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Prognostic value and underlying 
mechanism of autophagy‑related 
genes in bladder cancer
Shiyuan Peng1,6, Shanjin Ma2,6, Fa Yang1,6, Chao Xu1, Hongji Li1, Shiqi Lu3, Jingliang Zhang1, 
Jianhua Jiao1, Donghui Han1, Changhong Shi4, Rui Zhang5, An‑Gang Yang5, Keying Zhang1*, 
Weihong Wen3* & Weijun Qin1*

Bladder cancer (BLCA) is the most common malignancy whose early diagnosis can ensure a better 
prognosis. However, the predictive accuracy of commonly used predictors, including patients’ general 
condition, histological grade, and pathological stage, is insufficient to identify the patients who need 
invasive treatment. Autophagy is regarded as a vital factor in maintaining mitochondrial function 
and energy homeostasis in cancer cells. Whether autophagy-related genes (ARGs) can predict the 
prognosis of BLCA patients deserves to be investigated. Based on BLCA data retrieved from the Cancer 
Genome Atlas and ARGs list obtained from the Human Autophagy Database website, we identified 
prognosis-related differentially expressed ARGs (PDEARGs) through Wilcox text and constructed 
a PDEARGs-based prognostic model through multivariate Cox regression analysis. The predictive 
accuracy, independent forecasting capability, and the correlation between present model and clinical 
variables or tumor microenvironment were evaluated through R software. Enrichment analysis of 
PDEARGs was performed to explore the underlying mechanism, and a systematic prognostic signature 
with nomogram was constructed by integrating clinical variables and the aforementioned PDEARGs-
based model. We found that the risk score generated by PDEARGs-based model could effectively 
reflect deteriorated clinical variables and tumor-promoting microenvironment. Additionally, several 
immune-related gene ontology terms were significantly enriched by PDEARGs, which might provide 
insights for present model and propose potential therapeutic targets for BLCA patients. Finally, a 
systematic prognostic signature with promoted clinical utility and predictive accuracy was constructed 
to assist clinician decision. PDEARGs are valuable prognostic predictors and potential therapeutic 
targets for BLCA patients.

Bladder cancer (BLCA) is the most common malignancy of the urinary system, with about 549,000 new cases and 
200,000 death worldwide in 20181,2. BLCA is characterized by a high rate of recurrence and progression, which 
impose a considerable economic burden on the healthcare system and have substantial effects on the quality 
of life and overall outcome of BLCA patients. Although novel treatments for BLCA have been proposed, such 
as immunotherapy of PD-1/PD-L13, the 5-year survival rate for advanced/metastatic BLCA is only 15%, and 
the median overall survival is less than 15 months4. Early diagnosis and recurrence monitoring of BLCA would 
be valuable for a better prognosis. However, the predictive accuracy of commonly used predictors, including 
patients’ general condition, histological grade, and pathological stage, is insufficient to identify the patients who 
need invasive treatment5. Recently, the biomarker-based signature is regarded as a promising tool to predict the 
prognosis of BLCA patients and assist clinical decisions6.

Autophagy is a highly conserved cellular self-degradative process. Some cancers could use autophagy-medi-
ated recycling to maintain mitochondrial function and energy homeostasis to meet their elevated metabolic 
demand for growth and proliferation7. Therefore, autophagy-based prognostic signature has been widely inves-
tigated, and autophagy inhibition has been proposed as a novel cancer therapy strategy8. As reported, autophagy-
related genes (ARGs) can effectively select high-risk colorectal cancer patients who require more aggressive 
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therapeutic interventions9. Liu et al. constructed a 22-ARGs-based signature that could independently predict 
the overall survival (OS) in TCGA lung adenocarcinoma10. ARGs-based signature’s predictive value has also been 
validated in glioblastoma11 and breast cancer12. However, the clinical relevance and prognostic significance of 
ARGs-based signature in BLCA remain unknown.

