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Abstract: Although distributed fiber sensing techniques have been widely used in structural health
monitoring, the measurement results of bridge monitoring, particularly under destructive testing,
have rarely been reported. To the best of our knowledge, this paper is the first report of distributed
vibration measurement results, which we obtained during a three-day destructive test on an abolished
bridge. A coherent optical time domain reflectometry (COTDR) was used to acquire the vibration
information while the bridge was being sawed. The obtained signal was analyzed in time and
frequency domain. Some characteristics of the sawing-induced vibration were retrieved by the
short-time Fourier transform; the vibration exhibited several high frequency components within
the measured range up to 20 kHz and all the components appeared in the same time slot. Some
unexpected signals were also detected. Thorough analysis showed that they are quite different
from the sawing-induced vibration and are believed to originate from internal damage to the bridge
(probably the occurrence of cracks).

Keywords: structural health monitoring; distributed fiber sensing; distributed acoustic sensing;
destructive testing

1. Introduction

Various types of optical fiber sensors have been widely applied to structural health
monitoring thanks to the intrinsic advantages of the optical fiber, such as small size,
chemical inertness, immunity to electromagnetic interference, and so on [1]. Recently, the
distributed optical fiber sensor has attracted more attention, as it can perform seamless
measurement over a certain range, unlike the discrete sensor, which is unable to acquire
the information between two sensing points. This advantage is of particular interest for
structural health monitoring, as small cracks may happen at any position in the structure.
However, the sensitivity of the distributed sensor is usually not as good as the discrete
sensor [2].

Distributed fiber sensors (DFSs) rely on various backscattering mechanisms in the
fiber and perform the spatially resolved measurement over the whole fiber length. The
Raman-based DFS exploits the optical power change of the anti-Stokes component of the
spontaneous Raman scattering to retrieve the temperature information. The DFS based
on Brillouin scattering usually uses the Brillouin frequency shift to measure temperature
and strain with a typical sensitivity of 1 MHz/K and 0.05 MHz/µε, respectively, and at
an operating wavelength of 1550 nm [3]. Since strain is a very important parameter to
evaluate the structural condition, the Brillouin-based DFS is an effective tool for structural
health monitoring. The Brillouin-based DFS has been applied to monitor the condition
of bridges [4] and tunnels [5]. It also has many applications in geophysics monitoring of
ground displacements [6], landslides [7,8], and so on. Although the measurement time is
very long, as the sensing system usually needs frequency scanning to acquire the Brillouin
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frequency spectrum, the Brillouin-based DFS can also realize dynamic measurement by
exploiting the linear slope of the Brillouin spectrum [9]. However, the low sensitivity of the
sensor fails to meet the requirement of many applications.

A distributed acoustic sensor (DAS), also known as coherent optical time domain
reflectometry (COTDR), retrieves the environmental information based on the interference
result of the Rayleigh backscattered light [10]. It fulfils the requirement of both high
sensitivity and short measurement time. It demonstrates high sensitivities of ~1.3 GHz/K
for temperature and ~150 MHz/µε for strain [11], which are three orders of magnitude
higher than the Brillouin-based sensor. However, the response time of the sensing system
is only limited by the fiber length; for example, the sensor bandwidth is about 50 kHz for a
sensing distance of 1 km. The upper limitation can be surpassed by hardware modification
or an advanced sampling algorithm [12,13]. In addition, the current COTDR system has
the ability to detect dynamic strain in the level of pε/

√
Hz. As a result, the COTDR system

is an excellent candidate for dynamic measurement over long distances. For example, the
COTDR system has gained success in seismic event detection in the ocean and glaciated
terrain [14,15], and it has been applied to structural health monitoring, particularly in the
oil and gas industry monitoring boreholes, production processes, and pipelines.

The COTDR system is meant to find many applications in structural health monitoring.
Particularly, it can be used to determine the vibration frequency of a bridge and provide a
warning if the bridge vibrates close to its natural frequency. Such a sensor has the potential
to measure the acoustic emission, allowing the cracks in the bridge to be detected [16].
The sensor can also measure the load, and even the traffic over the bridge. However, the
application of the COTDR to bridge monitoring is at its infant stage, and only a few on-site
tests have been reported to the best of our knowledge. Cheng et al. reported a dynamic
load result measured by a phase-based DAS system at a bridge in the Netherlands [17]. We
have used a wavelength-scanning COTDR system for dynamic strain measurement at a
24.4 m-long bridge model [18].

