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SUMMARY
African populations have been drastically underrepresented in genomics research, and failure to capture the
genetic diversity across the numerous ethnolinguistic groups (ELGs) found on the continent has hindered the
equity of precision medicine initiatives globally. Here, we describe the whole-genome sequencing of 449 Ni-
gerian individuals across 47 unique self-reported ELGs. Population structure analysis reveals genetic differ-
entiation among our ELGs, consistent with previous findings. From the 36 million SNPs and insertions or de-
letions (indels) discovered in our dataset, we provide a high-level catalog of both novel andmedically relevant
variation present across the ELGs. These results emphasize the value of this resource for genomics research,
with added granularity by representing multiple ELGs from Nigeria. Our results also underscore the potential
of using these cohorts with larger sample sizes to improve our understanding of human ancestry and health in
Africa.
INTRODUCTION

Recent advances in human genomics research have provided

compelling insights into how genetic variation plays a role in dis-

ease predisposition and its impact on disease pathogenesis and

treatment. Whole-genome sequencing (WGS), in particular, can

be used to identify known and novel variation in disease-associ-

ated genes and to elucidate differences in disease prevalence

across diverse geographic regions and ethnolinguistic groups.

However, the lack of adequate representation of diverse, non-

European, genomes in human genomics research may limit in-

sights that can be made about variants influencing disease sus-

ceptibility and trait variability across populations.

Large-scale sequencing efforts such as the 1000 Genomes

Project,1 the HapMap Project,2 and TOPMed3 have contributed

to our understanding of genetic variation on a global scale and

have helped to narrow the gap in representation of diverse pop-

ulations. In particular, these datasets have uncovered valuable

insights into the distribution of novel and rare variation that exists

in African populations, relative to Europeans. Despite being the

most genetically diverse continent, the extent to which variation

has been characterized across the numerous ethnolinguistic
Cell
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groups found in African countries has been limited.4 Nigeria rep-

resents one of the most diverse and populous regions in Africa,

with a population of over 200million5 and over 250 unique ethno-

linguistic groups.6 Genomics research involving Nigerian individ-

uals and comprehensive cataloging of genetic variation in this

diverse region can allow us to use these data as a proxy for vari-

ation on the continent.

These data can subsequently inform the development of pre-

cision medicine initiatives for non-communicable diseases

(NCDs) such as type 2 diabetes, cancers, and cardiovascular

disease, which are expected to be the leading cause of mortality

in Africa within the next decade.7 We established the Non-

Communicable Diseases Genetic Heritage Study (NCD-GHS)

consortium to assess the burden of NCDs, characterize their

etiological characteristics, and catalog the human genetic varia-

tion in 100,000 adults in Nigeria.8We aim to contribute to preven-

tion, treatment, and control strategies addressing NCDs through

development of a resource that is comprehensive of purposeful

sampling, deep phenotyping, and genomic studies centered

around WGS/whole-exosome sequencing (WES) and genotyp-

ing with arrays. The NCD-GHS also aims to empower further ge-

nomics research initiatives in Africa through data sharing that
Genomics 3, 100378, September 13, 2023 ª 2023 The Author(s). 1
C-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Figure 1. Overview of collection locations and regional designations within Nigeria

Additional details of the sample collection framework are discussed elsewhere.8
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promotes scientific reproducibility but is conscious of ethical and

legal standards.

In this first study, we performed germline WGS of an initial

449 samples from the NCD-GHS. Here, we describe the

methods used to generate a WGS dataset of 449 Nigerian indi-

viduals spanning 47 self-reported ethnolinguistic groups (ELGs)

generated using the GATK Best Practices workflow.9 We

explore the benchmarking of variant filtering strategies used

to strike a balance between sensitivity and specificity by
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leveraging sequenced control samples. We provide a popula-

tion genetics summary of the broad patterns in the data and

a high-level characterization of variants, complementing that

of results reported previously in the 1000 Genomes Project.10

While sample size limits our ability to make any definitive state-

ments about the clinical actionability of variants enriched or pri-

vate to specific ELGs, we do summarize the extent to which

these variants differ in prevalence within our ELGs compared

with global populations.



