
1
Primer

Disease and the Dynamics of Food Webs
Wayne M. Getz1,2*

1 Department of Environmental Science, Policy and Management, University of California Berkeley, Berkeley, California, United States of America, 2 Mammal Research

Institute, Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa

Fifty years ago, ecologists Hairston, Smith, and Slobodkin [1]

proposed the provocative idea that herbivores are limited by

predators rather than food. If true, the implications are that we live

in a green (lots of uneaten plants) rather than a brown (the bare

earth is visible due to overgrazing) world [2]—which is largely,

though not universally true. This idea has come to be known as the

trophic cascade hypothesis (TCH), and is a seminal idea in the

subfield of ecology known as foodweb theory [3]. The TCH

generated numerous studies on whether such tritrophic, and even

longer aquatic [4], food chains are truly controlled from the top

down (the TCH) or from the bottom up through food-limiting

herbivore populations [2,5], even if only at critical points in time.

The importance of such studies to our understanding of the

responses of ecosystems to land use and climate change, as well as

to the ecological implications of emerging disease, will become

apparent in this primer.

Like all dialectical arguments, the debate on whether food

chains are controlled from the ‘‘top down’’ or ‘‘bottom up’’ is only

useful for finding the relative influence of both types of control as

they may relate to other ecological, environmental, and particu-

larly seasonal factors. The world, of course, is much more

complicated in that identifiable food chains are hardly ever

sufficiently isolated from other ecological processes (Figure 1) [6]

for models of such processes to make reliable long-term

predictions. Omnivores [7], for example, distort food chains by

feeding at several trophic levels, whereas microbes feed at all

levels: at the bottom as detritivores [8], without which all trophic

chains would soon run out of essential resources, and at other

levels as parasites and pathogens, often constituting a substantial

fraction of ecosystem biomass [9].

How To Model Trophic Chains

Mathematical models are used to explore questions regarding

what factors tip the balance in favor of top-down or bottom-up

control. The most versatile models from a trophic point of view are

those that take a consumer-resource perspective, irrespective of the

particular trophic level under consideration (Box 1): such

formulations have utility in modelling how plants extract photons

and nutrients from the environment, herbivores consume plants,

carnivores consume herbivores, insects consume insects, fish

consume fish, and macroparasites (e.g., nematodes, cestodes)

extract biomass from most vertebrates. By setting up equations

that for each component of a foodweb account for the dominant

links among all components, scientists can build models of trophic

dynamics that address a plethora of interesting questions. This

includes the focal question addressed by Holdo et al. in this issue of

PLoS Biology [10]: in the competition between trees and grass for

space, what is the relative importance of top-down effects exerted

by fire and elephants versus bottom-up effects of rainfall and rising

CO2. Further, and more specifically (as illustrated in Holdo et al.’s

Figure 4B), they assess the relative importance of the human-

elephant-tree cascade (influenced by poaching) compared with the

rinderpest-wildebeest-fire-tree cascade that has resulted from the

near eradication of rinderpest—a highly contagious measles-like

virus the infects cattle and buffalo, giraffe, kudu, wildebeest, and

other artiodactyls—through the vaccination of cattle in east Africa

in the early 1960s.

Episodic Versus Steady Processes

Holdo et al. [10] highlight two very different classes of processes

that potentially influence the ecological state or regime in which a

particular system resides [11]—for example, whether a particular

ecosystem functions predominantly as a grassland with isolated

trees or as a woodland interspersed with patches of grass, with all

the attendant differences in guilds of birds, mammals, and insects

that are supported, not to mention plants, fungi, and bacteria.
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Primers provide a concise introduction into an important aspect of biology
highlighted by a current PLoS Biology research article.

Figure 1. Disease mediation of a lion-zebra-grass tritrophic
chain in the Etosha National Park ecosystem in Namibia. The
anthrax pathogen, Bacillus anthracis, accounts for a substantial number
of deaths of zebra and other herbivores (including springbok, elephant,
wildebeest), thereby providing a largess of resources for the scavenger
community dominated by jackals, hyenas, and several species of vultures
and corvids, not to mention lions themselves. (In the lower right picture is
a zebra carcass a few hours after death from anthrax with vultures and
jackals the first to arrive on the scene). Thus the microbe B. anthracis plays
an important role in determining the ultimate structure of the Etosha
herbivore-carnivore-scavenger foodweb.
doi:10.1371/journal.pbio.1000209.g001

PLoS Biology | www.plosbiology.org 1 September 2009 | Volume 7 | Issue 9 | e1000209



The first class of processes are episodic perturbations such as

outbreaks of fires and diseases that ‘‘burn’’ their way through

systems, or environmental switches such as those driven by ENSO

(El Niño-Southern Oscillation); although we need to bear in mind

that what might be episodic and intense at one spatial scale

appears as more regular and less intense at a larger spatial scale.

Irregular episodic events (best characterized in terms of probability

distributions describing the frequencies and intensities of occur-

rences) can determine the dominant state of ecosystems even when

such events are infrequent [12].

