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Abstract
As atrophy represents the most relevant driver of progression in multiple sclerosis (MS), we investigated the impact of dif-
ferent patterns of brain and spinal cord atrophy on disability worsening in MS. We acquired clinical and MRI data from 90 
patients with relapsing–remitting MS and 24 healthy controls (HC). Clinical progression at follow-up (mean 3.7 years) was 
defined according to the Expanded Disability Status Scale-Plus. Brain and spinal cord volumes were computed on MRI brain 
scans. After normalizing each participants’ brain and spine volume to the mean of the HC, z-score cut-offs were applied to 
separate pathologically atrophic from normal brain and spine volumes (accepting a 2.5% error probability). Accordingly, MS 
patients were classified into four groups (Group I: no brain or spinal cord atrophy N = 40, Group II: brain atrophy/no spinal 
cord atrophy N = 11, Group III: no brain atrophy/ spinal cord atrophy N = 32, Group IV: both brain and spinal cord atrophy 
N = 7). All patients’ groups showed significantly lower brain volume than HC (p < 0.0001). Group III and IV showed lower 
spine volume than HC (p < 0.0001 for both). Higher brain lesion load was identified in Group II (p = 0.049) and Group IV 
(p = 0.023) vs Group I, and in Group IV (p = 0.048) vs Group III. Spinal cord atrophy (OR = 3.75, p = 0.018) and brain + spi-
nal cord atrophy (OR = 5.71, p = 0.046) were significant predictors of disability progression. The presence of concomitant 
brain and spinal cord atrophy is the strongest correlate of progression over time. Isolated spinal cord atrophy exerts a similar 
effect, confirming the leading role of spinal cord atrophy in the determination of motor disability.
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Introduction

Multiple Sclerosis (MS) is one of the most common causes 
of disability in young adults and leads to progressive accu-
mulation of motor and cognitive deficits, with a severe 
impact on quality of life [1]. In particular, motor deficit 
plays an important role in global clinical disability since it 
causes significant disorganization of an individual’s func-
tion, with deleterious effects on daily activities [2]. Over the 
years a great effort has been put into the characterization of 
the neural correlates of motor impairment in MS, as well 
as into the identification of predictive markers of clinical 
disability. As a result, it has been established that the clini-
cal expression of brain damage in MS varies according to 
multiple factors and that it is poorly explained by conven-
tional Magnetic Resonance Imaging (MRI) findings [3, 4]. 
Although a full characterization of the imaging correlates 
of motor impairment in MS is still lacking, several works 
have highlighted how the rate of cerebral atrophy is able to 
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add information on the progression of disability in patients 
with MS [5], and how atrophy and lesion volumes present 
a complementary prognostic value in predicting long term 
disability [6]. Additionally, infratentorial and spinal cord 
damage, as well as damage to the corticospinal tract, explain 
to a varying degree both walking and hand dexterity impair-
ment in MS [7]. This evidence is in line with several works 
across literature, showing an association between decreased 
spinal cord volume and disability in MS [8, 9]. In particular, 
spinal cord atrophy occurs frequently in MS patients and it 
is present from the early stages of the disease [10], although 
it is more pronounced in progressive patients compared to 
individuals with either radiologically isolated syndrome or 
relapsing–remitting (RR) MS [11].

Given the fundamental role of the spinal cord in upper 
and lower limb motor function, it is intuitive to understand 
how pathological processes involving this tiny but complex 
structure determine a high level of disability in MS patients, 
as captured by different clinical measures depicting motor 
impairment. Accordingly, reduction of spinal cord volume is 
a strong predictor of physical disability and disease progres-
sion over time, indicating that spinal cord monitoring can 
contribute to the estimation of disease activity and severity 
[12]. Indeed, the association between reduced spinal cord 
area and increased motor impairment seems to occur inde-
pendently of brain atrophy or at least to a different extent 
or rate [13]. In addition, an association between spinal cord 
atrophy and reduced peripapillary retinal nerve fiber layer 
thickness has been detected [14], suggesting that spinal cord 
volume loss might partially reflect global pathological alter-
ations and not only focal damage of long tracts [15].