In present study, we aimed to develop a reliable prognostic model for BLCA patients using multiple ARGs 
and investigate its clinical implications. Furthermore, we evaluated the correlation between present prognostic 
model and tumor microenvironment (TME) and explored the underlying mechanism. Finally, to facilitate clinical 
utility of the model mentioned above, a systematic prognostic signature was constructed by integrating clinical 
predictors and ARGs-based molecular biomarkers.

Materials and methods
Data source and preprocessing.  Transcriptomic data (RNA-Seq FPKM) and clinical information were 
downloaded from The Cancer Genome Atlas (TCGA) portal (https://​portal.​gdc.​cancer.​gov/), including 413 
BLCA data and 19 non-tumor data. After integrating those data through ID numbers, the gene measured with 
multi-probes were replaced with their average via limma package (http://​www.​bioco​nduct​or.​org/​packa​ges/​relea​
se/​bioc/​html/​limma.​html)13. Then, 371 patients with follow-up time > 90 d and complete data were selected for 
further analyses. All data were processed and analyzed with R software 3.6.0 (https://​www.r-​proje​ct.​org/), and 
the flow diagram of present study was shown in Fig. 1.

Differential expression analysis and ARGs identification.  DEGs between tumor tissues and normal 
tissues were analyzed through Wilcoxon test. p-value was adjusted with FDR, and filter criteria was FDR < 0.05 
and|log2 fold-change [FC]|> 1. DEARGs were identified by matching the DEGs with the latest list of ARGs 
obtained from the Human Autophagy Database (HADb) website (http://​www.​autop​hagy.​lu/​index.​html). Uni-
variate Cox regression analysis was used to identify possible PDEARGs (P < 0.05).

Prognostic signature construction and validation.  Survival R package (https://​cran.r-​proje​ct.​org/​
web/​packa​ges/​survi​val/​index.​html) was adopted to construct a PDEARGs-based prognostic model. To avoid 
overfitting, PDEARGs that correlated highly with other genes were deleted. Then, Cox proportional hazards 
regression was used to build a prognostic risk model, and the regression coefficients were used to weight 
the expression value of selected PDEARGs. The risk score of each patient was calculated using the following 
formula14:

Individuals were separated into high-risk or low-risk groups according to the median risk score. Subsequently, 
survival analysis and receiver operating characteristic (ROC) analysis were performed as reported6. The expres-
sion level of the five selected PDEARGs between two risk groups was analyzed with R software 3.6.0.

Quantitative real‑time PCR (qRT‑PCR) analysis.  The expression level of five selected PDEARGs 
between tumor and adjacent tissues were further detected through qRT-PCR. Briefly, the BLCA samples used 
for present assay were collected from three BLCA patients who underwent radical cystectomy at Xijing Hospital, 
and corresponding paracancerous tissue were used as control. The clinical characterization of selected patients 

Risk score =

n
∑

i=1

coefficient
(

gene i
)

∗ Expression value of
(

gene i
)

Figure 1.   Flow diagram of the present study.
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was shown in Supplementary Table 1. Then, TRIzol™ Reagent (Cat#15596018, Invitrogen, USA) was used to 
isolate the total RNA according to the manufacturer’s protocol. The RevertAid First Strand cDNA Synthesis Kit 
(Cat#RR036A, TAKARA, Japan) was used to synthesize cDNA from 500 ng of total RNA. qRT-PCR was car-
ried out by using TB Green Premix Ex Taq II Kit (Cat#RR820A, TAKARA, Japan) on a BioRad CFX96 system. 
GAPDH served as an endogenous control. The sequences of the primers are listed in Supporting Data 1. All 
experiments reported in this study were conducted according to an experimental protocol approved by the 
Research Ethics Committee of the Fourth Military Medical University. All methods were performed in accord-
ance with the relevant guidelines and regulations, and all of the participating patients gave their informed writ-
ten consent.

Independent prognostic factors analysis.  Univariate Cox regression analysis was performed to iden-
tify factors affecting the OS of BLCA patients. Then, multivariate Cox regression analysis was used to evaluate 
whether the risk score generated from the present prognostic model could be used as an independent prognostic 
factor. P < 0.05 was considered statistically significant.

