terminally tagged with YFP was sub-cloned into the pTRE-Tight

vector to construct the recombinant plasmid pTRE-Tight-PAC1-YFP.

Cell culture and transfection

The CHO cell line CHO-K1, which expresses neither PACAP nor PAC1 [18], was

used for the stable expression of the receptor constructs. Western blotting was

used to detect PACAP expression in CHO-K1 with a rabbit polyclonal IgG (Santa

Cruz Biotechnology, USA) that was raised against the C-terminus of PACAP,

while PACAP expression in neuro2a was used as positive control. Then, the CHO

cells were grown in Dulbecco’s modified Eagle’s medium (DMEM) that was

supplemented with 10% CS-FBS in a humidified atmosphere of 95% air and 5%

CO2 at 37 C̊ before transfection. The cells were transfected with vector constructs

expressing the wild-type PAC1-YFP or the Cys/Ala mutant M-PAC1-YFP using

lipofectamine LTX and Opti-MEM medium (Invitrogen, USA) following the

manufacturer’s instructions. For stable expression, cells that were transfected with

plasmids were selected based on G418 (0.8–1 mg/mL) insensitivity, cloned by

successive cycles of limiting dilution and screened by the YFP fluorescence signal.

At least three CHO cell clones expressing PAC1-YFP (named PAC1-CHO) or M-

PAC1-YFP (named M-PAC1-CHO) permanently at similar receptor levels were

used in parallel in the following experiments. The CHO cell clone that was

transfected with pcDNA3.1, named pcDNA-CHO, was used as a basal control

because the activity of pcDNA-CHO, which does not express PACAP or PAC1,

was not correlated with that of PACAP or PAC1. The cells were maintained in

DMEM medium that was supplemented with 10% CS-FBS and 0.8 mg/mL G418

with an atmosphere of 95% air and 5% CO2 at 37 C̊. The expression levels of the

receptors PAC1-YFP and M-PAC1-YFP were determined by the YFP fluorescence

densities in whole-cell lysates using the Victor3 1420 multi-label counter

(PerkinElmer) with excitation (460¡30 nm) and emission (535¡30 nm) filters.

Western blotting with a goat polyclonal IgG against the C-terminus of PAC1 that

recognizes both rodent and human PAC1 (Santa Cruz Biotechnology, USA) was

also used to detect the expression of PAC1-YFP.

Immunofluorescence

The expression and cell trafficking of PAC1-YFP and M-PAC1-YFP were further

determined by immunofluorescence. PAC1-CHO and M-PAC1-CHO cells that

were cultured in DMEM with 0.5% CS-FBS at 37 C̊ overnight were fixed with 4%

(w/v) paraformaldehyde (PFA) in PBS for a maximum of 5 minutes at room

temperature before being washed twice with PBS and incubated in 3% (w/v) BSA

in PBS (blocking solution) for one hour at room temperature. For cells that

required permeabilization (to permit entry of an antibody that recognizes an
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intracellular epitope, e.g., BXP-21), a 5-minute incubation in 0.05% (v/v) Triton

X-100 in PBS was included before the blocking step. Following blocking, the cells

were then incubated with a goat polyclonal IgG against the C-terminus of PAC1

that recognizes both rodent and human PAC1 (1:100; Santa Cruz Biotechnology,

USA) for 1 h at room temperature and then washed twice with PBS. The cells

were then incubated for another 1 h with an Alexa 594-conjugated anti-rabbit

antiserum (1:400). After washing with PBS, the cells were viewed using the

OLYMPUS converted fluorescence microscope IX71 (Japan) with an excitation of

520¡30 nm and an emission of 595¡30 nm.

Bimolecular fluorescence complementation (BiFC)

The BiFC assay is based on the reconstitution of a fluorescent protein molecule

upon the re-association of its two non-fluorescent fragments. If YFP is divided

into N-terminal (173 amino acid residues) and C-terminal (67 amino acid

residues) segments, neither segment exhibits fluorescence when expressed alone.

The co-expression of the segments, which are linked to interacting proteins,

permits the partial reformation of YFP with the concomitant appearance of the

fluorescent signal. For statistical analyses, the CHO cells were seeded equally in a

96-well plate and transfected with the receptor constructs PAC-Y/N+PAC-Y/C

and M-PAC-Y/N+M-PAC-Y/C (1.0 mg of DNA per cell divided equally into two

plasmids). The fluorescent signals from the cells 48 h after transfection were

detected in a Victor3 1420 multi-label counter (PerkinElmer, Wellesley, MA)

using excitation (480¡30 nm) and emission (535¡40 nm) filters. The cells that

were transfected with PAC-YFP were used as positive controls, and the cells

without transfection were used as negative controls. To examine the effects of the

NAC on the dimerization, the transfected CHO cells were incubated with NAC

(10 nM) for 2 h at 4 C̊ before collecting the BiFC signals. The experiments were

run with at least three replicates in parallel and were repeated three times.

For the BiFC signal observation, the CHO cells were co-transfected with 3 mg of

receptor DNA PAC-Y/N+PAC-Y/C or M-PAC-Y/N+M-PAC-Y/C per 10-cm2

Petri dish, which was divided equally among the two receptor plasmids. After

48 hours, the cells were observed under an inverted fluorescence microscope using

excitation (480¡30 nm) and emission (535¡25 nm) filters. The trafficking and

endocytosis of the PAC1 dimers were imaged using the appropriate spectral

settings (excitation, 488 nm argon laser; emission, 545 nm filter; pinhole

diameter, 2.3 Airy units) of a confocal microscope (LSM 510 META; Zeiss, USA)

that was equipped with a Plan-Apochromat 636/1.4 numerical aperture oil

objective. To detect the endocytosis of PAC1 dimers during serum-withdrawal-

induced apoptosis, the live cells in the dish were subjected to serum withdrawal,

and fluorescent images were collected at 0, 0.5, and 2 h after serum-withdrawal-

induced apoptosis was initiated. Nuclear staining by DAPI was conducted 2 h

after the serum withdrawal, and BiFC signals imaged were imaged under a

converted fluorescence microscope using excitation (480¡30 nm) and emission

(535¡25) filters.
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Bioluminescence resonance energy transfer assays (BRET)

The CHO cells were seeded equably in a 96-well white OptiPlate and submitted to

co-transfection with the receptor construct PAC1-Rluc/PAC1-YFP or M-PAC1-

Rluc/M-PAC1-YFP. The BRET assay was initiated 48 hours after transfection by

adding the cell-permeant Rlu-specific substrate coelenterazine h to the cell

suspension to yield a final concentration of 5 mM in a 96-well white OptiPlate.

The BRET signal was collected using a Victor3 1420 multi-label counter

(PerkinElmer, Wellesley, MA) with emission filter sets for luminescence (460 nm,

bandwidth 25 nm) and fluorescence (535 nm, bandwidth 25 nm). The ratio of

fluorescence to luminescence emission from the cells that were transfected with

the Rlu-tagged receptor construct alone (1.0 mg of DNA/56105) was considered

background and used to determine the correct factor (Cf5Em535/Em460) that

defined the amount of signal in the acceptor portion that was attributable to

donor bioluminescence. The BRET ratio was calculated based on the ratio of

fluorescence to luminescence emission using the following formula: (Em535–

(Em4606Cf))/Em460. For BRET titration (saturation) experiments, the CHO

cells were transfected both with a constant amount of donor construct

(Rlu-tagged receptor construct at a concentration of 1.0 mg per cell) and with

increasing amounts of acceptor construct (YFP-tagged receptor construct at

concentrations of 0.3 to 6.0 mg per cell). The BRET ratios were plotted against the

acceptor-to-donor ratios. Curves were fit to these data and were evaluated for

quality-of-fit based on R2 values using Prism 3.0. When a single-phase

exponential curve was found to represent a significantly better fit than the linear

function (F test determination with p value ,0.05), this curve was used to

calculate the BRETmax and BRET50 values. To examine the effects of NAC, the

transfected CHO cells were incubated with 10 nM NAC for 2 h at 4 C̊ before the

BRET signals were collected. The experiments were run with at least three

replicates in parallel and were repeated three times.