Given the recognized role of brain and spinal cord atro-
phy in driving disability, we hypothesized that patients pre-
senting atrophy in both districts (i.e. brain and spinal cord) 
would be more prone to develop future disability compared 
to those who present preferential involvement of one of the 
two compartments. To explore this hypothesis, we evalu-
ated the impact of different patterns of brain and spinal cord 
atrophy on disability worsening in a cohort of patients with 
RR MS.

Materials and methods

Study participants

Patients with clinically defined MS according to McDonald 
Criteria [16] and RR phenotype [17] underwent MRI as part 
of research studies ongoing at our center from 2010 to 2013. 
For the cross-sectional analysis, we retrospectively collected 
Expanded Disability Status Scale (EDSS), Timed 25-foot 
walk test (25-FWT) and Nine Hole Peg Test (9HPT) from 
clinical evaluations performed within one week of MRI. 

For longitudinal purposes, from March 2015 to July 2015, 
a new clinical evaluation was performed. Mean follow-up 
(FU) interval was 3.70 ± 1.44 years. At both time-points the 
following information was collected: age, time since first 
symptoms, disease duration, clinical phenotype and specific 
treatment for MS (yes/no).

We reviewed all included patients’ clinical history and 
confirmed the MS diagnosis according to more recent cri-
teria [18].

A cohort of age- and sex-matched healthy control (HC), 
who underwent MRI in our center during the same period 
of time, was selected.

The study was conducted after institutional ethical com-
mittee approval and was in accordance with the declaration 
of Helsinki. Written informed consent was obtained from 
all subjects.

None of the MS participants had experienced clinical 
relapses within three months from participation at both 
baseline and FU.

MRI acquisition protocol

The imaging study was performed with a 3.0-T MR unit 
(Verio; Siemens, Erlangen, Germany). The manufacturer’s 
12-channel head coil designed for parallel imaging (general-
ized autocalibrating partially parallel acquisition- GRAPPA) 
was used for radiofrequency signal reception. A multiplanar 
T1-weighted localizer image with section orientation paral-
lel to the subcallosal line was acquired at the beginning of 
each MR imaging examination. Brain MRI imaging protocol 
included the following sequences for all subjects: 1. High-
resolution 3 dimensional T1-weighted (3D-T1) Magnetiza-
tion Prepared Rapid Acquisition Gradient Echo sequence: 
TR = 1900 ms; TE = 2.93 ms; flip angle = 9°; field of view 
[FOV] = 260 mm; matrix = 256 × 256; 176 sagittal slices 
1 mm thick; no gap; 2. Dual turbo spin-echo, proton density 
(PD) and T2-weighted images: TR = 3320 ms; TE1 = 10 ms; 
TE2 = 103  ms; FOV = 220  mm; matrix = 384 × 384; 25 
axial slices 4 mm thick; 30% gap. For the cervical spinal 
cord we used: 3. T2-weighted sequence: TR = 3800 ms; 
TE = 123.0 m; FOV = 280 mm; matrix = 288 × 448; flip 
angle = 160°, 13 sagittal slices 3 mm thick, 10% gap; 4. 
STIR T2-weighted sequence: TR = 4000 ms; TE = 55.0 m; 
FOV = 250 mm; matrix = 240 × 320; flip angle = 150°, 13 
sagittal slices 3 mm thick, 10% gap.

MRI imaging analysis

Image data were processed on Linux workstations using 
the FMRIB Software Library 5.9 package (FMRIB Image 
Analysis Group, Oxford, England, http://​www.​fmrib.​ox.​
ac.​uk/ fsl) and Jim 6.0 software (Xinapse Systems, Essex, 
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England; http:// www.​xinap​se.​com). The analysis has been 
carried out in 2019.