Figure 2. Collection sites in Nigeria where in-

dividuals of the 54gene dataset were

sampled

(A) States of origin for collected samples. Size of

markers are proportional to the number of in-

dividuals collected. All states are listed in Table S1.

(B) Reported ethnolinguistic group and state of

origin for top 15 most prevalent groups. Marker size

is in proportion to the number of individuals

sampled.
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Several recent large-scale genomic efforts focused on African

populations have improved our understanding of the extensive

genetic variation present on the continent and have expanded

our knowledge of human demographic history.11–13 Our work

represents an effort to add more granularity to sample collec-

tions in Africa, specifically through representation of several

distinct ELGs from Nigeria. We provide initial insights into the

relative genetic distances between ELGs and the extent to which

they vary in the number of rare or common variants they contain.

Our findings have implications for precision medicine across

global populations, such as prioritization of more at-risk groups

for screening or population-specific drug dose calibration.

RESULTS

Samples were collected from several locations across Nigeria,

with some of the larger collections based in cities and larger

healthcare settings (Figures 1 and 2). The majority of subjects

(68%) were female and had a median age of 51 (Table 1).
Cell G
Approximately 60% of the dataset con-

sists of individuals referred to healthcare

settings with cardiovascular disease (Ta-

ble 1). A range of ELGs are represented

across the 449 samples, with 68% of

the dataset being described by 15 ELGs

(Tables 1 and S7).

Given that current variant-calling ap-

proaches have been largely benchmarked

using populations of European descent,

we incorporated a non-Genome in a Bottle

(GIAB) Yoruba sample (NA19238) as a con-

trol among our sequencing cohorts to eval-

uate whether our variant-calling pipeline is

able to achieve a high rate of sensitivity

and precision on a reference dataset that

more closely relates to our population of

study. When comparing the NA19238 con-

trol with Filter B applied to its corres-

ponding HiFi dataset, we were able

to achieve precision/recall/F1 scores

of 97.9%/91.4%/94.5% for SNPs and

79.6%/57.6%/66.9% for insertions or de-

letions (indels) (Figure S1; Table S2). It

is possible that using higher-coverage

NA19238 data would improve this perfor-

mance. Combined with our findings of
variant counts (Table 2) across our cohort and NYGC’s African

(AFR) dataset, our results demonstrate that our variant-calling

pipeline and post-processing filtering strategies are well suited

for variant discovery in this dataset.

Patterns of variation across ELGs in Nigeria
We compared the properties of observed genetic diversity in the

our dataset of 449 individuals (hereafter referred to as the

‘‘54gene dataset’’) with the subset of 650 African-ancestry sub-

jects from the New York Genome Center 1000 Genomes Project

high-coverage dataset (Table 2).1 We found that both the transi-

tion/transversion ratio (Ti/Tv) and the median number of variants

per subject are comparable between datasets. We observed an

increase in the overall count of SNPs and indels within the

54gene dataset relative to the African-ancestry subset of the

1000 Genomes Project (Table 2). This increase in overall variant

counts are observed across all functional annotation categories

(Table 3). We also observed an increase in counts for unknown

variation (variants not present in dbsnp154) across the 54gene
enomics 3, 100378, September 13, 2023 3



Table 1. Demographics and clinical characteristics of the

54gene dataset

n %

Female 307 68

Male 142 32

Median age (IQR) 51 (20) –

Median BMI (IQR) 26.7 (8.7) –

Ascertained phenotypic groups

Cardiovascular disease 268 60

Diabetes 88 20

Solid oncology 32 7

Sickle cell disease 30 7

Neurological diseases 14 3

Endocrine thyroid disorders 11 2

Hemato-oncology 6 1

Top 15 self-reported ethnolinguistic groups (n = 307, 68% of

sample)

Tangale 45 10

Fulani 33 7.3

Igbo 32 7.1

Hausa 27 6

Ibibio 26 5.8

Yoruba 26 5.8

Tera 20 4.5

Kanuri 19 4.2

Atyap 14 3.1

Bura-Pabir 13 2.9

Bini 11 2.4

Ham 11 2.4

Izon 10 2.2

Nupe 10 2.2

Waja 10 2.2

Samples were ascertained across 7 phenotypic groups and 47 unique

self-reported ELGs (mean: 9, median: 5 samples per group, interquartile

range [IQR]: 7.5). The top 15 groups are shown.
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dataset with 3,748,259 unobserved SNPs and indels relative to

the subset of the 1000 Genomes Project with 1,446,210. We hy-

pothesize that this effect could be driven by an increase in the

abundance of rare variants from a wider range of ELGs in the

54gene dataset relative to the 1000 Genomes dataset. However,

we cannot rule out that theremay be other reasons for this obser-

vation due to sampling design, variant-calling strategy, or exper-

imental noise.