The ligand-dependent activation of PAC1-YFP and M-PAC1-YFP by

PACAP

To detect the ligand-dependent activity of PAC1-YFP and M-PAC1-YFP, PAC1-

CHO, M-PAC1-CHO and pcDNA-CHO cells with the same cell density

(26105 cells/well) in DMEM with 0.5% CS-FBS were seeded in 96-well plates and

incubated overnight at 37 C̊. The next day, the cells were incubated with or

without PACAP at a range of concentrations (1–100 nM) in the absence of CS-

FBS for 24 h. The viability of the cells was determined using a colorimetric MTT

(methylthiazole tetrazolium bromide) assay (Sigma, USA). Cyclic AMP assays

were also used to test the ligand-dependent activity of PAC1 and M-PAC1 against

PACAP because an elevation in cAMP levels is a mark of PACAP activation. The

PAC1-CHO and M-PAC1-CHO cells were scraped off the surface with a rubber

policeman and washed with PBS twice, and the density of the cells was adjusted to

26106 cells/mL. PACAP was added to a 500-mL cell suspension, and the working

concentrations of the peptide varied from 1–100 nM. The reactions were
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incubated at 37 C̊ for 5 min and were then incubated at room temperature for

20 min after two volumes of 0.2 M HCl was added. The mixture was dissociated

by repeated pipetting until the suspension was homogeneous. The precipitate was

removed by centrifugation at 1000 g for 10 min, the supernatant was collected,

and the cAMP quantity was determined using a cAMP ELISA kit (Cayman

Chemical, USA). The data were plotted as fold changes in the data from the

untreated pcDNA-CHO cells without PACAP (0 nM). The experiments were

performed in parallel with at least three replicates and were repeated three times.

Serum-withdrawal-induced apoptosis

The cells were cultured in CS-FBS to reduce the interference between the serum

and PAC1 ligands, such as PACAP and VIP. Serum withdrawal produced ligand-

free conditions for the detection of the ligand-independent activity of PAC1.

PAC1-CHO, M-PAC1-CHO and pcDNA-CHO cells as well as the Tet-on

inducible cells expressing PAC1 at a range of levels (induced with Dox for 48 h)

and neuro2a cells were seeded in 6-well plates in DMEM with 10% CS-FBS and

were cultured to 80% confluence. The cells were then subjected to serum

withdrawal by being cultured with DMEM alone for 48 h with or without the

signal inhibitors H-89 (100 mM), XAV-939 (10 mM), and NAC (10 nM). The

viability of the remaining cells was determined using the colorimetric MTT assay

that is shown below. In addition, the caspase 3 activity and the intracellular levels

of the anti-apoptosis factor Bcl-2 were determined following the kit manufac-

turers’ instructions. The pcDNA-CHO cells were used as a basic control. The data

are expressed and plotted as fold changes in the levels in pcDNA-CHO. For the

Tet-on inducible PAC1 expression cells, the data are expressed and plotted as fold

changes in the double-stable Tet-on advanced inducible cells that were treated

without Dox (0 ng/mL). The experiments were performed in parallel with at least

three replicates and were repeated three times.

Cell viability assays by MTT

Cell viability was evaluated using the MTT assay, which is based on the reduction

of MTT into a blue formazan dye by viable mitochondria. In brief, the medium

was discarded from the plates, and the cells were subsequently washed twice with

PBS. The cells were then incubated with PBS containing 0.5 mg/mL MTT for 4 h

at 37 C̊ in an atmosphere of 5% CO2. The solution was removed carefully, and

1 mL of dimethylsulfoxide was added to dissolve the blue-colored formazan

particles. The samples were transferred to a 96-well plate, and the absorbance at

570 nm was measured using a Bio-Rad microplate reader (Bio-Rad, USA) with

the values expressed in arbitrary units (AU). The experiments were performed in

parallel with at least three replicates and were repeated three times. The remaining

cell viability was calculated as the percentage of the initial cell viability without

serum withdrawal, and the other data are plotted as fold changes in the data from
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pcDNA-CHO. For the Tet-on inducible expression system, the data are plotted as

fold changes in the data from the treatment without Dox.

Western blotting

To confirm that the Wnt/b-catenin pathway was involved in the ligand-

independent intrinsic activity of PAC1, the expression levels of b-catenin, cyclin-

D1 and c-myc (two target proteins of b-catenin) were detected by western

blotting. In brief, PAC1-CHO, M-PAC1-CHO and pcDNA-CHO cells as well as

the Tet-on inducible cells expressing PAC1 at a range of levels (induced with Dox

for 48 h) and neuro2a cells were seeded in 6-well plates in DMEM with 10% CS-

FBS. The cells were cultured to 80% confluence and were subjected to serum

withdrawal by being cultured with DMEM alone with or without the signal

inhibitors H-89 (100 mM), XAV-939 (10 mM), and acetylcysteine (10 nM) for

48 h. The cells were lysed in RIPA lysis buffer (Invitrogen, USA), and the cell

lysate was subjected to an SDS-PAGE analysis using 4 to 12% Bis-Tris gels

(NuPAGE; Invitrogen, USA). After electrophoresis, the proteins were transferred

to nitrocellulose membranes that had been incubated in 5% nonfat milk and 0.1%

Tween 20/PBS solution at room temperature on a rotating shaker for 2 h to block

nonspecific binding sites. The membranes were incubated overnight with

antibodies against b-catenin, cyclin D1 and c-myc (Santa Cruz Biotechnology,

USA) and were detected using a horseradish peroxidase-linked anti-rabbit IgG

secondary antiserum (GE Healthcare, USA). The immunoblots were developed by

the application of an enhanced chemiluminescence solution (Pierce Chemical,

USA). The bands were analyzed with an imaging densitometer, and the relative

protein levels were normalized by the corresponding levels of b-actin. The

experiments were performed with at least three replicates and were repeated at

least three times.

For the western blotting of PAC1 dimers using a goat polyclonal IgG against the

C-terminus of PAC1 that recognizes both rodent and human PAC1 (Santa Cruz

Biotechnology, USA), SDS-PAGE was conducted under non-reducing conditions

so as not to destroy the dimers of PAC1, while reducing conditions were used in

the detection of the expression levels of the receptors.

The inducible expression of PAC1 with the Tet-on system

The Tet-on advanced inducible gene expression system (Clontech, USA) was used

to achieve the controlled expression of PAC1. Target cells that express the Tet-on

advanced transactivator and contain an integrated TRE-based expression vector

express high levels of the target gene when cultured in the presence of the system’s

inducer, Dox. First, a Tet-on advanced cell line that intrinsically expressed the

Tet-on advanced transactivator was constructed by transfecting CHO cells with

the pTet-on advanced vector and selecting positive clones in 0.8–1 mg/mL G418.

Second, the recombinant vector pTRE-Tight-PAC1-YFP, accompanied by the

linear hygromycin marker (Clontech, USA), was introduced into the positive cells
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constructed in the first step to create a double-stable Tet-on advanced inducible

cell line. Third, the expression of PAC1-YFP in CHO cells was induced by adding

Dox (1–100 ng/mL) to the double-stable Tet-on advanced inducible cell clone and

incubating for 48 h. The expression of PAC1-YFP was detected by observing YFP

fluorescence using an OLYMPUS inverted fluorescence microscope IX71 (Japan)

with excitation at 465¡30 nm and emission at 525¡30 nm. The expression

levels of PAC1-YFP were determined by assessing the YFP fluorescence densities

in the whole-cell lysate using the Victor3 1420 multi-label counter (PerkinElmer)

with excitation (460¡30 nm) and emission (535¡30 nm) filters. The YFP

fluorescence densities (fluorescence/mg protein) were normalized to the protein

concentrations of the lysates. Western blotting with a goat polyclonal IgG against

the C-terminus of PAC1 that recognizes both rodent and human PAC1 (Santa

Cruz Biotechnology, USA) was further used to detect the expression of PAC1-

YFP. The double-stable Tet-on advanced inducible cells that were treated with

Dox (1–100 ng/mL) or without Dox were further submitted to serum-

withdrawal-induced apoptosis. The remaining cell viabilities were assayed by the

MTT method, and the caspase 3 activity and Bcl-2 levels were detected following

the methods that are mentioned above. The b-catenin, cyclin D1 and c-myc levels,

as key proteins that are involved in the Wnt/b-catenin pathway, were detected

using western blotting, and the data were normalized by the corresponding levels

of the control nucleoporin-p62 and are plotted as fold changes of the cells that

were treated without Dox. The experiments were performed with at least three

replicates and were repeated at least three times.