Brain and lesion volumes

Lesion volumes were obtained using a semi-automated tech-
nique based on local thresholding with the Jim software. 
Lesions were segmented on PD images, while T2-weighted 
images were used to increase the confidence level in lesion 
identification by two neurologists (SR, LDG). Lesion vol-
umes yielded the following data for every subject: a quan-
tification of the lesion burden (total lesion volume—LV) 
and a binary lesion mask needed for the volumetric analy-
sis, which was co-registered onto the 3D-T1 images. Brain 
volumes were normalized to standard space MNI reference 
image to avoid head-size dependencies, and measured using 
SIENAx [19] on lesion filled brain images [20] to obtain 
normalized brain volume (NBV).

Spinal cord volume

Spinal cord volume was measured on the brain 3D-T1 
images from C2 to C3 using a semi-automatic segmentation 
method (Jim version 6.0; Xinapse Systems, Essex, England). 
First, the sagittal 3D-T1 was reformatted and resampled axi-
ally to a 1-mm slice thickness, with the image plane perpen-
dicular to the cord at the C2/C3 disk level. On this image, a 
marker was placed at the level of the most inferior slice pass-
ing centrally through the C2/C3 disk. Then, moving back 
up, two markers were placed after every five slices, until the 
fifteenth slice from the first maker was reached. An active 
surface method was then applied, using the markers of the 
cord centerline as input. An automatic calculation of spine 
volume was eventually obtained. To compensate for the bio-
logical variation of structural measurements, unrelated to 
disease effects, the raw volume was subsequently normal-
ized dividing it by the number of slices [21]. The presence 
and number of spinal cord lesions from C1 to C3 level was 
assessed on spinal cord MRI T2-weighted and STIR images.

Atrophy cut‑offs definition and patients’ 
classification

Individual NBV and spinal cord volume were normalized to 
the mean and the standard deviation values of the HC group 
thus obtaining z-scores. To classify each patient according to a 
specific atrophy pattern, we followed the procedure described 
in Raji et al. [22]. Briefly, in the HC cohort, given the normal 
distribution of brain and spinal cord volumes, 95% of the brain 
volume values were located within the area of the mean ± 1.77 
standard deviation, while 95% of the spinal cord volume values 
were located within the area of the mean ± 1.87 standard devia-
tion. Only 5% of the brain/spinal cord volume values were 

expected to be larger or smaller. Therefore, we assumed that 
z-scores below  – 1.77 and  – 1.87 represented, respectively, a 
significant brain/spinal cord volume reduction with an error 
probability of 2.5% at most. These z-score cut-offs were con-
sequently applied to group individual MS patients based on 
their brain and spinal cord volumes into the following classes:

Group I: no brain or spinal cord atrophy (z-scores greater 
than  – 1.77 and  – 1.87, respectively);

Group II: brain atrophy (z-scores lower than  – 1.77), no 
spinal cord atrophy (z-scores greater than  – 1.87);

Group III: no brain atrophy (z-scores greater than  –  1.77), 
spinal cord atrophy (z-scores lower than  – 1.87);

Group IV: both brain and spinal cord atrophy (z-scores 
lower than  –  1.77 and  – 1.87, respectively).

Statistical analysis

Statistical analyses were performed in SPSS 25.0, with a 
significance level α = 0.05.

Differences in age and sex between patients and controls 
were tested via t-test and Fisher test, respectively. Pearson 
chi-square test was used to test differences in sex between 
the 4 groups. Analysis of variance (ANOVA) was used to 
test differences in age, disease duration, clinical parameters/
lesion loads at baseline and follow-up interval between the 4 
groups with post-hoc analysis accounting for multiple com-
parisons (Bonferroni). Analysis of covariance (ANCOVA), 
accounting for age and gender, was used to test differences 
in brain and spinal cord volumes between HC and the 4 
patients’ groups, with post-hoc analysis accounting for mul-
tiple comparisons (Bonferroni).