Clinical utility of prognostic signature.  The relationship between risk factors of the present model and 
certain clinical variables (i.e., age, gender, histological grade, pathological stage, and tumor-node-metastasis 
(TNM) status) was analyzed with t-test. The box plot was prepared with beeswarm R package (https://​cran.r-​
proje​ct.​org/​web/​packa​ges/​beesw​arm/​index.​html), and the impact of PDEARGs on BLCA prognosis was ana-
lyzed through survival R package (https://​cran.r-​proje​ct.​org/​web/​packa​ges/​survi​valAn​alysis/​index.​html).

Correlation between risk score and TME.  Tumor purity, infiltrating stromal and immune cells of 
TCGA-BLCA were assessed through ESTIMATE R package (https://r-​forge.r-​proje​ct.​org/​proje​cts/​estim​ate/) 
as previously reported15. The relative fraction of 22 TIICs types in each sample was quantified by the CIB-
ERSORT method and LM22 signature matrix (https://​rdrr.​io/​github/​singh​a53/​amritr/​src/R/​suppo​rtFunc_​ciber​
sort.R)16,17. The algorithm ran at 100 permutations with a threshold of P < 0.05 to select eligible patients for 
further analysis18. The correlation between risk score and TME was analyzed with the Pearson correlation coef-
ficient test, and the impact of TME on clinical variables was evaluated as well.

Enrichment analysis of PDEARGs.  GO function enrichment of the five selected PDEARGs was per-
formed via clusterProfiler and enrichplot R package (http://​master.​bioco​nduct​or.​org/). FDR < 0.05 was consid-
ered statistically significant. Then, the top 10 terms involved with different GO functions were plotted. To better 
explain the relationship between PDEARGs and GO function, a chord plot of representative terms was con-
structed with Goplot R package (http://​wencke.​github.​io/).

Construction and validation of PDEARGs‑based systematic prognostic signature.  A systematic 
prognostic signature was constructed through a similar method mentioned above by integrating seven clinical 
variables (i.e., age, gender, histological grade, pathological stage, and TNM status) with the signature discussed 
above. The variables highly correlated with others were deleted to avoid overfitting, and the regression coeffi-
cients were used to weight selected variables. The median of the systematic risk was used to separate the patients 
into two risk groups, and survival probability was analyzed using R software 3.6.0. Predictive accuracy of the 
novel systematic signature was evaluated with survivalROC R package (https://​cran.r-​proje​ct.​org/​web/​packa​ges/​
survi​valROC/​index.​html). Finally, the systematic signature was visualized through a nomogram constructed by 
rms R package (https://​cran.r-​proje​ct.​org/​web/​packa​ges/​rms/​index.​html).

Figure 2.   Identification of BLCA specific DEGs, DEARGs, and PDEARGs. (A) Heat map and volcano plot 
of DEGs. (B) Heat map and volcano plot of DEARGs. The green to red spectrum indicates low to high gene 
expression in the heat map; the red, green and black dots represent upregulated, downregulated and unchanged 
genes in the volcano plot, respectively. (C) Forest graph of PDEARGs. The red and green dots represent 
PDEARGs with a hazard ratio > 1 and ≤ 1, respectively.
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External validation of both prognostic signature.  GSE13507 and GSE31684 cohorts with gene expres-
sion data and clinical information were downloaded from gene expression omnibus (GEO) database (https://​
www.​ncbi.​nlm.​nih.​gov/​geo/). Patients with follow-up time < 90 d or other incomplete data were removed. Then, 
the risk score and systematic risk of 143 patients were calculated. The efficacy of present signatures was validated 
in external datasets with survival analysis. The prognostic value of selected PDEARGs was estimated as well.