In this paper, we report the measurement results using an intensity-based COTDR
system during a destructive testing of a bridge in Germany. More information about this
bridge can be found in [19]. This is the first application of such a simple DAS system
to bridge monitoring to the best of our knowledge. The testing was performed before
the demolition of the bridge, so aggressive testing methods were possible; therefore, the
presented results are unique. The inner wall of the bridge was sawed in order to introduce
cracks or fractures. Our system measured the vibration signal during the sawing process,
and the obtained result was analyzed thoroughly. Spectrum analysis revealed that some
vibration behaved differently from the sawing-induced events. The results reported here
show that the COTDR system can locate and record the vibration events in a bridge, thus
it has the potential to warn of damages. Due to different causes, the detected signal
can exhibit various frequency characteristics. As a result, a COTDR system can provide
meaningful signals that can help civil engineers identify various occurrences inside the
bridge, making it possible to realize structural health monitoring for the bridge.

2. Working Principle of an Intensity-Based COTDR System

Rayleigh scattering originates from the density variation of the medium that is formed
during the fiber drawing process, and it accounts for most of the fiber loss at 1550 nm. A
COTDR system sends narrow and highly coherent optical pulses into the sensing fiber and
collects the interference result of the Rayleigh backscattered light. Due to the stochastic
distribution of the fiber density, the interference process is totally random and changes
with the fiber position, thus the obtained COTDR trace exhibits a noise-like shape along the
fiber [20]. Although the obtained signal is totally random, the signal remains the same and
repeatable under the identical condition for the same fiber. Therefore, the DAS trace can be
considered as the “fingerprint” of the fiber. External perturbations such as temperature
and strain variations, however, modify the local interference condition so that the obtained
signal is changed. The first intensity-based COTDR system was demonstrated in 1993,
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and it could detect the intrusion based on the signal change [21]. The system obtains
the Rayleigh backscattered light directly from the sensing fiber and obtains the COTDR
trace continuously during the measurement time. External perturbations can be spatially
determined based on the location of the trace change, and the frequency information
can also be retrieved. As a result, the DAS system is an excellent tool for distributed
vibration monitoring.

The intensity-based COTDR system fails to quantify the measurand because the signal
change has not even a monotonic relationship with the environmental variations [22].
Hence, the system has been improved in the last decade to quantify strain. However,
the classical system is still an attractive solution to many applications due to its simple
configuration and data processing. As a result, an intensity-based COTDR system was built
to acquire the bridge vibration information during the destructive testing.

3. Materials and Measurement Method

The configuration of the sensing system used for bridge monitoring is depicted in
Figure 1. A semiconductor laser (RIO ORION, Santa Clara, CA, USA) with a linewidth of
2.9 kHz was used as the light source. A signal generator provided rectangular pulses to
a semiconductor optical amplifier (SOA) so that the continuous wave from the laser was
modulated by the electrical pulse and converted into optical pulses with a high extinction
ratio. Then, the generated pulses were boosted by an erbium-doped fiber amplifier (EDFA)
and a narrowband filter was employed to filter out the amplified spontaneous emission
(ASE) from the amplifier. The peak power of the pulse had to be adjusted by a tunable
attenuator to avoid non-linear effects in the sensing fiber. The pulse entered the sensing
fiber through a circulator and the Rayleigh backscattered light was directed to the receiving
module by the same circulator. As the backscattered light is very weak, another EDFA was
employed as a pre-amplifier. The amplified light passed through another narrow filter and
arrived at a photodetector.
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Figure 1. Configuration of the distributed acoustic sensor used for bridge destructive testing. The
red line represents optical path and the blue line denotes the electrical connection.

The pulse width was set as 10 ns during the measurement, corresponding to 1 m spatial
resolution. The bandwidth of the photodetector was 125 MHz, which could guarantee the
spatial resolution [23,24]. The pulse repetition rate was 40 kHz, so the frequency response
of the system was up to 20 kHz. An A/D convertor (ADC) synchronized with the signal
generator was used to digitalize the output of the detector at a rate of 500 MS/s. The
digitalized data was processed by a computer to retrieve the vibration information.