We examined the proportions of rare and novel variation

across ELGs within our dataset, with the hypothesis that under-

sampled ELGs may harbor variation unobserved in broader cat-

alogs of human genetic variation. Specifically, we compared

counts of known and unobserved variants across the top 15

ELGs in the 54gene cohort (Figure 3). We observe that ELGs

where the majority of samples are from southern Nigerian states

(see Table S7) qualitatively have lower counts of unknown vari-

ants (e.g., Bini from Edo state, Ibibio from Akwa Ibom state,
4 Cell Genomics 3, 100378, September 13, 2023
Igbo from Enugu state, Izon from Bayelsa state) relative to indi-

viduals from northern and northeastern states (e.g., Bura/Pabir

from Borno, Kanuri from Gombe, Tera from Gombe), who tend

to have higher numbers of novel variants (Figures 1 and 3A).

However, these results remain to be corroborated by larger sam-

ple sizes across ELGs in Nigeria.

Comparing the number of rare, uncommon, and common vari-

ants across ELGs within our dataset, we see most variation in the

rare category as expected.14,15 Several ELGs show a qualitative

decrease in the number of rare variants, particularly the Bura,

Fulani, and Kanuri groups (Figure 3B). For the latter two groups

at least, we see evidence of Northern African or European admix-

ture (Figure 4), whichwe hypothesizemay play a role in this obser-

vation of a decrease in rare variation overall.16 For the NYGCdata,

LWK (Luhya fromKenya) had the highest number of novel variants

(Figure 3C). An excess of variants common in this population but

rare in other populations havebeen reportedpreviously, attributed

to an increased degree of population differentiation relative to

other populations within the same continental grouping.10

Population structure across ELGs across Nigeria
We applied principal-component analysis (PCA) to investigate

patterns of population structure across the ELGs in Nigeria. For

example, we noted three distinct groups of genetically similar

ELGs (Figures 5 and S3). The first consists of colocalized groups

of Yoruba, Ibibio, Bini, Igbo, and Izon. A second group consists of

Ham and Atyap. A third cluster consists of Tangale, with some

overlap with Waja, Bura-Pabir, and Tera. The remaining samples

were substantially more heterogeneous, consisting of Hausa,

Fulani, and Kanuri, where a major axis in PCA is dictated by the

degree of admixture from populations with putatively North Afri-

can ancestry.16–18 We found specifically that the Hausa, Fulani,

and Kanuri groups share a higher degree of genetic similarity

with Mozabite-ancestry individuals, suggesting higher rates of

North African ancestry within these populations from Northern

Nigeria. For twelve ELGs sequenced by both Yale and MGO

sequencing centers, we did not find a strong bias on genome-

wide estimates of genetic ancestry (Figures S4 and S5).

Admixture clustering had the lowest cross-validation error be-

tween K = 1 and K = 3 (Figure S6). We found similar patterns of

ancestry between the Yoruba and Esan ELGs within our dataset

and between the YRI (Yoruba in Ibadan, Nigeria) and ESN (Esan

in Nigeria) populations from 1000 Genomes, respectively (Fig-

ure 4). Individuals reported as Yoruba, Esan, Igbo, Ibibio, Bini,

and Izon showed evidence of similar ancestral composition (Fig-

ure 4). The states of origin for individuals from these ELGs tended

to be South Western (Oyo), South-South (Bayelsa, Akwa Ibom,

Edo), and South Eastern (Enugu) (Figure 1; Table S7). Individuals

self-reported as Nupe, Ham, and Atyap differed somewhat from

the first group and reflected origins from states that were largely

central or central western (Kaduna, Niger). A third group—Waja,

Tangale, Bura-Pabir, and Tera—corresponded to central-west-

ern and north-western states (Gombe, Borno). Lastly, Fulani,

Hausa, and Kanuri stood out as having shared ancestry with

North African or European groups (using Mozabite as a proxy

for this ancestry and also incorporating European populations

from the 1000 Genomes Project in the admixture analysis),

corroborating results from PCA (Figure S3).