Protein knockdown in neuro2a

Neuro2a neuroblastoma cells were used to detect the effects of down-regulated

PAC1 on the PAC1-dimer-dependent basal activities. To knockdown the

endogenous PACAP in neuro2a neuroblastoma cells, cells that were seeded in 6-

well plates in DMEM with 10% CS-FBS and cultured to 80% confluence were

transfected for 6 h with 4 mg per well PACAP shRNA plasmid (Santa Cruz

Biotechnology, USA) using lipofectamine LTX and Opti-MEM medium

(Invitrogen, USA), after which the cells were washed and incubated with DMEM

and 10% CS-FBS for 24 h. Then, puromycin (PM) (10 mg/mL) was added, and

the cells were cultured for another 24 h. The cells were harvested for western blot

analysis and were probed with a rabbit polyclonal anti-PACAP IgG (Santa Cruz

Biotechnology, USA) that was raised against the C-terminus of PACAP and that

recognizes both rodent and human PACAP. The cells with endogenous PACAP

knockdown were named neuro2a/PACAP- and were submitted to the following

assays.

To investigate the effects of the down-regulation of PAC1, the neuro2a/PACAP-

cells with endogenous PACAP knockdown that were obtained above were further

transfected with three PAC1 shRNA plasmids (Shanghai Genechem Co. Ltd.

China) against mouse PAC1 with the following targeted sequences:

GAATCCACTACACAGTATT, CACTATTCGGAATCCACTA and
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TACGCTGAGACTCTACTTT. The cells were seeded in 96-well plates in DMEM

with 10% CS-FBS and 10 mg/mL PM, cultured to 80% confluence and transfected

for 6 h with 250 ng per well PAC1 shRNA plasmids (equally divided into three

plasmids) or 250 ng per well control plasmids (Shanghai Genechem Co., Ltd.

China) using lipofectamine LTX and Opti-MEM medium (Invitrogen, USA), after

which the cells were washed and incubated with DMEM and 10% CS-FBS for

24 h. Then, the cells were harvested for western blot analysis with a goat

polyclonal IgG against the C-terminus of PAC1 that recognizes both rodent and

human PAC1 (Santa Cruz Biotechnology, USA).

Neuro2a/PACAP- cells that were transfected with PAC1 shRNA plasmids (+) or

control plasmids (-) were further submitted to serum-withdrawal-induced

apoptosis following the procedure that is described above. The remaining cell

viabilities and the protein levels of b-catenin, cyclin D1 and c-myc were assayed

using MTT and western blotting following the methods that are described above.

The data are plotted as the fold changes in the cells that were transfected with

control plasmids (-). The experiments were performed with at least three

replicates and were repeated at least three times.

TOP-flash assay

The b-catenin reporter plasmid, TOP-flash, and its mutant control, FOP-flash,

were purchased from Millipore Corporation. PAC1-CHO, M-PAC1-CHO and

pcDNA-CHO cells were seeded onto 24-well plates in DMEM with 10% CS-FBS

and cultured to 80% confluence, after which each cell line was submitted to

transfection with Top-flash or FOP-flash at 1 mg/well and the pRluc Renilla

luciferase plasmid (0.1 mg/well) used as an internal control for transfection

efficiency. After the cells were cultured in DMEM and 10% CS-FBS for 24 h after

transfection, they were submitted to serum-withdrawal-induced apoptosis with or

without the signal inhibitors H-89 (100 mM), XAV-939 (10 mM), and acetylcys-

teine (10 nM) for another 24 h. Then, the cells were lysed, and the luciferase

activities were measured using a Dual-Glo Luciferase Assay System (Promega,

USA) in a PerkinElmer Victor3 1420 multi-label counter (Wellesley, MA). The

relative luciferase activities are expressed as the ratio of TOP-flash/FOP-flash

luciferase activity, and the data were plotted as fold changes in the data from the

pcDNA-CHO cells. The experiments were performed with at least three replicates

and were repeated at least three times.

For the PAC1 Tet-on inducible expression system, the double-stable Tet-on

advanced inducible cells were plated onto 24-well plates in DMEM with 10% CS-

FBS and cultured to 80% confluence, after which the cells were submitted to

transfection with Top-flash (1 mg/well) +pRluc (0.1 mg/well) and Fop-flash (1 mg/

well) +pRluc (0.1 mg/well). After the cells recovered from transfection in DMEM

and 10% CS-FBS for 24 h, they were submitted to serum-withdrawal-induced

apoptosis with Dox (1–100 ng/mL) or without Dox for another 24 h. Then, the

cells were lysed, and the luciferase activities were measured using a Dual-Glo

Luciferase Assay System (Promega, USA) in a PerkinElmer Victor3 1420
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multi-label counter (Wellesley, MA). The relative luciferase activities are expressed

as the ratio of TOP-flash/FOP-flash luciferase activity, and the data are plotted as

fold changes in the data from the cells that were treated without Dox (0 ng/mL).

The experiments were performed with at least three replicates and were repeated

at least three times.

Statistical analysis

The statistical analysis was performed with GraphPad Prism using an unpaired t-

test. The results were expressed as the mean ¡ S.E. (standard error). Differences

with p,0.01 were considered statistically significant.

Results

NAC is an inhibitor of the dimerization of PAC1

As shown in Fig. 1, M-PAC1 did not exhibit significant BiFC and BRET signals,

confirming that M-PAC1 lost the ability to form dimers, which is consistent with

our previous report [14].

NAC, as a derivative of cysteine, was hypothesized to inhibit the dimerization of

PAC1 because a previous mutation study confirmed that the N-terminal Cys is

essential for the dimerization of PAC1 [14]. BiFC, BRET and western blotting

were used to detect the effects of NAC (10 nM) on the dimerization of PAC1. The

transfected CHO cells were incubated with 10 nM NAC for 2 h at 4 C̊ before the

BiFC and BRET signals were collected and western blotting was performed. As

shown in Fig. 1A, the statistical analysis of BiFC showed that NAC (10 nM)

significantly decreased the YFP fluorescence intensity that was produced by PAC-

Y/N+PAC-Y/C (P,0.01, PAC-Y/N+PAC-Y/C+NAC vs. PAC-Y/N+PAC-Y/C).

Both static and saturation BRET (Fig. 1B, C) showed that NAC (10 nM)

significantly decreased the BRET ratio that was produced by PAC1 dimerization

(P,0.01, PAC-Rluc/PAC-YFP+NAC vs. PAC-Rluc/PAC-YFP). The results of

western blotting (Fig. 1D) showed that the band with the molecular weight of

approximately 160 kD, which is consistent with the molecular weight of the

dimer, was significantly weakened in the cells that were incubated with NAC

(10 nM). These results indicate that NAC (10 nM) inhibited the dimerization of

PAC1 and that NAC (10 nM) can be used as a tool to detect the relation of PAC1

dimerization with its basal activity.