Finally, the relationship between atrophy groups and dis-
ease progression was tested via logistic regression, enter-
ing atrophy classes as independent variable and progres-
sion as dependent variable. Progression was defined for each 
clinical measure as follow: (i) EDSS: increase of 1.5 points 
for patients with a baseline EDSS score of 0, increase of 
1 point for patients with baseline EDSS score from 1.0 to 
5.0, and increase of 0.5 points for patients with baseline 
EDSS score equal or higher to 5.5 [23]; (ii) 9HTP and (iii) 
25-FWT: > 20% increase from baseline to FU [24]. Patients 
were then divided into two groups (progressed versus clini-
cally stable) according to a progression measure known as 
“EDSS-Plus,” described as progression on ⩾1 of the 3 com-
ponents (EDSS, 25-FWT, and/or 9HPT) [25].

Results

Cross‑sectional analysis

Ninety MS patients and 24 HC, showing no significant dif-
ference in terms of age (35.65 ± 7.78 years vs 32.45 ± 6.41, 

http://www.xinapse.com
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p = 0.07) and sex (67 F vs 18 F, p = 0.592), participated in 
the study. In the patients group 40 subjects were classified 
in Group I (no brain or spinal cord atrophy), 11 were cat-
egorized in Group II (brain atrophy/no spinal cord atrophy), 
32 were identified as belonging to Group III (no brain atro-
phy/spinal cord atrophy) and 7 were included in Group IV 
(brain and spinal cord atrophy) according to their individ-
ual brain and spinal cord volume z-score (Fig. 1). Boxplots 
displaying mean values for brain and spinal cord volume 
z-scores in the HC and in the 4 patients’ group are displayed 
in Fig. 2. All patients’ groups showed significantly lower 
NBV z-score than HC (p < 0.0001 for all), while only Group 
III and Group IV showed lower spinal cord volume z-score 
than HC (p < 0.0001 for both). Differences in clinical and 
MRI parameters among the 4 groups are shown in Table 1. 
No differences emerged between atrophy classes in terms 
of FU interval or disease duration. From a clinical perspec-
tive, patients in Group IV (brain and spinal cord atrophy) 
presented worse 9HPT performance at baseline than patients 
in Group I (no brain or spinal cord atrophy) (24.96 ± 14.03 s. 
vs 18.87 ± 2.44, p = 0.015). Patients classified as Group II 
(brain atrophy/no spinal cord atrophy) and Group IV (brain 
and spinal cord atrophy) presented higher brain lesion load 
than patients classified in Group I (no brain or spinal cord 

atrophy) (respectively, 7.92 ± 8.59 ml and 9.31 ± 6.24 ml vs 
3.54 ± 4.37, p = 0.049 and p = 0.023), and patients classi-
fied as Group IV(brain and spinal cord atrophy) presented 
higher brain lesion load than patients belonging to Group 
III (no brain atrophy/spinal cord atrophy) (9.31 ± 6.24 ml vs 
3.93 ± 2.68, p = 0.048). No significant between group differ-
ence was identified for spinal cord lesion load.

Longitudinal analysis

Seven patients were lost at FU. Of the remaining 83 patients, 
29 showed disability progression. In particular, 5 patients 
presented with worsening of 9HPT, 2 showed an increase of 
25-FWT score and 11 a progression in EDSS score, while 
the remaining 11 patients showed a deterioration in more 
than one clinical outcome.

The regression model including atrophy classes sig-
nificantly predicted clinical progression (Nagelkerke R 
Square = 0.129, p = 0.043), with a significant predictive 
role identified for spinal cord atrophy (OR = 3.75, 95% IC: 
1.26—11.17, p = 0.018) and brain + spinal cord atrophy 
(OR = 5.71, 95% IC: 1.03  – 31.53, p = 0.046) in comparison 
with the class showing no atrophy.