Table 2. Counts of variants in high-level classes of functional impact for 54gene and NYGC datasets

Dataset Variant subset Variant counts Ti/Tv Median variants per subject IQR

Pre-filtering 54gene cohort (n = 543) all 53,360,383 1.81 5,675,617 82,912.5

SNPs 45,709,746 N/A 4,886,715 64,853.5

indels 7,650,637 N/A 787,822 17,059.0

Post-filtering 54gene cohort (n = 451) all 36,822,733 2.09 4,580,531 62,566.0

SNPs 32,496,712 N/A 4,002,707 52,381.5

indels 4,326,021 N/A 576,997 12,900.0

Pre-filtering NYGC AFR cohort (n = 661) all 63,816,296 1.72 6,053,976 82,416.0

SNPs 55,258,388 N/A 4,937,900 66,728.0

indels 8,557,908 N/A 1,116,645 16,421.0

Post-filtering NYGC AFR cohort (n = 650) all 43,845,824 2.08 4,628,977 71,259.3

SNPs 40,451,499 N/A 3,978,564 56,881.0

indels 3,394,325 N/A 650,738 14,111.3

Ti/Tv is defined as the ratio of transition (Ti) to transversion (Tv) SNPs with their interquartile range (IQR) provided.
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Variation of clinical importance
To get a broad understanding of the relative frequencies of ge-

netic variation that may be of clinical relevance to our cohort,

we subsetted our dataset to annotated variants classified as

‘‘pathogenic’’ and having established evidence as being disease

causing in the ClinVar Database. Additionally, we stratified vari-

ants by whether they belonged to genes from the American Col-

lege of Medical Genetics and Genomics (ACMG)’s recommen-

ded list of 73 genes with reportable variants.19 We identified a

total of 134 variants classified as ‘‘pathogenic’’ in our cohort

(Table S3). Fourteen individuals from our cohort carried at least

one potential reportable ACMG variant, three carried a variant

inBRCA2 (associated with breast and ovarian cancers), four car-

ried a variant inBTD (associatedwith biotinidase deficiency), and

two carried a variant in GAA (associated with lysosome-associ-

ated glycogen storage disease) (Table S4).

Of the 134 variants identified as ‘‘pathogenic,’’ eight were

found to have a minor allele frequency (MAF) >5% in at least

one of the self-reported ELGs in our cohort (Table S5). These

eight variants were further compared to observed allele fre-

quencies available for global populations and African population

subsets in GnomAD14 and the 1000 Genomes Project.10 Similar

to previous comparisons performed,11 we observed several of

these variants with disease associations to rare disorders with
Table 3. Counts of variants observed across all individuals by

type

Impact category

(all transcripts)

54gene cohort

(n = 451)

NYGC AFR cohort

(n = 650)

High 47,627 36,910

Moderate 732,194 529,975

Low 844,195 781,205

Modifier 241,825,031 166,434,458

Impact categories are defined as indicated here: https://useast.ensembl.

org/info/genome/variation/prediction/predicted_data.html. Counts are

shown for both 54gene (449 subjects and 2 controls) and NYGC AFR da-

tasets.
an MAF <5% across all populations in GnomAD and the 1000

Genomes Project. Larger sample sizes across these ELGswould

be helpful to better understand differences in allele frequencies

of these variants across multiple regions in Nigeria. These data

could inform more precise classifications of ‘‘pathogenic’’ as

well as ‘‘likely pathogenic’’ variants and could increase confi-

dence when making disease associations across global popula-

tions. These results fall within a larger effort to re-examine alleles

associated with rare diseases in more comprehensive popula-

tion reference datasets.