Results
Identification of BLCA specific PDEARGs.  We obtained 3126 differentially expressed genes (DEGs) 
based on the TCGA-BLCA dataset, among which 1223 genes were downregulated, and 1903 genes were upregu-
lated in tumor tissues compared with normal tissues (false discovery rate (FDR) < 0.05, |log2 FC|> 1; Fig. 2A). 
Then, 34 BLCA-specific differentially expressed ARGs (DEARGs) were identified (Fig. 2B), and five prognostic 
DEARGs (PDEARGs) were found to be significantly associated with the OS of BLCA patients (P < 0.05; Fig. 2C). 
Among the five PDEARGs, APOL1 (apolipoprotein L1) with hazard ratio ≤ one was regarded as a protective 
gene, while the other four genes [DIRAS3 (DIRAS family, GTP-binding RAS-like 3), NAMPT (Nicotinamide 
phosphoribosyltransferase), P4HB (Proly 4-hydroxylase beta polypeptide), and SPHK1 (Sphingosine kinase-1)] 
were identified as high-risk genes predicting a poor prognosis of BLCA.

Construction of PDEARGs‑based prognostic signature.  The regression coefficients were employed 
to construct a five PDEARGs-based prognostic risk model (Table 1). Subsequently, the risk score for each patient 
was calculated with the following computational formula:

Individuals were sorted into a high-risk group (n = 185) and a low-risk group (n = 186) by the median risk 
score of 1.02. Survival analysis indicated that the prognosis was poorer in the high-risk group than in the low-
risk group (P < 0.001; Fig. 3A). Precisely, the 5-year OS rate in the high-risk group was 33.2%, while it was 59.5% 
in the low-risk group. Then, we analyzed the distribution of each patient’s risk score and survival status, and a 
large amount of death existed in the high-risk group (Fig. 3B). As well, a heat map and a series of box plots were 
generated to depict the expression level of the five selected PDEARGs, among which the protective gene (APOL1) 
was downregulated, and the other four risk genes were upregulated in patients with high-risk score (Fig. 3B, D). 
The area under the curve (AUC) was 0.724, which was much higher than other clinical parameters, suggesting 
that the present model was more accurate in predicting BLCA patients’ OS (Fig. 3C).

To validate the RNA-seq data, we analyzed the expression level of five selected PDEARGs using qRT-PCR. As 
shown in Fig. 3E and Supplementary Table 2, the protective gene (APOL1) was downregulated, while the other 
four risk genes were upregulated in tumor, compared with the adjacent normal tissue, which were consistent 
with the RNA-seq data above.

Independent prognostic value of present signature.  As shown in Fig. 4A, the variables of patho-
logical stage, tumor-node-metastasis (TNM) status, and risk score were associated with the prognosis of BLCA 
patients (P < 0.05). Multivariate analysis showed that the risk score was an independent prognostic factor for OS 
(P < 0.01; Fig. 4B). The hazard ratio for the risk score was 1.695, indicating a high-risk score would predict a bad 
prognosis. The commonly used clinical variables, such as age, gender, pathological stage, and TNM status, were 
insufficient to serve as independent prognostic predictors (P > 0.05).

Clinical utility of present signature.  The relationship between present model and clinical variables was 
analyzed (Table 2). High-expression of APOL1 was associated with decreased pathological stage, N status, and 
M status (P < 0.05; Fig. 5B–D). Contrarily, as the value of risk score or the expression of the other four risk genes 
(DIRAS3, NAMPT, P4HB, and SPHK1) increased, the histological grade, pathological stage, T status, or N status 
of BLCA patients increased (P < 0.05; Fig. 5E–U). Furthermore, low-expression of APOL1 and increased risk 
score were observed in patients with age > 65 (P < 0.05; Fig. 5A–Q). Survival analysis showed that high expression 

Risk score =
(

−0.0019× expression of APOL1
)

+
(

0.0775× expression of DIRAS3
)

+
(

0.0127× expression of NAMPT
)

+
(

0.0030× expression of P4HB
)

+
(

0.0120× expression of SPHK1
)

.

Table 1.   Construction of five PDEARGs-based prognostic risk model. HR hazard ratio, HR.95H and HR.95L 
95% confidence interval.