The superstructure of the concrete bridge was ~37 m wide and over 150 m long. There
were several box girders in the main beam with a height of ~1.5 m. Detailed information is
provided in [19]. A standard single mode fiber with a 3 mm-diameter jacket was used for
the measurement, and its length was in total ~245 m. The optical fiber was attached to the
bridge as shown in Figure 2 for sensing. The whole fiber section from 55 m to 86.4 m was
glued to the bottom of the superstructure. Another section from 107.5 m to 141.2 m was
buried in a slot on the deck. In addition, a ~44.7 m-long fiber between 177 m and 221.7 m
was totally glued in a zigzag shape on the inner wall of the girder. A rear handle saw was
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used to cut a rebar in the inner wall of the girder. The whole measurement was performed
without any traffic.
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4. Results and Discussion

For each measurement, the sawing process lasted several minutes; however, the
sensing system continued to acquire data over tens of minutes. Hence, many results were
obtained during the three-day test, and only a few exemplary results are presented here.

4.1. Sawing-Induced Vibration

The raw data presented in Figure 3a were also analyzed in the frequency domain by
the short-time Fourier transform (STFT). The STFT is an effective tool for feature extraction
of the obtained signal and has been applied to identify the threats to gas pipelines [25]. At
each position, the frequency spectrum of a window of 128 temporal points was obtained,
and this operation was repeated while the window slid in time domain. As a result, a group
of spectra was obtained at each fiber position over the measurement time, and the STFT
result S(t, z, f ) is actually a 3D matrix in time, distance, and frequency domain. Figure 4
shows the STFT results of the A, B, and C points, where the first signal variation was
observed at each fiber section.
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The figure exhibits significant signals at ~10 ms due to the sawing process. For the
fibers installed below and above the bridge, most of the signal was below 10 kHz, as shown
in Figure 4a,b, respectively. In comparison, the fiber attached inside the girder measured a
signal over the whole frequency range up to 20 kHz, and the received signal was much
stronger, as shown in Figure 4c.

Although the measured frequency spectra vary from case to case, the last fiber section
always experiences the most intense vibration, as demonstrated by Figures 3 and 4. This
can be explained in two aspects. Firstly, the fiber in the girder is the closest to the sawing
position, so it experiences the strongest and probably longer perturbation. The mechanical
vibration becomes less intense during its propagation across the bridge, resulting in a weak
influence on the fiber above and below the bridge. However, the fiber is glued on the
vertical wall in the girder, whereas the other sensing sections are placed horizontally, as
shown in Figure 2. The vibration may travel vertically, in parallel with the fiber in the girder,
thus most of the fiber experiences large perturbation because the fiber is most sensitive
to the axial strain. However, the working principle of the COTDR system is much less
sensitive to the radial strain [26]; the signal obtained from the other fiber section therefore
varies mildly.

The frequency analysis also helps identify the vibration events. The STFT results
within the frequency range between 0 Hz and 20 kHz are summed up at each position and
time point. The obtained results for each fiber section are plotted in Figure 5, respectively.
The ratio between the peak value (~7000) and the standard deviation of the data (~1278)
obtained inside the girder as shown in Figure 3a is about 5.5. On the contrary, the ratio is
over 10 for Figure 5c. As a result, the vibration shown in Figure 5 is visually easier to identify
than Figure 3, and the edges are more obvious. The frequency result might therefore be
more helpful to analyze the vibration behavior, such as the wave propagation speed.
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Another usage of the frequency result is to detect the effective sawing during the
whole measurement. In this case, the STFT result over each sensing section and the whole
frequency range is summed, so the obtained data changes only with time. The summation
results for all three sensing sections are plotted in Figure 6 over a 20 min measurement time.
Since the sensing fiber inside the girder is longer than other sections, the signal obtained
from this part has a larger value, so the corresponding DC level is much higher than that
of the other fiber sections. The sawing process started at about 15:43 and lasted about
6 min. Many peaks are shown during this time period in Figure 6, which are supposed
to be caused by the interaction between the saw teeth and the rebar during the sawing
process. Ideally, the peaks should have appeared at a fixed time interval as the saw blade
rotated. However, the saw was held by hand and therefore moved during the sawing
process, which caused the quasi-random occurrence of the peaks, as shown in Figure 6.
The peak obtained inside the girder exhibits a very high value, as this fiber section is longer
than the others and closest to the cutting point, as explained above.
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its maximum.