PAC1 had less ligand-dependent activity than M-PAC1

Western blotting was used to detect the expression of endogenous PACAP in two

cell lines: CHO-K1 cells and neuro2a cells. As shown in Fig. 2 A, CHO-K1 did not

express endogenous PACAP, which is consistent with the previous report by

Okazaki et al. [18], while neuro2a cells produced endogenous PACAP. CHO-K1

cells were further used to detect the ligand-independent basal activity of PAC1.

The Intrinsic/Basal Activity of PAC1
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Immunofluorescence, fluorescence density and western blotting were used to

detect the expression of PAC1-YFP and M-PAC1-YFP in CHO cells (Fig. 2 B, C,

D). As shown in Fig. 2 B, both PAC1-YFP and the N-terminal Cys/Ala mutant M-

PAC1-YFP were trafficked to the plasma membrane normally in 0.5% CS-FBS

Figure 1. Effects of the NAC on the dimerization of PAC1. (A) BiFC assays. Shown were YFP fluorescence intensity re-produced by the transfection of
the receptor constructs as indicated. The cells without transfection were used as negative control and the cells transfected with PAC-YFP as positive control.
Exogenous NAC (10 nM) decreased the YFP fluorescence intensity produced by PAC-Y/N+PAC-Y/C significantly (*, P,0.01 PAC-Y/N+PAC-Y/C+NAC vs.
PAC-Y/N+PAC-Y/C), while the transfection of M+PAC-Y/N+M+PAC-Y/C produced no YFP fluorescence signals. Data were presented as means ¡ S.E. of
three independent experiments. (B) Saturation BRET. Shown were the BRET saturation curves plotted as a ratio of YFP fluorescence to Rlu luminescence
that were observed for tagged receptor constructs studied with a fixed amount of donor and increasing amounts of acceptor. PAC-Rluc/PAC-YFP receptor
constructs yielded exponential curves that reached asymptotes indicating significant homo-dimerization of PAC1, while M-PAC-Rluc/M-PAC-YFP yielded
curves not different from a straight line, indicating that D-PAC1 lost the ability to form dimers. The addition with NAC (10 nM) at 2 h before the BRET signal
assay lowered the curves significantly (*, P,0.01 PAC-Rluc/PAC-YFP+NAC vs. PAC-Rluc/PAC-YFP). The data were represented as the means ¡ S.E. of
three independent experiments. (C) Static BRET. BRET ratios for CHO cells expressing receptor constructs as indicated. For static BRET, a total of 1.0 mg of
DNA per well divided equally among the noted constructs in each condition was utilized. The shaded area represents the nonspecific BRETsignal generated
between PAC-Rlu and soluble YFP protein, with BRETsignals above this area considered to be significant. As shown the BRET ratio in PAC-Rluc/PAC-YFP
CHO cells incubated with NAC (10 nM) was significantly lower than that in cells without treatment with NAC (*, P,0.01 PAC-Rluc/PAC-YFP+NAC vs. PAC-
Rluc/PAC-YFP). The data were presented as the means ¡ S.E. of three independent experiments. (D) Western blotting analysis with a goat polyclonal IgG
against the C-terminus of PAC1 using non-reductive SDS-PAGE. When PAC-YFP expressing cells incubated with exogenous NAC (10 nM), as shown, the
band with the molecular weight (about 160 kD) consistent with the molecular weight of the PAC1 dimer was weakened by the presence of NAC (10 nM). All
these results showed that NAC was an inhibitor of the dimerization of PAC1, which offered us a tool to analysis the relation of the dimerization of PAC1 with
its basal activity.

doi:10.1371/journal.pone.0113913.g001
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overnight, and there was no significant difference in the receptor locations

between PAC1-YFP and M-PAC1-YFP. The fluorescence density assay and the

western blotting assay in the total cell lysate both demonstrated that the

expression level of PAC1-YFP in the PAC1-CHO cells was equal to the expression

level of M-PAC1-YFP in the M-PAC1-CHO cells (Fig. 2 C, D).

When the activation specificities of PAC1-YFP and M-PAC1-YFP by PACAP

(1–100 nM) were compared, it was found that the proliferation of PAC1-CHO

that was induced by PACAP was significantly weaker than the proliferation of M-

PAC1-CHO that was induced by PACAP (Fig. 2 E, P,0.01, M-PAC1-CHO vs.

PAC1-CHO) and that the intracellular cAMP levels that were induced by PACAP

in PAC1-CHO were significantly lower than those in M-PAC1-CHO that were

induced by PACAP (Fig. 2 F, P,0.01, M-PAC1-CHO vs. PAC1-CHO). These

results indicate that PAC1-YFP has a weaker sensitivity to PACAP than does

M-PAC1-YFP. As previously demonstrated, wild-type PAC1 and the mutant

Figure 2. The ligand-dependent activation of PAC1 and M-PAC1 by PACAP. (A) Western blotting of endogenous PACAP in CHO-K1 and neuro2a cells.
As shown CHO-K1 had no detectable endogenous PACAP, while neuro2a cells produced endogenous PACAP. (B) The expression of PAC1-YFP and M-
PAC1-YFP detected by immunofluorescence. Shown were immunofluorescence results of PAC1-CHO and M-PAC1-CHO cells cultured in DMEM with 0.5%
CS-FBS at 37˚C overnight, which indicated that both PAC1 and M-PAC1 trafficked normally to the plasma membrane and 0.5% CS-FBS induced no
significant receptors endocytosis. (C) Fluorescence densities assays. Shown were the YFP fluorescence densities in the whole cell lysate detected using
the Victor3 1420 multi-label counter with excitation (460¡30 nm) and emission (535¡30 nm), indicating that the expression levels of PAC1-YFP in CHO
cells were equal to those of M-PAC1-YFP. (D) Western blotting assays using reductive SDS-PAGE. Western blotting with a goat polyclonal IgG against the
C-terminus of PAC1 in the reductive condition showed that there were similar bands with the molecular weight about 160 kD in PAC1-CHO and M-PAC1-
CHO, but not in CHO. (E) The cell viabilities of PAC1-CHO and M-PAC1-CHO cells promoted by PACAP. The data were plotted as the fold changes of the
treatment without PACAP (0 nM). After the cells were submitted the addition of PACAP (1–100 nM) in the absence of CS-FBS for 24 h, MTTassays showed
that PACAP exerted more significant proliferative effects on M-PAC1-CHO than on PAC1-CHO (*, P,0.01, M-PAC1-CHO vs. PAC1-CHO), indicating that
the activation level of PAC1 by PACAP was lower than that of M-PAC1. (F) The intracellular cAMP levels induced by PACAP (1–100 nM) in PAC1-CHO and
M-PAC1-CHO cells. After the data were plotted as the fold changes of the treatment with 0 nM PACAP, it was shown that the intracellular cAMP levels in M-
PAC1-CHO cells induced by PACAP were significantly higher than the intracellular cAMP levels in PAC1-CHO cells induced by PACAP (*, P,0.01, M-
PAC1-CHO vs. PAC1-CHO). The data were represented as the means ¡ S.E. of three independent experiments.

doi:10.1371/journal.pone.0113913.g002
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M-PAC1 were trafficked to plasma membranes normally, but PAC1 forms dimers

while M-PAC1 cannot. Therefore, it was suggested that the PAC1 dimers on the

plasma membrane might interfere with the binding of PACAP to the PAC1

monomer, causing the M-PAC1 monomer to have a higher ligand-dependent

activity than that of the PAC1 dimer.