Genes Coefficient HR HR.95L HR.95H P value

APOL1 − 0.0019 0.9981 0.9968 0.9995 0.0058

DIRAS3 0.0775 1.0806 1.0116 1.1543 0.0212

NAMPT 0.0127 1.0128 1.0047 1.0210 0.0019

P4HB 0.0030 1.0030 1.0017 1.0043 0.0000

SPHK1 0.0120 1.0121 0.9979 1.0264 0.0944

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
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of the protective gene APOL1 indicated a good prognosis (P < 0.01; Fig. 6A), while increased expression of risk 
gene P4HB resulted in a poor prognosis (P < 0.05; Fig. 6D). The other three risk genes (DIRAS3, NAMPT, and 
SPHK1) had no significant effect on survival outcome (P > 0.05; Fig. 6B, C, and E).

Correlation between risk score and TME.  As shown in Fig. 7A–D, with the increase of risk score gener-
ated by present prognostic signature, tumor-infiltrating stromal cells (i.e., stromal score) and estimate score (sum 

Figure 3.   Prognostic value of present risk model. (A) Survival analysis between high-risk and low-risk groups. 
The 95% confidence interval was shown as a light-colored background around the Kaplan–Meier curve. 
(B) Risk plot encompassing the distribution of risk score, survival status, and risk genes expression of each 
patient. (C) ROC curve analysis of different variables. female = 1, male = 0. (D) Expression level of the five 
selected PDEARGs between low-risk and high-risk group. (E) Expression level of the five selected PDEARGs 
between tumor and adjacent normal tissue (n = 3). Data are presented as the means ± SD from 3 independent 
experiments.

Figure 4.   Univariate and multivariate Cox regression analysis. (A) Univariate Cox regression analysis to 
identify prognosis associated factors. (B) Multivariate Cox regression analysis to assess independent prognostic 
factors. The red and green dots represent variables with hazard ratio > 1 and ≤ 1, respectively.
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Table 2.   Clinical utility of prognostic model related factors [t-value (P value)].

Genes Age Gender Grade Stage T M N

APOL1 2.602 (0.011) − 1.622 (0.109) − 1.66 (0.115) 2.652 (0.010) 1.855 (0.068) 2.641 (0.031) 3.284 (0.001)

DIRAS3 − 1.412 (0.160) 0.985 (0.331) 3.272 (0.002) − 2.918 (0.004) − 2.442 (0.016) 1.283 (0.234) − 1.72 (0.091)

NAMPT − 0.159 (0.874) 1.112 (0.272) 4.022 
(2.157e−04) − 3.063 (0.003) − 2.526 (0.013) 0.812 (0.445) − 1.121 (0.266)

P4HB − 1.763 (0.081) 0.175 (0.862) 2.993 (0.008) − 2.112 (0.037) − 0.98 (0.329) 0.416 (0.691) − 2.375 (0.020)

SPHK1 − 1.269 (0.206) 0.635 (0.529) 7.326 
(1.635e−11) − 3.207 (0.002) − 3.547 

(5.201e−04) 0.61 (0.552) − 1.364 (0.177)

Risk score − 2.244 (0.026) 1.6 (0.116) 6.294 (1.13e−07) − 4.839 
(3.471e−06) − 3.201 (0.002) 0.363 (0.724) − 3.001 (0.003)

Figure 5.   Relationship between prognostic model related factors and clinical variables. (A–D) APOL1 and 
clinical variables. (E–G) DIRAS3 and clinical variables. (H–J) NAMPT and clinical variables. (K–M) P4HB and 
clinical variables. (N–P) SPHK1 and clinical variables. (Q–U) Risk score and clinical variables. Box plots with 
P < 0.05 are shown.
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of stromal score and immune score) significantly increased, meanwhile tumor purity significantly decreased 
(P < 0.05). Additionally, 22 types of tumor-infiltrating immune cells (TIICs) in TCGA-BLCA were analyzed 
with CIBERSORT, and the content of neutrophils, macrophages M0 and M2 increased with risk score (P < 0.05; 
Fig. 7E–H). Furthermore, a high proportion of macrophages M0 could lead to a poor prognosis, accompanied by 
increased pathological stage, N status, and M status of BLCA patients (P < 0.05; Fig. 7I–L), indicating that tumor-
associated macrophage (TAM) might involve with PDEARGs mediated biological process.