The inset in Figure 6 shows the temporal evolution of one peak as indicated by the
arrow; the DC is removed, and the peak is normalized to its maximum value for a better
visualization. The green curve, representing the signal from the girder, starts to increase
a bit earlier than other curves, as this fiber section is the closest to the sawing point. In
addition, the corresponding signal decreases more gradually due to the long fiber section
inside the girder. The occurrence time difference of different fiber sections may be very
useful to locate the vibration source in practice. It is not likely that the actual vibration
always occurs in proximity to the sensing fiber. By analyzing the time delay of the peaks
detected by different fiber sections, the origin of the vibration can be located with a high
accuracy. A similar method has been applied to determine the breakdown discharge
position in a gas-insulated switchgear [27].

4.2. Unexpected Vibration

The STFT result as shown in Figure 6 seems to be an effective tool to detect the
occurrence of the sawing and was used to analyze all the data obtained during the three-
day testing. Figure 7 shows another measurement over 10 min, and the sawing-induced
signal peaks can also be clearly observed during the destructive testing process, which
lasted ~4 min. Interestingly, the sensing fiber is vibrated ~1 min after the sawing, as the
obtained signal varies slightly between 15:02 and 15:03, as shown in Figure 7. The fiber
section is then perturbated significantly, as the inset clearly shows many peaks within a
period of 10 s, which have lower amplitudes than the sawing-induced signal. This is totally
unexpected, as the bridge was free from any external perturbation at that time. Hence,
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this acoustic event could only have been triggered by some internal factor. A further and
detailed analysis is necessary to determine the cause of this vibration.
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Figure 7. Temporal evolution of the summation result over the whole sensing section. The destructive
testing process lasted ~4 min; then, an unexpected signal is detected, as shown in the inset.

One of the unexpected acoustic events, as signified by the arrow in the inset, was
thoroughly investigated. The raw data and the data change are plotted in Figure 8, and
the vibration signal can only be observed clearly for the fiber section inside the girder.
The arrow in Figure 8b indicates the starting point of the signal; it occurs at ~203.5 m,
about 3.7 m away from the detected sawing position. However, the actual location of the
vibration is closer to the sawing position as indicated by the zigzag shape; the location
of this event is different from the sawing case. In addition, the spread of the vibration is
different from the sawing-induced vibration. The boundary of the perturbated region as
shown in Figure 8b is steeper than Figure 3b shows, indicating the propagation speed of
this signal was much smaller than the sawing-induced signal. One possible explanation is
the occurrence position of the vibration. The sawing-induced vibration mainly propagated
along the reinforced steel; the speed of the sound in such a material is comparatively large.
The unexpected vibration may occur inside the concrete, where the corresponding sound
speed is smaller.
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The signal from the fiber section inside the girder was further analyzed in frequency
domain. The STFT result of the signal at the starting point (203.5 m) is shown in Figure 9a.
Most of the energy associated with this unexpected vibration is at a low frequency, below
1 kHz, unlike the sawing-induced perturbation, which exhibited several high-frequency
components according to Figure 4c. The STFT result summed within the frequency range
between 0 Hz and 20 kHz is shown in Figure 9b, and it exhibits large amplitudes at several
positions. In comparison, the sawing-induced vibration shows a high amplitude only at
the starting point, as presented in Figure 5c. The different behaviors may be dependent on
the origin of the vibration. A very strong and large event may occur in the girder, so that
the high amplitudes have been observed at many positions, as shown in Figure 9b. Further
study on this signal might provide a concrete explanation.
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5. Conclusions

This paper reports the results of an intensity-based COTDR system measured during
destructive testing of a bridge. The sawing-induced vibration was thoroughly investigated
in time and frequency domains, and a handful of valuable results were obtained which
can aid in bridge health analysis. In practice, the sensing fiber will be deployed as a net
to cover most of the bridge. Thus, many fiber sections can measure the same vibration at
slightly different times. The propagation speed and the location of the vibration can be
determined by the position of the fiber section and the difference in the detection time.
In addition, the COTDR system acquired unexpected signals which exhibited different
characteristics from the sawing-induced signal. The job of the COTDR system is to detect
and locate any vibration events, which may be related to damages inside the bridge. This
system can also provide meaningful signals in time and frequency domains so that civil
engineers can identify the events based on the detected signal, making the structural health
monitoring of the bridge possible.

The COTDR system has also been demonstrated as an effective tool for traffic moni-
toring in our previous publication [28], and the traffic-induced vibration has features that
are different from the damage-induced vibration. Thus, the system has the potential to
simultaneously monitor traffic and the structural health of a bridge without either task
affecting the performance of the other.
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