The ligand-independent activity of PAC1 is involved in the

Wnt/b-catenin pathway and is dimer dependent

Serum-withdrawal-induced apoptosis in the PAC1-CHO, M-PAC1-CHO and

pcDNA-CHO cells (the cells that were transfected with pcDNA) was used to

detect the ligand-independent activity of wild-type PAC1 and its mutant M-

PAC1; pcDNA-CHO was used as a basic control. After withdrawing serum for

48 h, the remaining viability of the PAC1-CHO cells (57.34¡5.91%) was

significantly higher than that of the M-PAC1-CHO cells (36.96¡6.85%) and the

pcDNA-CHO cells (37.89¡7.11%) (Fig. 3 A, P,0.01, PAC1-CHO vs. pcDNA-

CHO and M-PAC1-CHO), whereas there was no significant difference between

M-PAC1-CHO and pcDNA-CHO. When the data were plotted as fold changes in

the data in pcDNA-CHO, which did not express PACAP nor PAC1, the results

showed that the M-PAC1-CHO cells had caspase 3 activity and Bcl-2 levels that

were equal to those of pcDNA-CHO, whereas PAC1-CHO had significantly lower

caspase 3 activity and significantly higher Bcl-2 levels than those of M-PAC1-

CHO and pcDNA-CHO (Fig. 3 B, C; P,0.01, PAC1-CHO vs. M-PAC1-CHO and

pcDNA-CHO).

In our opinion, the withdrawal of serum prevented interference from any

ligands, such as PACAP or VIP, in the serum; furthermore, as shown above, the

ligand-dependent activity of PAC1 was weaker than the ligand-dependent activity

of M-PAC1. Therefore, it was deduced that PAC1 had intrinsic/basal activity,

which conferred anti-apoptotic activities to the PAC1-CHO cells in a ligand-

independent manner.

To verify the hypothesis that the Wnt/b-catenin pathway is involved in the

basal activity of PAC1, the Wnt/b-catenin-pathway-related proteins, including b-

catenin, cyclin-D1 and c-myc (two targets of b-catenin), were detected in PAC1-

CHO, M-PAC1-CHO and pcDNA-CHO cells using western blotting. After the

data were plotted as fold changes in the data from pcDNA-CHO, it was discovered

that PAC1-CHO had significantly higher levels of b-catenin, cyclin-D1 and c-myc

than those of pcDNA-CHO or M-PAC1-CHO (Fig. 3 D, P,0.01, PAC1-CHO vs.

pcDNA-CHO and M-PAC1-CHO). These results indicate that the ligand-

independent basal activity of PAC1 involves the Wnt/b-catenin pathway.

Some cell-signal inhibitors, including the PKA inhibitor H89 and the b-catenin

signal inhibitor XAV939, were used to confirm that the basal activity of PAC1 is

involved in the Wnt/b-catenin pathway. NAC, which was demonstrated above to

be an inhibitor of PAC1 dimerization, was used to determine whether the basal

activity of PAC1 was dimer-dependent. XAV939 (10 mM) and NAC (10 nM)

significantly inhibited the basal activity of PAC1 by decreasing the remaining cell

The Intrinsic/Basal Activity of PAC1

PLOS ONE | DOI:10.1371/journal.pone.0113913 November 26, 2014 15 / 28



viabilities, reducing the intracellular Bcl-2 levels and promoting caspase 3

activities (Fig. 4 A, B, C, P,0.01, PAC1-CHO/XAV939 and PAC1-CHO/NAC vs.

PAC1-CHO/no inhibitors). Moreover, when the Wnt/b-catenin signal was

detected using the Top-flash assay, the results showed that after the luciferase

activities were plotted as the fold changes in pRluc-CHO, the relative luciferase

activity in PAC1-CHO cells was almost 2-fold that in M-PAC1-CHO and pRluc-

CHO after serum withdrawal (Fig. 4 D, P,0.01, PAC1-CHO/no inhibitors vs. M-

PAC1-CHO/no inhibitors and pRluc-CHO/no inhibitors). The addition of

XAV939 (10 mM) and NAC (10 nM) before serum withdrawal significantly

inhibited the relative luciferase activity in PAC1-CHO cells (Fig. 4 D, P,0.01,

PAC1-CHO/XAV939 and PAC1-CHO/NAC vs. PAC1-CHO/no inhibitors).

Figure 3. The ligand independent activity of PAC1 and M-PAC1 against serum withdrawal induced apoptosis. (A) The remaining cell viabilities of
PAC1-CHO, M-PAC1-CHO and pcDNA-CHO cells 48 h after serum withdrawal. When the data were plotted as the percentage of the initial cell viability
without serum withdrawal, it was shown that PAC1-CHO had remaining cell viability (57.34¡5.91%) that was significantly higher than that of M-PAC1-CHO
(36.96¡6.85%) or pcDNA-CHO (37.89¡7.11%) (*, P,0.01, PAC1-CHO vs. pcDNA-CHO and M-PAC1-CHO). (B) The intracellular caspase3 activities after
serum withdrawal. The reactions of pcDNA-CHO were considered not result from PAC1 because pcDNA-CHO did not express PAC1 or PACAP; therefore,
all the data were plotted as fold changes in pcDNA-CHO. As shown, PAC1-CHO had significantly lower caspase3 activity than M-PAC1-CHO or pcDNA-
CHO (*, P,0.01, PAC1-CHO vs. pcDNA-CHO and M-PAC1-CHO), whereas there was no significant difference between M-PAC1-CHO and pcDNA-CHO.
(C) The intracellular Bcl-2 levels after serum withdrawal. After the data were plotted as the fold changes of pcDNA-CHO, it was shown that PAC1-CHO had
significantly higher Bcl-2 level about 2 folds of that in M-PAC1-CHO or pcDNA-CHO (*, P,0.01, PAC1-CHO vs. pcDNA-CHO and M-PAC1-CHO). The data
were represented as the means ¡ S.E. of three independent experiments. (D) The detection of b-catenin, cyclin D1 and c-myc levels in PAC1-CHO, M-
PAC1-CHO and pcDNA-CHO cells by western blotting. The western blotting results and the statistical analysis showed that the levels of b-catenin, cyclin D1
and c-myc (tow targets of b-catenin) in PAC1-CHO cells were significantly higher than those in M-PAC1-CHO or pcDNA-CHO cells (*, P,0.01, PAC1-CHO
vs. pcDNA-CHO and M-PAC1-CHO). These findings indicated that overexpression of wild type PAC1 endowed CHO with anti-apoptotic activities against
serum withdrawal, suggesting that PAC1 had ligand independent basal activity, while M-PAC1 did not. And Wnt/b-catenin signals were involved in the anti-
apoptotic activity of PAC1-CHO. The data were represented as the means ¡ S.E. of three independent experiments.

doi:10.1371/journal.pone.0113913.g003
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Figure 4. The basal activity of PAC is Wnt/b-catenin pathway involved and dimer dependent. (A) The effects of the cell signaling inhibitors H-89,
XAV939 and PAC1 dimerization inhibitor NAC on the remaining cell viabilities of PAC1-CHO, M-PAC1-CHO and pcDNA-CHO 24 h after serum withdrawal.
All the data were plotted as the fold changes in the data of pcDNA-CHO because the changes in pcDNA-CHO had no correlation with PAC1. It was shown
that the b-catenin signal inhibitor XAV939 (10 mM) and PAC1 dimerization inhibitor NAC (10 nM) significantly decreased the viabilities of PAC1-CHO cells (*,
P,0.01, PAC1-CHO/XAV939 and PAC1-CHO/NAC vs. PAC1-CHO/no inhibitors), whereas the PKA inhibitor H-89 (100 mM) did not exert significant effect
on the cells viability. The effects of H-89, XAV939 and NAC on the caspase3 activities (B) and Bcl-2 levels (C) in PAC1-CHO, M-PAC1-CHO and pcDNA-
CHO 24 h after serum withdrawal showed that XAV939 (10 mM) and NAC (10 nM) exerted significant inhibitory effects on the anti-apoptotic activity of PAC1-
CHO by increasing the caspase3 activity and decreasing the Bcl-2 level in the PAC1-CHO cells significantly (*, P,0.01, PAC1-CHO/XAV939 and PAC1-
CHO/NAC vs. PAC1-CHO/no inhibitors), whereas H-89 (100 mM) did not have the similar inhibitory effects. (D)Top-flash assays. PAC1-CHO, M-PAC1-CHO
and pcDNA-CHO cells were transfected with Top-flash + pRluc and Fop-flash + pRluc respectively. pRluc was used here as the internal control for
transfection efficiency. After the transfection, cells were submitted to serum-withdraw induced apoptosis with or without the signal inhibitors H-89 (100 mM),
XAV-939 (10 mM), and acetylcysteine (10 nM) for 24 h. And then cells were lysed and luciferase activities were measured. Relative luciferase activities were
expressed as the ratio of TOP-flash/FOP-flash luciferase activity and the data were plotted as fold changes in the data from pcDNA-CHO cells. It was found
that without inhibitors the relative luciferase activity in PAC1-CHO cells was significantly higher than that in M-PAC1-CHO and pcDNA-CHO (#, P,0.01,
PAC1-CHO/no inhibitors vs. M-PAC1-CHO/no inhibitors and pcDNA-CHO/no inhibitors) after serum withdrawal. The addition of Wnt/b-catenin signal
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Western blotting assays (Fig. 4 E) showed that the levels of b-catenin, cyclin D1