GO enrichment analysis.  To further explore the relationship between PDEARGs and TAM, Gene Ontol-
ogy (GO) enrichment analysis was employed. The five selected PDEARGs were associated with 52 biological 
processes (BPs), six molecular functions (MFs), and nine cellular components (CCs), among which immuno-
logic process-related GO terms were significantly enriched, such as the activation of microglial cell, leukocyte, 
and macrophage as well as inflammatory response. Besides, oxidative stress and relevant apoptotic signal path-

Figure 6.   Survival analysis of prognostic model related genes. Kaplan–Meier curve of patients with different 
expression levels of APOL1 (A), DIRAS3 (B), NAMPT (C), P4HB (D), SPHK1 (E). The median expression 
level was used as the cut-off value. Red line and blue line represent high expression and low expression group, 
respectively.

Figure 7.   The correlation between risk score and TME. (A) Risk score and stromal score. (B) Risk score and 
immune score. (C) Risk score and ESTIMATE score. (D) Risk score and tumor purity. (E) Risk score and 
neutrophils. (F) Risk score and macrophage M0. (G) Risk score and macrophage M1. (H) Risk score and 
macrophage M2. (I–L) Macrophage M0 and clinical variables.
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way were significantly enriched (FDR < 0.05; Fig. 8A). Therefore, TAM might be regulated by PDEARGs. To bet-
ter explain the relationship between PDEARGs and GO terms, a chord plot was constructed, and three essential 
genes (SPHK1, P4HB, and NAMPT) that might participate in macrophage regulation were found (Fig. 8B).

Construction of PDEARGs‑based systematic signature.  To promote clinical application and predic-
tive accuracy of the model mentioned above, we constructed a systematic prognostic signature by integrating 
seven clinical variables and the five PDEARGs-based signatures. The clinical variables (i.e., age, histological 
grade, and TNM status) correlated highly with the aforementioned risk score were deleted to avoid overfitting. 
Then, the regression coefficients were used to weight selected variables, and the systematic risk of each patient 
was calculated with the following computational formula (Table 3):

The median of the systematic risk was 0.96, and with the increase of systemic risk, a bad prognosis of BLCA 
patients was observed (P < 0.001; Fig. 9A, C). Precisely, the three-year and 5-year OS rate was 49.0% and 37.6% 
in the high-risk group, while it was 77.6% and 69.0% in the low-risk group, respectively. A nomogram was con-
structed accordingly, and the AUC value for systematic prognostic signature was 0.791, which was more accurate 
than the pure PDEARGs-based model (Fig. 9B, D).

External validation of both signatures.  Both PDEARGs-based prognostic signature and systematic 
signature were validated in external datasets. As shown in Fig. 10A and B, a significantly different survival out-
come was observed between the two risk groups (P < 0.005, log-rank test). The OS rate at 5-year was 15.49% and 
37.50% for PDEARGs-based high-risk and low-risk groups. The corresponding rate for systematic signature was 
20.83% and 32.39%, indicating that both signatures could precisely predict BLCA prognosis regardless of inter-
nal and external cohorts. Besides, the prognostic value of five selected PDEARGs was estimated through survival 
analysis. Except for APOL1, the other four risk genes could effectively separate BLCA patients with different 
survival outcomes (P < 0.05, Fig. 10C). Though these results were not exactly consistent with Fig. 6, the general 
trend of survival curve between the high expressive and low expressive groups was similar.