Fig. 1   Representative high-resolution 3DT1-MPRAGE showing the 
distinct atrophy patterns. 3DT1-MPRAGE axial and sagittal slices 
from four patients, representative of the distinct atrophy patterns, are 
shown. Group I (no brain atrophy/ no spinal cord atrophy); Group II 

(brain atrophy/ no spinal cord atrophy); Group III (no brain atrophy/ 
spinal cord atrophy); Group IV (brain atrophy/ spinal cord atrophy). 
DD disease duration, EDSS expanded disability status scale, NBV 
normalized brain volume, SCV spinal cord volume
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Discussion

In the present study, we investigated whether defining a 
specific atrophy pattern on a single MRI acquisition could 
assist in predicting the development of motor disability in 
a group of RR MS patients within the first 10 years of the 
disease. The role of brain and spinal cord atrophy in driving 
disease progression has been widely investigated in MS, and 
the question of their relative contribution to disability is not 
new [26]. Indeed, both in relapse and progressive onset MS, 
cross-sectional investigations suggest that brain and spinal 
cord atrophy independently contribute to medium (10 years) 
[14, 27, 28] and long-term (> 15 years) physical disability 
[9, 29–32]. Longitudinal findings support the relevance of 
the annual rate of spinal cord volume loss, rather than brain 
metrics, in predicting the annual EDSS score change over 
6 years [12]. Additionally, baseline measures of cervical 
atrophy appear to be more significant than brain atrophy in 
predicting disability progression at 2 years [33, 34]. Here, 
building on these previous findings, we identified 4 atrophy 
patterns based on cross-sectional MRI data, and confirmed 
that patients showing spinal cord atrophy indeed presented 
a high risk of short-term (3.7 years) disability progression. 

Additionally, patients showing atrophy of both brain and spi-
nal cord presented an even higher progression risk, suggest-
ing that atrophy occurring in the two compartments exerts 
a cumulative effect on disability progression, which is in 
line with the concept that atrophy accrual in the brain and 
spinal cord is underpinned by different and at least partially 
independent neurodegenerative mechanisms [13, 35]. These 
results further underline how atrophy constitutes a valuable 
proxy of irreversible damage and predictor of consequent 
progression even over the short-term and in the RR phase, 
when the inflammatory component of the disease still over-
shadows neurodegeneration.

Lately, atrophy exploration in MS has shifted towards the 
identification of specific patterns of atrophy development, 
which could provide a more effective tool to capture the 
nuanced aspects of disability progression, partially explain-
ing the large individual variability observed. Studies investi-
gating atrophy patterns have mainly focused on longitudinal 
analysis of brain volumes [36–41] with few investigations 
exploring spinal cord volumes over time [42] or both brain 
and spinal cord atrophy [43]. Among these, a small study 
comparing brain and spinal cord atrophy patterns in neuro-
myelitis optica (NMO) and MS concluded that while spinal 

Fig. 2   Brain and spinal cord volume z-scores for patients and  con-
trol. Boxplots showing the 25% to 75% values (boxes) ± 95% val-
ues  (whiskers), median values (horizontal lines within boxes) of 
mean Normalized Brain Volume  z-score and Spinal Cord Volume 
z-score value distribution among healthy controls and  patients with 

relapsing–remitting multiple sclerosis. Displayed p-values refer to 
between-group analysis of covariance (ANCOVA), accounting for 
age and gender, Bonferroni corrected for multiple comparisons. HC 
healthy controls
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cord atrophy rate was a significant driver of disability pro-
gression in NMO, brain atrophy played a preponderant role 
in MS [43]. These results, which are in apparent disagree-
ment with the body of literature on spine damage in MS, 
might be explained by the small sample size and the short 
FU period (1 year), which might have been sufficient to 
capture spinal cord modifications in NMO but not in MS. 
Indeed, in a recent work [44] both association and multivari-
able analyses showed that cervical spinal cord gray matter 
lesion and volumetric measures explained more variance in 
disability parameters than global or tissue-specific compu-
tation in the brain, yielding to the conclusion that deter-
mination of cervical spinal cord lesions and atrophy might 
be more crucial than brain measures in explaining physical 
disability in MS [45].