and c-myc in PAC1-CHO cells decreased by the addition of XAV939 (10 mM) and

NAC (10 nM) significanltly. These results indicate that the basal activity of PAC1

conferring cells with anti-apoptotic activities against serum withdrawal involved

the Wnt/b-catenin pathway and was dimer dependent.

These data demonstrate that the basal activity of PAC1 in a ligand-independent

manner endowed cells with increased remaining cell viabilities by promoting anti-

apoptotic abilities against serum withdrawal-induced apoptosis and that the basal

activity of PAC1 involved the Wnt/b-catenin pathway and depended on the

dimerization of PAC1.

The correlation between PAC1 levels and its basal activity

To verify the ligand-independent basal activity of PAC1, the correlation of the

level of PAC1 with its basal activity was assessed. After the double-stable Tet-on

advanced inducible cell line was constructed, Dox at a range of concentrations

(1–100 ng/mL) was added to induce the expression of PAC1-YFP, which was

detected using fluorescence microscopy, fluorometry and western blotting (Fig. 5

A, B, C). Dox (1–100 ng/mL) induced the significant concentration-dependent

expression of PAC1-YFP. Using this Dox-dependent PAC1 expression model, the

activity of the cells with a range of PAC1 levels against serum-withdrawal-induced

apoptosis was assessed (Fig. 5 D, E, F). After the data were plotted as fold changes

in the treatment without Dox (0 ng/mL), it was shown that the remaining cell

viabilities increased 48 h after serum withdrawal following the increase of the

expression level of PAC1 (Fig. 5 D). The caspase 3 activity and the Bcl-2 level were

positively correlated with the PAC1 level (Fig. 5 E, F). Top-flash assays (Fig. 5G )

in the PAC1 Tet-on inducible expression system showed that the relative luciferase

activities presenting the Wnt/b-catenin signals increased following the increased

PAC1 levels. Furthermore, western blotting assays (Fig. 5 H) showed that the

levels of b-catenin, cyclin D1 and c-myc corresponding to the Wnt/b-catenin

pathway also increased following the increased PAC1 levels. These results indicate

that higher PAC1 expression resulted in higher anti-apoptotic activity of the cells

with higher levels of Wnt/b-catenin signaling.

Neuro2a cells with a naturally high expression of PAC1 were also used to detect

the correlation of the PAC1 level with its basal activity. First, the endogenous

PACAP was knocked down by shRNA against PACAP to produce neuro2a/

PACAP- cells (Fig. 6 A). Then, the shRNA plasmids against PAC1 were further

transfected into neuro2a/PACAP- cells. After the data were plotted as fold changes

inhibitor XAV939 (10 mM) and PAC1 dimerization inhibitor NAC (10 nM) significantly decreased the relative luciferase activity in PAC1-CHO (*, P,0.01,
PAC1-CHO/XAV939 and PAC1-CHO/NAC vs. PAC1-CHO/no inhibitors), indicating that the basal activity of PAC1 was Wnt/b-catenin involved and dimer
dependent. The data were represented as the means ¡ S.E. of three independent experiments. (D) Western blotting showed XAV939 (10 mM) and NAC
(10 nM) significantly decreased the b-catenin, cyclin D1 and c-myc levels in PAC1-CHO cells. (*, P,0.01, PAC1-CHO/XAV939 and PAC1-CHO/NAC vs.
PAC1-CHO/no inhibitors), whereas H-89 (100 mM) did not have the similar inhibitory effects. The data were represented as the means ¡ S.E. of three
independent experiments.

doi:10.1371/journal.pone.0113913.g004
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Figure 5. The correlation of the PAC1 levels with its basal activity in Tet-on inducible expression system. The fluorescence microscopic observation
(A) and the fluorescence density assays (B) of the PAC1-YFP expression induced by Dox (0–100 ng/mL) in Tet-on inducible system. The fluorescence
microscopic images showed that the numbers of cells with YFP fluorescence increased following increases in the concentration of Dox (1–100 ng/mL),
whereas there was no fluorescence observed without induction by Dox (0 ng/mL). Bar, 20 mm. The YFP fluorescence densities, assayed using the Victor3
1420 multi-label counter, increased with the concentration of Dox (1–100 ng/mL), indicating that the expression levels of PAC1 were controlled by Dox in a
concentration-dependent manner. (C) Western blotting of the inducible expression of PAC1-YFP. The western blotting with goat polyclonal IgG against the
C-terminus of PAC1 using reductive SDS-PAGE showed the bands corresponding to PAC1-YFP deepened with the increase of Dox (1–100 ng/mL), while
no band corresponding to PAC1-YFP was found in the treatment without Dox (0 ng/mL). The remaining cell viabilities (D), the caspase3 activity (E) and the
Bcl-2 levels (F) after serum withdrawal in the double-stable Tet-on advanced inducible cells treated with Dox (1–100 ng/mL) were plotted as the fold changes
in the data from the cells treated without Dox (0 ng/mL). It was shown that the higher concentrations of Dox induced higher expression levels of PAC1-YFP,
which in turn led to the higher anti-apoptotic activity of the cells, including higher remaining cell viability, lower caspase3 activity and higher Bcl-2 level. (G)
Top-flash assays. In double-stable Tet-on advanced inducible cells, after the transfection with Top-flash + pRluc or Fop-flash + pRluc, cells were submitted to
serum-withdraw induced apoptosis with Dox (1–100 ng/mL) or without Dox for another 24 h. And then cells were lysed and luciferase activities were
measured. Relative luciferase activities were expressed as the ratio of TOP-flash/FOP-flash luciferase activity and the data were plotted as fold changes in
the data from the cells treated without Dox (0 ng/mL). It was shown that the relative luciferase activities increased following the increase of Dox (1–100 ng/
mL), indicating that the higher expression levels of PAC1-YFP induced by higher concentration of Dox resulted into stronger Wnt/b-catenin signals. (H)
Western blotting of b-catenin, cyclin D1 and c-myc corresponding to Wnt/b-catenin pathway. After the protein expression levels were normalized by the
corresponding levels of the control nucleoporin-p62 and plotted as the fold changes of the cells treated without Dox, it was shown that in the cells expressing
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in the cells that were transfected with control plasmids (-), it was found that PAC1

shRNA plasmids (+) significantly down-regulated the expression of PAC1 (Fig. 6

A), in turn decreasing the remaining cell viabilities to almost a half of the

remaining cell viabilities of the cells that were transfected with control plasmids

a range of PAC1-YFP induced by Dox (0–100 ng/mL), b-catenin, cyclin D1 and c-myc levels increased following the increases of the PAC1 levels. All these
data suggested the significant positive correlation of the PAC1 levels with the anti-apoptotic activities involved with Wnt/b-catenin signals. The data were
represented as the means ¡ S.E. of three independent experiments.