Discussion
BLCA is a frequent malignant disease with rising incidence and high recurrence rates19. Although new diagnostic 
and therapeutic strategies have been carried out over the past several decades, the clinical outcome of BLCA 
patients remains unsatisfied4,20. Hence, there is an urgent need to develop better diagnostic methods to accurately 
identify asymptomatic and recurrent individuals at an early stage and propose novel treatment targets to improve 
prognosis. Previous studies have revealed that autophagy plays an essential role in TME regulation, resulting in 
tumor cell migration and invasion, tumor stem cell maintenance, and therapy resistance21,22. Therefore, ARGs 
may be an ideal biomarker or indicator to predict the progression and prognosis of BLCA.

Systematic risk =
(

−0.5755× gender
)

+
(

0.6253× pathological stage
)

+
(

0.5276× risk score generated from aforementioned model
)

; gender:female = 1, male = 0.

Figure 8.   GO enrichment analysis of PDEARGs. (A) Bar plot of enriched GO terms. (B) Chord plot of 
enriched GO terms. FDR < 0.05 was considered statistically significant.

Table 3.   The construction of PDEARGs-based systematic prognostic signature. HR hazard ratio, HR.95H and 
HR.95L 95% confidence interval.

Variables Coefficient HR HR.95L HR.95H P value

Gender − 0.5755 0.5624 0.3085 1.0253 0.0603

Stage 0.6253 1.8687 1.2486 2.7968 0.0024

Risk score 0.5276 1.6949 1.2194 2.3558 0.0017
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Recently, many malignant tumor-related studies have shown that ARGs-based signature or multigene expres-
sion patterns can favorably predict cancer prognosis9,10,12. For example, P4HB retrieved from HADb website has 
been identified as a prognostic biomarker for BLCA, which could dramatically inhibit the invasion and prolifera-
tion of bladder cancer cells, providing novel insights for autophagy-mediated tumor progression23. However, 
whether multigene-based prognostic signature can predict the outcome of BLCA patients aroused our interest. 
In present study, we identified five optimal PDEARGs based on a comprehensive analysis, among which APOL1 
was a protective gene, and the other four PDEARGs were risk genes. Then, we constructed a reliable PDEARGs-
based prognostic model that could stratify TCGA-BLCA patients into two risk groups with statistically different 
survival outcomes. The risk score generated from the present signature could serve as an independent prognostic 
factor to predict patients’ OS, and the predictive accuracy (AUC = 0.724) was much better than other clinical 
parameters. As reported, AUC > 0.60 was regarded as acceptable for predictions24; thus, the present PDEARGs-
based signature can precisely predict the prognosis of BLCA patients.

Subsequently, we analyzed the expression of the five PDEARGs in two risk groups and evaluated the relation-
ship between present signature and certain clinical variables. Firstly, the expression of the protective gene APOL1 
was downregulated in the high-risk group, and the other four risk genes were upregulated in the patient with an 
increased risk score. Consistently, the RNA level of five PDEARGs detected through qRT-PCR obtained similar 
results as RNA-Seq data, indicating its potential for clinical transformation. However, we didn’t include a large 
sample in the present proof of concept study, which need further confirmation with prospective clinical study. 
Besides, APOL1 expression significantly decreased with the increase of pathological stage, N and M status. The 
high expression of risk genes was accompanied by bad histological grade, pathological stage, TNM status, and 
prognosis. Based on the above, the present signature constructed with low-expression of protective gene and 
high-expression of risk genes could accurately predict BLCA patients’ progression, including histological grade, 
pathological stage, TNM status, and survival outcome. What’s more, BLCA incidence increased with age25, and 

Figure 9.   The construction and validation of PDEARGs-based systematic prognostic signature. (A) Survival 
analysis between two groups with different systematic risk. The 95% confidence interval was shown as a light-
colored background around the Kaplan–Meier curve. (B) Nomogram of the systematic prognostic signature. (C) 
Risk plot encompassing the distribution of systematic risk and survival status of each patient. (D) ROC curve 
analysis of systematic risk.
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we found that APOL1 level was down-regulated and risk score increased in elderly patients (age > 65), which 
further confirmed the reliability and clinical consistency of present model.