While most of the abovementioned studies on atrophy 
patterns adopted a data driven identification of different 
classes based on the rate of change over time, our defini-
tion of atrophy patterns is based on a hypothesis-driven 
classification of cross-sectional data, in the attempt to 
clarify if a single time-point assessment could provide 
meaningful information on disease progression. Even 
though our sample size was relatively small, we were able 
to identify four groups of patients well balanced in terms 
of age, gender and disease duration. Interestingly, the four 
groups we identified were substantially homogeneous for 
spine but not for brain lesion loads, which is in line with 
the concept that, while brain atrophy is partially depend-
ent from global lesion load, spine atrophy appears to be a 
relatively independent process [30, 46, 47]. Additionally, 
the four groups did not show substantial differences in 
terms of clinical scores at baseline, with the exception, in 
patients with both brain and spinal cord atrophy, of worse 
manual dexterity in comparison with patients with no atro-
phy. These findings might point to a higher sensitivity of 
9HPT towards damage of multiple districts in comparison 
to the other clinical measures explored, that, being heav-
ily weighted towards or measuring directly ambulation, 
would be more affected by spinal cord damage and, in 
particular, spinal cord lesions, which might explain the 
lack of differences in EDSS and 25-FWT observed among 
the 4 groups at baseline. Even though atrophy represents a 
continuum, as underlined by the finding that all patients’ 
group, including the one labelled as presenting no atro-
phy (Group I), showed a mean NBV lower than HC, our 
choice to categorize patients in classes based on the binary 
assessment atrophy/no atrophy in brain and spinal cord 
compartments represents a useful simplification that has 
provided relevant information. In fact, although we are still 
far from the translation of atrophy measurement in general 
and spine atrophy in particular into clinical practice, the 
relevance of brain and spinal cord atrophy as predictors of 
MS evolution is undisputed [15] and our findings add to 

the body of literature suggesting that spinal cord atrophy 
represents a valuable tool to define and predict MS sever-
ity independently from brain atrophy, hinting to the pos-
sibility of defining a clinically meaningful atrophy pattern 
relying on single time-point data.

Additionally, while previous studies supporting the 
role of baseline measures of brain and spinal cord atrophy 
as predictors of future disability have been conducted on 
mixed samples including both relapsing and progressive 
patients [33, 34], we focused on RR patients, proving the 
validity of such metrics in this population over a short 
period of time.

Our work is not without limitations. One that can be 
pointed out is the usage of brain scans instead of a dedicated 
spine acquisition to measure spinal cord volume. However, 
recent works have suggested the possibility to calculate spi-
nal cord atrophy using brain volumetric images [48, 49] in 
order to save time, to minimize cost and to lessen the amount 
of motion artifacts. The brain 3DT1 images used in this work 
fully covered our region of interest, i.e. the upper cervical 
region. Indeed, the most common levels where spinal cord 
volume is measured are C1–C2 and C2–C3, since this region 
is less affected by movement artefacts, leads to the most sen-
sible results, and guarantees optimal clinical correlates [50]. 
Further supporting our choice, a recent work from MAGN-
IMS group has confirmed the similarity in terms of repro-
ducibility and sensitivity between spinal cord area measured 
using specific volumetric sequences and spinal cord area 
detected using volumetric brain MRI [51]. A second con-
troversial point could be represented by the definition of 
disability progression that we adopted. Although the choice 
to utilize the EDSS-Plus has increased the heterogeneity in 
our group of progressed patients, we believe that this clas-
sification accurately reflects the variability that characterizes 
MS clinical evolution, and therefore represents a necessary 
prerequisite to the generalizability of our findings. Even-
tually, as our hypothesis was centered on the influence of 
brain and spinal cord atrophy on disability, we focused on 
the development of motor impairment, thus ignoring the 
evolution of cognitive deterioration, which is a relevant 
player in the patients’ global disability status. Of note, even 
though we acquired our data between 2010 and 2015 and 
finalized the analysis in 2019, the methodology adopted is 
still representative of the current research practice in the MS 
field [44, 52], due to the robustness and reproducibility of 
the chosen techniques.

Notwithstanding these limitations, our findings suggest 
that the presence of spinal cord atrophy, alone or in combi-
nation with brain atrophy estimated at a single time-point, is 
a meaningful predictor of short-term progression, and could 
represent a valuable biomarker once methodological barriers 
to the implementation of volumetric measures in clinical 
practice will be addressed.
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