doi:10.1371/journal.pone.0113913.g005

Figure 6. The correlation of PAC1 knockdown with its basal activity in Neuro2a. (A) Knockdown of endogenous PACAP and PAC1 with shRNA in
Neuro2a. Western blotting assays showed that shRNA against PACAP significantly diminished the expression of endogenous PACAP in neuro2a/PACAP-,
and further transfection with shRNA plasmids against PAC1 (+) to neuro2a/PACAP- cells decreased the PAC1 levels significantly, while control plasmids (-)
did not interfere with expression of PAC1. The knockdown of PACAP and PAC1 in neuro2a produced a chance for the detection of the correlation of PAC1
down-regulation with its ligand independent basal activity. (B) The remaining cell viabilities of nero2a/PACAP- transfected with PAC1 shRNA plasmids (+) or
control plasmid (-). After the data were plotted as the fold changes in the cells transfected with control plasmids (-), it was shown that down-regulation of
PAC1 with PAC1 shRNA plasmids (+) decreased the remaining cell viabilities to almost a half of the remaining cell viabilities transfected with control
plasmids (-) 48 h after serum withdrawal (*, P,0.01, shRNA + vs. shRNA-). (C) Western blotting of b-catenin, cyclin D1 and c-myc in the nero2a/PACAP-

cells transfected with PAC1 shRNA plasmids (+) or control plasmids (-). After the relative protein levels were normalized by the corresponding levels of the
control nucleoporin-p62 and plotted as the fold changes in the cells transfected with control plasmids (-), it was shown that PAC1 shRNA plasmids (+)
significantly decreased the levels of b-catenin, cyclin D1 and c-myc compared with control plasmids (+)(*, P,0.01, shRNA+ vs. shRNA-). These data
suggested that down-regulation of PAC1 in the natural cells such neuro2a with high expression of PAC1 inhibited the anti-apoptotic activities in the ligand
free condition. The data were represented as the means ¡ S.E. of three independent experiments.

doi:10.1371/journal.pone.0113913.g006
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(-) 48 h after serum withdrawal (Fig. 6 B, P,0.01, shRNA+ vs. shRNA-).

Furthermore, after the relative protein levels were normalized by the

corresponding levels of the control nucleoporin-p62 and plotted as fold changes

in the cells that were transfected with the control plasmids (-), the transfection

with PAC1 shRNA plasmids (+) also decreased the levels of b-catenin, cyclin D1

and c-myc, significantly corresponding to the Wnt/b-catenin pathway compared

to transfection with the control plasmids (-) (Fig. 6 C, P,0.01, shRNA+ vs.

shRNA-). These results indicate that under ligand-free conditions, the down-

regulation of PAC1 in natural cells, such as neuro2a, inhibited the anti-apoptotic

activity against serum withdrawal. Therefore, it was hypothesized that the

down-regulation of PAC1 promotes apoptosis in cells with a naturally high

expression of PAC1, such as gliomas and medulloblastomas.

The endocytosis of PAC1 dimers during serum-withdrawal-induced

apoptosis

To observe the trafficking of PAC1 dimers during serum withdrawal, BiFC

combined with fluorescence confocal microscopy was used to visualize the

translocation of the PAC1 dimers. At 2 h after serum withdrawal, the CHO cells

that were transfected with PAC-Y/N+PAC-Y/C displayed BiFC signals (YFP

fluorescence reproduced by PAC1 dimerization) that aggregated inside of the cells

and around the nucleus, whereas the CHO cells that were transfected with M-

PAC-Y/N+M-PAC-Y/C did not produce BiFC signals because M-PAC1 failed to

form dimers (Fig. 7 A). When the images were collected from 0–2 h after serum

withdrawal, as shown in Fig. 7 B, the BiFC signals representing the dimers of

PAC1 were mostly located on or near the membranes at the beginning of the

serum withdrawal; then, the BiFC signals gradually left the plasma membrane and

were internalized during serum withdrawal. Finally, the BiFC signals, representing

the PAC1 dimers, were mostly located around the nucleus at 2 h after serum

withdrawal. The PAC1 dimers were internalized in some type of vesicle. These

images suggest that the endocytosis of PAC1 in the dimer form was associated

with the ligand-independent basal activity of PAC1. Because the internalization is

considered obligatory for the activation of GPCRs, the endocytosis of PAC1

dimers could be a marker for the activation of its basal activity.

Discussion

This research revealed, for the first time, the overexpression of wild-type PAC1 in

the absence of the ligand-endowed CHO cells with receptor-level-dependent

activity against serum-withdrawal-induced apoptosis. In contrast, the N-terminal

first Cys/Ala mutant M-PAC1, which cannot form dimers, did not confer cells

with this type of ligand-independent activity against serum-withdrawal-induced

apoptosis. Furthermore, the higher expression levels of PAC1 in CHO cells

resulted in a higher cellular anti-apoptotic activity in a ligand-independent
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manner. NAC, as the inhibitor of the dimerization of PAC1, significantly inhibited

this type of ligand-independent activity of PAC1. These findings suggest that

PAC1 has dimer-dependent basal activity in a ligand-independent manner.

The dimerization of GPCRs affects cellular signaling by GPCRs [19–22]. It was

shown in this study that the dimerization of PAC1 was essential for its basal

activity because the N-terminal first Cys/Ala mutant M-PAC1, which cannot form

dimers, did not display basal activity and that the basal activity of PAC1 could be

inhibited by the inhibitor of its dimerization. Similar findings on the dimer-

dependent basal activity of GPCRs have been reported, such as the dimerization of

the Xenopus GPCR Frizzled-3, which is sufficient to activate the Wnt/b-catenin

Figure 7. The endocytosis of PAC1 dimers using BiFC during serum withdrawal. (A) The fluorescence
confocal microscopic images of BiFC signals 2 h after serum withdrawal. It was shown that after the nuclear
staining with DAPI in CHO cells transfected with PAC-Y/N+PAC-Y/C, the BiFC signals (YFP fluorescence
reproduced by the dimerization), representing the PAC1 dimers, were mostly located into the cells and close
to the nucleus 2 h after serum withdrawal, while CHO cells transfected with M-PAC-Y/N+M-PAC-Y/C
displayed no BiFC signals. Bar, 10 mm. (B) The fluorescence confocal microscopic images of live CHO cells
transfected with PAC-Y/N+PAC-Y/C submitted to serum withdrawal. At the beginning of the serum withdrawal,
the BiFC signals, representing the PAC1 dimers, were mostly located on or near plasma membranes. Then, at
0.5 h after serum withdrawal, the BiFC signals trafficked into the cells in some type of vehicles, and at 2 h
after serum withdrawal, most of the BiFC signals were inside the cells and aggregated around the nucleus.
Bar, 5 mm.

doi:10.1371/journal.pone.0113913.g007
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pathway [15]. Another example is the dimeric GABAB GPCR, which locks itself in

an active state [23]. The mechanism of the dimerization of GPCRs, which

influences their conformation and their reactions with certain special signaling

molecules, leading to the production of the ligand-independent basal activity of

GPCRs, is understandable. Furthermore, the dimerization of GPCRs also

influences the binding and activation of GPCR agonists, which likely is the reason

why the PAC1 dimers had significantly lower reaction levels against PACAP than

did the M-PAC1 monomer in this research.

Until this study, there have been no reports of the ligand-independent intrinsic/

basal activity of PAC1. Although constitutive receptor activation conferred by a

mutation in the second intracellular loop of PAC1 has been reported [24], this

phenomenon is not equivalent to the ligand-independent basal activity that was

revealed in this study. The ligand-independent basal activity of GPCRs is accepted

and is considered part of the multifaceted functionality of GPCRs [13]. Many

GPCRs have basal activity, which is often associated with the basal functions of

the body. For example, the histamine H3 receptor shows a high level of intrinsic

activity both in vitro and in vivo and regulates histamine neurons [25]. G protein-

coupled opioid receptors also exhibit spontaneous activity, which is limited by

ligand activation [26]. The finding of the ligand-independent basal activity of

PAC1 will help us to understand the physiological and pathological roles of PAC1.