The second class of processes relates to species that extract

resources from underlying trophic levels at relatively steady rates

(Box 1). If removal of one such species causes a change in the

structure of an ecosystem that is highly disproportional to the

original biomass contribution of the species to the ecosystem, then

the species is known as a keystone species [13]. Some examples

are: growing populations of elephants in southern African parks

are reducing tree-canopy cover [14] and hence bird diversity [15];

the reintroduction of wolves in Yellowstone National Park is

causing elk to avoid predation by remaining at higher elevations,

thereby facilitating the recovery of aspen at lower elevations [16];

and the demise of cod in the Baltic sea through overfishing has

caused the system to switch to a sprat-dominated regime [17].

Endemic diseases also fall into this latter class, with Holdo et al.

[10] demonstrating an ecosystem regime shift in the Serengeti

in east Africa. Using discrete time models fitted to population

time-series data (Box 2), they show that suppression of endemic

rinderpest in the wildebeest population caused the Serengeti

ecosystem to increase its woody component by a factor of two to

three. Consequently the Serengeti has switched from a net carbon

source to a net carbon sink over a 40-y period.

Disease and Shifts of Ecosystem Regimes

Holdo et al. [10] are not the first to recognize the critical role that

disease can play in precipitating regime shifts in ecological systems.

For example, it was recently shown that an outbreak of canine

parvovirus in the Isle Royale wolf population switched the wolf-

moose-vegetation trophic chain from top-down to bottom-up control,

in the process revealing new levels of bottom-up control that could

only be explained by effects arising from climate change [18]. This

finding led to the conclusion that predators may play a role in

dampening the effects of climate change on the dynamics of their

prey. A similar conclusion was reached regarding the role of wolves in

dampening the effects of seasonal cycles on scavenger populations

[19]. Thus should endemic parvovirus or canine distemper erupt in

Yellowstone wolves to the point where it significantly reduces wolf

numbers, it could have implications for both the spread of aspen

forests and the well-being of coyote, corvid, and eagle scavengers.

The unusual aspect of Holdo et al.’s study [10] is that it analyzes

a switch in ecosystem regime arising from the suppression rather

than the irruption of a cascading process related to disease

(although to begin with humans did cause rinderpest to sweep

through eastern and southern Africa in the 1890s). Not all disease-

induced changes, however, cascade from upper to lower trophic

levels. For example, outbreaks of plague in black-tailed prairie

dogs can be traced to increased precipitation stimulating primary

production that, in turn, results in increased numbers of rodents

and hence fleas and the ensuing transmission of the sylvatic

plague-causing bacterium Yersinia pestis[20].

Regime Shift in the Serengeti

Holdo et al. [10] used state-space parameter estimation methods

to fit over 44 y of time-series data to two sets of discrete-time

trophic interaction models (Box 2). In the first set of models they

assessed how both wildebeest (as grazers) and the ratio of wet:dry

season rainfall influences the frequency and intensity of fires. In

the second set of models they investigated the influence of fire,

elephants, wildebeest, and rain on tree density (Figure 2). Their

underlying question is the degree to which the suppression of

rinderpest in the early 1960s and the ensuing release of the

wildebeest population produced a trophic cascade responsible for

switching the Serengeti from a predominantly grassland to a more

wooded regime. In particular, they compared the effects of this

cascade with those of elephants and fire in mediating the tree-grass

balance that characterizes different African savanna systems

[14,21–23].

Conclusion

Rapid land-use change in Africa is creating ever-smaller islands

of wild savanna habitat in a sea of engineered landscapes.

Coupled with climate change and the threat of emerging diseases

[24–26], this land-use change makes it increasingly important

that we investigate as broadly as possible the possible effects of

our wildland management practices for fear of unintended

reductions to biological diversity. As long as ecological change

occurs more rapidly than evolutionary forces can create new

species to replace those going extinct—which is certainly the case

with regards to mega-faunal loss during the late Pleistocene era

and the more recent loss of vertebrates (particularly amphibians

[27])—any major perturbation of existing ecosystems is likely to

lead to loss of diversity. Holdo et al. [10] provide an insightful

assessment that an unanticipated consequence of vaccinating

cattle for rinderpest in east Africa is the current transformation of

Serengeti grasslands to woodlands, with ensuing consequence for

storage of carbon with implications for climate change and

biodiversity. They used statistically powerful parameter estima-

tion methods (Box 2) to identify these effects and, in doing so,

illustrated the pitfalls of not analysing the full implications of

management actions at a systems level. To avoid such pitfalls in

future interventions, we need to pay more attention to developing

state-space models (Boxes 1 and 2), with parameters estimated

using hierarchical methods (Box 2) to better assess the impacts of

intervention on trophic webs as a whole. We also need to extend

our models to take account of spatial heterogeneity—an issue not

considered in Holdo et al. [10] or in this primer, but to which

increasing attention is now being paid [28,29]. Finally, we need

Figure 2. Elephants, fire, wildebeest, and rainfall all have the
potential to affect the woody component of African savanna
systems. The effect of elephants is through regular browsing and
coppicing of trees, fire through episodic burns linked to fuel load,
wildebeest after being released from the suppressing effects of endemic
rinderpest (a morbillivirus of artiodactyls), and rain through its
connections to all system components. Holdo et al. [10] demonstrate
that eradication of rinderpest is responsible for the Serengeti switch from
a net source to net accumulator of carbon.
doi:10.1371/journal.pbio.1000209.g002
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Box 1. Extraction-growth models.