TME, which comprises recruited stromal cells and TIICs, has emerged as an important player in tumor 
progression, with the potential to be used in future treatment and diagnosis26. In present study, the TME of 
BLCA patients was analyzed with the ESTIMATE and CIBERSORT R package. With the increase of risk score 
generated from PDEARGs-based signature, tumor purity significantly decreased, and the proportion of stromal 
cells, neutrophils, and macrophage (M0 and M2 phenotypes) in tumor tissues significantly increased, which 
was correlated with bad pathological stage, detrimental TNM status, and poor prognosis. As reported, tumor-
associated stromal cells can synthesize and secrete many pro-tumorigenic factors to promote cancer initiation, 
angiogenesis, invasion, and metastasis27. Additionally, emerging evidence indicates that elevated neutrophils are 
associated with detrimental outcomes in several solid tumors, and new strategies to decrease their presence and 
activity have shown efficacy in preclinical models28,29. TAM is another prominent component of TME, and the 
accumulation of M0 and M2 macrophages in tumors is most strongly associated with poor clinical outcomes18. 
Therefore, the ability to reflect the tumor-promoting microenvironment may explain why the present PDEARGs-
based signature could precisely predict the prognosis of BLCA patients.

To explore the underlying mechanism by which the present prognostic model effectively stratified BLCA 
patients, GO enrichment analysis of the five PDEARGs was performed. As a result, several immune-related GO 
terms were significantly enriched, such as macrophage activation, inflammatory response, cellular response to 
decreased oxygen levels, and related apoptotic signaling pathway. It has been reported that ARGs are tightly 
related to hypoxia and hypoxia-induced metabolic reprogramming, among which P4HB is a crucial molecule 
that has been extensively studied7,30. The expression of P4HB significantly increased in several solid tumors, 
including bladder cancer31, kidney cancer32 and prostate cancer30, which is consistent with the present study. 
Besides, hypoxia and oxygen stress-induced autophagy and apoptosis could be regulated by ARGs such as SPHK1, 
P4HB, and NAMPT33. During the process mentioned above, inflammatory response would be initiated, and TME 
could be changed to recruit and activate macrophages. NAMPT is regarded as a pleiotropic modulator governing 
monocyte/macrophage differentiation, polarization, and migration34. Therefore, we speculate that the process 
of “PDEARGs → autophagy → TME change → TAM recruitment and polarization → tumor progression” would 
provide insights for present prognostic signature and propose potential treatment targets for BLCA patients.

Though the present model exhibits a promising value in predicting BLCA patients’ prognosis, we intend 
to integrate clinical variables and risk scores generated from the model above to construct a systematic signa-
ture with promoted clinical utility and predictive accuracy. Notably, the novel systematic signature could more 
precisely predict the prognosis of TCGA-BLCA patients (AUC = 0.791). As reported, AUC > 0.75 was deemed 
to have an excellent predictive value24. The reliability of both PDEARGs-based signatures was also validated 
through external cohorts downloaded from the GEO database. A nomogram of the systematic signature was 
then prepared for clinicians to identify BLCA patients who need invasive therapy.

In conclusion, we constructed a valuable PDEARGs-based prognostic model that can precisely predict the 
prognosis of BLCA patients. This model’s risk score can serve as an independent prognostic factor and can 

Figure 10.   External validation of both signatures. (A) Validation of PDEARGs-based signature. (B) Validation 
of systematic signature. The 95% confidence interval was shown as a light-colored background around the 
Kaplan–Meier curve. (C) Survival analysis of five selected PDEARGs in external cohorts. The median expression 
level was used as the cut-off value.
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effectively reflect the tumor-promoting microenvironment. GO enrichment analysis revealed the underlying 
mechanism, which may provide insights for the present model and propose potential treatment targets for 
BLCA patients. Additionally, a systematic signature integrating clinical variables and the aforementioned five 
PDEARGs-based model was constructed for clinical application. Inevitably, large-scale, multi-center studies are 
necessary to confirm the clinical benefit of our results. In vitro or in vivo experiments need to be performed to 
provide more evidence for PDEARGs-based regulatory mechanism.
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