PAC1 is abundant in nerves and in the neuroendocrine system and always acts as a

reactive receptor against potentially damaging external factors. It was showed that

the expression of PAC1 increases in the degenerative thymus [9], in the bed

nucleus of the stria terminalis subjected to chronic stress [10] and in aged rat

brain [7], which indicated that the PAC1 high expression may trigger a self-

protective mechanism against injury and degeneration. The receptor-level-

dependent basal activity of PAC1, which endows cells with anti-apoptotic activity,

may help to explain the function of the elevated expression of PAC1 that is

associated with nerve injury [27] or tumors [5, 6] because elevated levels of PAC1

dimers may be responsible to produce anti-apoptotic activity against injury or

promote the rapid proliferation of tumors.

We considered that the signal pathway that is produced by the dimerization of

PAC1 is not the same as the signal pathway that is induced by the ligand-

dependent activation of PAC1, which induced the de-dimerization of PAC1 on

the plasma membrane [28], while the internalization of PAC1 dimers was

associated with the dimer-dependent basal activity in this study. Furthermore, the

mechanism by which the overexpression of PAC1 dimers produces ligand-

independent cell signaling in tumors may also help explain the inhibitory effect of

the PAC1 agonist PACAP on the proliferation of tumor cells, such as

medulloblastomas [29] and serum-starved glioma cells [30], because the binding

of the ligand PACAP may interrupt the dimerization and block the dimer-

dependent ligand-independent cell signaling. In serum-starved glioma cells,

PACAP treatment decreased the cyclin D1 levels [30]. However, in the serum-

withdrawal-induced apoptosis that was described in this study, the increased

PAC1 dimer levels produced higher cyclin D1 and c-myc levels, which
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corresponded to higher viability in the remaining cells. Therefore, in our opinion,

the expression level of PAC1 dimers, which produce cell signals in a ligand-

independent manner, should be considered a factor that regulates and affects the

cell signals and function of PACAP. Furthermore, the finding in this study that the

knockdown of PAC1 with shRNA in neuro2a promoted apoptosis suggests that

the basal activity of PAC1 may be a new drug target for tumors. The effect of the

PAC1 dimerization inhibitor NAC on the basal activity of PAC1 also hinted that

the regulation of the dimerization of PAC1 maybe a novel way for drug

development using PAC1 as a target.

In this study, the detection of b-catenin and its two targets cyclin D1 and c-

myc, the determination of the effects of Wnt/b-catenin inhibitor XAV939 and the

results of Top-flash assays indicated for the first time that Wnt/b-catenin pathway

is involved in the dimer-dependent basal activity of PAC1. The Wnt/b-catenin

pathway is the classic pathway controlling cell proliferation and apoptosis, which

is closely related to cancer cells. In this study, the Wnt/b-catenin inhibitor

XAV939 inhibited the anti-apoptotic activity of CHO cells with the over-

expression of PAC1. A closely related report demonstrated that XAV939 promotes

cell apoptosis in the neuroblastoma cell line SH-SY5Y [31]. The Wnt/b-catenin

pathway involvement in PAC1 basal activity possibly contributed to the apoptotic

effects of XAV939 on neuroblastoma cells, in our opinion, which deserves more

attention and more-detailed research.

In this research, the significant endocytosis of PAC1 dimers during serum

withdrawal was associated with the ligand-independent basal activity of PAC1.

The endocytosis of receptors plays a key role in the activation and fine control of

the Wnt/b-catenin signal [32, 33]. The internalization of GPCRs is considered

obligatory and serves as a marker of the activation of GPCRs. Therefore in our

opinion, the significant endocytosis of PAC1 dimers may be involved in the

activation and transduction of the Wnt/b-catenin pathway and a marker of the

activation of PAC1 basal activity. As shown in this research by fluorescence

confocal microscopy, the endocytosis of PAC1 dimers was associated with certain

types of vesicles, such as caveolae (Fig. 7 B). The endocytosis of PAC1 by caveolae

is essential for the long-lasting and enhanced activation of PAC1 [34, 35]. In

addition, caveolae are plasma membrane sensors, protectors and organizers [36].

Caveolae and/or lipid rafts not only mediate the endocytosis of GPCRs but also

regulate cell signaling by GPCRs [37]. Indeed, the detailed mechanism that links

the endocytosis of PAC1 dimers with the activation of its basal activity requires

further research.

As shown in Fig. 8, we generated a model for the dimer-dependent, ligand-

independent activation of PAC1 (Fig. 8 A) and a model for the ligand-dependent

activation of PAC1 (Fig. 8 B). Under ligand-free conditions, the PAC1 dimers on

the plasma membrane acted as sensors, and the changes in the plasma membrane

inducing the endocytosis of PAC1 dimers triggered the basal activity of PAC1. The

binding of the ligands for PAC1, such as PACAP, disrupted the dimerization of

PAC1 on the plasma membrane as shown by our previous report [28]. In turn,

due to steric hindrance, the dimerization of PAC1 interfered with the binding of
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the ligands to the PAC1 monomer, which is why the M-PAC 1 monomer was

more sensitive to PACAP binding than the PAC1 dimer. The reagents that

disrupted the dimerization of PAC1 inhibited the basal activity of PAC1 dimers,

such as the exogenous oligopeptide HSDCIF, which interfered with the PAC1

dimers through the Cys residue, reducing the cell viabilities of PAC1-CHO [14].

However, compared to those of NAC, the effects of the oligopeptide HSDCIF with

high homology with PACAP (1–5) (HSDGIF), which, corresponding to the

activation of PAC1, were more complex. The exogenous oligopeptide HSDCIF

not only interrupted the dimerization of PAC1 but also induced the

internalization of the PAC1 monomer, which could be why the exogenous

oligopeptide HSDCIF inhibited the binding and the activation of PAC1 by

PACAP [14]. It is shown in Fig. 8 that both the ligand-dependent and the ligand-

independent activation PAC1 were accompanied by the endocytosis of the

receptor, indicating that the endocytosis of the receptor plays an important role in

cell signal transduction. However, we hypothesize that the PAC1 endocytosis

mechanism during ligand-independent activation may be different from that

during ligand-dependent activation, which deserves more research.

Figure 8. The mechanism for the ligan-independent basal activity of PAC1 dimers (A) and the ligand-dependent activation of PAC1. (A) In ligand-
free situation, the disturbance of the plasma induced entocytosis of PAC1 dimers, which triggered the activation of the basal activity of PAC1 dimers involved
with Wnt/b-catenin signal pathway to protect the cells against apoptosis. (B) In ligand-dependent manner, the binding of the ligands for PAC1 disrupted the
dimerization of PAC1 and induced internalization of PAC1 monomer, which inhibited the basal activity of PAC1 dimers.

doi:10.1371/journal.pone.0113913.g008

The Intrinsic/Basal Activity of PAC1

PLOS ONE | DOI:10.1371/journal.pone.0113913 November 26, 2014 25 / 28



In summary, the data in this research indicate that the PACAP-preferring

receptor PAC1 has significant dimer-dependent intrinsic/basal activity, which is

involved in Wnt/b-catenin signaling and is associated with the endocytosis of

PAC1 dimers. This finding suggests that increases in the expression levels of PAC1

dimers may produce cell signals in a ligand-dependent manner to protect cells

from apoptosis or to promote cell proliferation; in contrast, the knockdown of

PAC1 or interference with the dimerization of PAC1 may interrupt the basal

activity of PAC1 to promote cell apoptosis. Measurement of the basal activity of

PAC1 and the exploration of the mechanism of the basal activity of PAC1 will not

only help us understand the physiological and pathological functional roles of

PAC1 but will also help the development of drugs targeting PAC1. For example,

molecules that interrupt the dimerization of PAC1 or that block the endocytosis

of PAC1 dimers may inhibit the basal activity of PAC1, which may have potent

effects against some tumors or nerve diseases that are associated with PAC1.
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