In the simplest trophic foodweb models, each component is
represented by a single variable, be it the biomass density,
population density, or some other appropriate measure of
abundance or amount. Consider the case where xi

represents some measure of the size of component i in
a foodweb. Suppose xi21 is the amount of resources
available to individuals in component i, and xi+1 is the
amount of component i+1, containing individuals that
consume component i. (Note that components may be
functional groupings of individuals from several species or
even specific phenotypes within same species). If the
following three conditions hold [30–32]:

1. the amount that each unit in component i is able to extract
from component i21 is yi{1~fi(xi{1,xi)

2. the per unit (e.g., per capita) growth rate of the component

i, which from calculus is represented by
1

xi

dxi

dt
is a function

gi of its per unit consumption rate yi21 (see [5] for a more
detailed elaboration of gi and [33] for inclusion of a storage
component);

3. component i is extracted by component i+1 at a total (per
unit6n units) rate is xi+1fi+1(xi,xi+1) (from condition 1 above
the total amount transferred from i to i+1 is xi+1yi)

then the total rate of change of component i is governed
by the consumer-resource equation (Figure 3)

dxi

dt
~xigi(f i(xi-1,xi)){xiz1f iz1(xi,xiz1), ð1Þ

where, the lowest trophic level, i = 1, is modelled in terms of
the underlying resource being a constant or a time varying
input x0(t) (e.g., photon or nutrient flux), or satisfies some
type of resource pool dynamics [30–32].

First consider the idealized case of a population x1 = x
extracting resources from a constant resource flux x0 = R. If:

4. the per unit extraction rate is given by [34,35] y~f (R,x)

~
dR

bzRzcx
, where d is the maximum extraction rate and

b is the resource amount at which the extraction rate is half
its maximum when the intraspecific interference competi-
tion parameter c is 0 (where interference competition is an
increasing function of the parameter c$0);

5. the growth rate is the hyperbolic (i.e., metaphysiological)

function [30,31] g(y)~r 1{
k

y

� �
, where r is the maximum

per unit growth rate when resources are essentially infinite
and k is the metabolic breakeven point (minimum per unit
consumption rate needed to avoid decline),

6. the population itself is free from predation,
then the governing equation reduces to the ubiquitous
logistic growth equation

dx

dt
~rx 1{

x

K

� �
with r~r 1{

k

d

� �
{

rkb

Rd
and K~

d{k

ck

� �
R{

b

c

Extending this case to a two-trophic case of an idealized
population x2 exploiting a second idealized population x1 = x
that itself is extracting resources from a constant resource flux
x0 = R, if both populations grow hyperbolically on resources
extracted at rates given by functions conforming to the function
given in condition 4 above, then we have the two trophic model:

dx1

dt
~r1x1 1{

x1

K1

� �
{

d2x1x2

b2zx1zc2x2

with r1~r1 1{
k1

c1

� �
{

r1k1b1

Rd1
and K1~

d1{k1

c1k1

� �
R{

b1

c1

dx2

dt
~r2 x1ð Þx2 1{

x2

K2 x1ð Þ

� �

with functions r2 x1ð Þ~r2 1{
k2

c2

� �
{

r2k2b2

x1d2
and K2(x1)~

d2{k2

c2k2

� �
x1{

b2

c2

.

This 2-D consumer-resource equation, unlike the usual Lotka-
Volterra (L-V) equation, has the internal logic of applying the
same growth and extraction principles at both trophic levels. In
contrast, the L-V equation arises by assuming that the second
trophic level either consumes the first at a rate f2(x1,x2) ;
f2(x1) =d2x1 (mass action) or f 2(x1)~

d2x1

b2zx1zc2x2
(modified

Holling Type II, see [36]) and that growth is a linear function
g2(f2) = cf22d of the feeding (extraction) rate [30]. With this
transparency of the assumptions needed to construct an L-V
model from Equation (1), we are able to better assess the
limitations of L-V models and move to biological more realistic
formulations of consumer-resource processes (e.g., see [37]).

Figure 3. A tritrophic chain in which plants (x1, green) at the
lowest trophic level extract resources (photons, nutrients— x0,
orange) from an underlying flux or pool at a per unit rate fi(xi21,
xi), with i = 1. The growth rate of the plants is given by gi(fi), i = 1, while it
is consumed by herbivores at the next trophic level at per unit herbivore
rate fi(xi21, xi), with i = 2. As a result the total rate of change of plant
biomass at trophic level 1 is given by the differential equation in Box 1,
setting i = 1. The same equation applies to the herbivores (x2, red) at the
second trophic level, except now i = 2, and to the predators (x3, black) at
the third trophic level, except now i = 3 (with x4 identically 0).
doi:10.1371/journal.pbio.1000209.g003
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to use our models to assess more deeply than we have in the past

how seemingly sensible management actions can have unintend-

ed consequences if we are to minimize biodiversity loss from such

actions.
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