Allele frequencies of known variants associated with
response to indicated drugs
Understanding how genetic variation impacts drug efficacy and

safety across diverse population groups can improve individual-

ized clinical utility of pharmacogenomic profiling. Variants in

pharmacogenes such as CYP2C9, CYP4F2, and VKORC1 have

been implicated in the efficacy of warfarin, a commonly used

anticoagulant for prevention of venous thrombosis, and have

been included in pharmacogenomic screens to assess interindi-

vidual variability and dosing criteria for warfarin. Common vari-

ants in these genes have been found to differ in allele frequency

between African- and European-ancestry individuals.20 To

assess the value of studying underrepresented ancestries in

pharmacogenomics, we surveyed the frequencies of variants

in key pharmacogenes across the ELGs from the 54gene data-

set. We then compared the frequencies of variants in these key

pharmacogenes across ELGs to selected ancestry groups

from the 1000 Genomes Project (Table S6).21

Several polymorphisms within the CYP4F2 gene encoding for

the cytochromeP450 4F2 enzymehave been implicated in altered

warfarin sensitivity andmetabolism.Wenote elevated frequencies

of pharmacogenomic variants within this gene for ELGswhere the

majority of samples are from northern states (Hausa, Fulani) rela-

tive to other ELGs sampled from the 54gene dataset as well as

ancestry groups from the 1000 Genomes Project (Table S6). For

example, the variant rs3093105, designated as CYP4F2*2, has a

frequency of approximately 40% in the Fulani and Hausa ELGs

but is closer to 30% frequency in the Yoruba.22
Cell Genomics 3, 100378, September 13, 2023 5
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Figure 3. Variant counts across ELGs in the 54gene dataset and population groups in the NYGC AFR cohort

(A) 54gene cohort, top 15 ancestries by subject count, known (present in dbsnp154) vs. unknown (not present in dbsnp154).

(B) 54gene cohort, top 15 ancestries by subject count, rare (MAF < 0.1%)/uncommon (MAF R 0.1% and < 0.5%)/common (MAF R 0.5%) in GnomAD AFR.

(C) NYGC cohort, known (in dbsnp154) vs. unknown.

(D) NYGC cohort, rare/uncommon/common in GnomAD AFR (bounds are the same as in B).
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We also observed an elevated frequency of rs2108622

(CYP4F2*3) in the Fulani and Hausa ELGs (15%–17% vs. �5%

in YRI) (Table S6). This polymorphism has been described as

reducing enzymatic levels of cytochrome P450 4F2 required

for metabolism of vitamin K and is typically included in pharma-

cogenomic screens with evidence of association to warfarin

response in European and Han-Chinese populations.23–25 In Af-

rican populations specifically, there have been little-to-no asso-

ciations made between the CYP4F2*3 allele and the warfarin

dosage response because of the typically low frequency of this

allele observed in the available, but limited, data in admixed

and sub-Saharan African groups.26,27 These findings highlight

the necessity for added representation of allele frequencies

from diverse ELGs, which can improve our understanding of

how genetic variability contributes to drug efficacy and how pop-
6 Cell Genomics 3, 100378, September 13, 2023
ulation-specific data may be applied to improve the predictive

power of dosing algorithms for commonly indicated drugs. How-

ever, there are additional factors to consider beyond the differing

allele distributions such as socioeconomic factors, sampling

strategy, and the geographic location and environment of these

populations. The analysis performed here only applies to a

limited subset of known variants within these genes, and further

studies are needed to characterize novel variants in pharmaco-

genes and their effects on drug efficacy in medications.

DISCUSSION

This report represents an initial assessment using WGS to

understand variation within, and the population structure of,

some of the predominant ELGs in Nigeria. This resource also



Figure 4. Population structure analysis using ADMIXTURE of ethnolinguistic groups listed in Table 1, alongside select populations from 1000

Genomes Project (10 random samples fromAfrican Caribbean in Barbados [ACB]; African Ancestry in Southwest USA [ASW]; Utah residents

[CEPH] with Northern and Western European ancestry [CEU]; Esan in Nigeria [ESN]; Gambian in Western Division, The Gambia - Mandinka

[GWD]; Luhya in Webuye, Kenya [LWK]; Mende in Sierra Leone [MSL]; Toscani in Italy [TSI]; Yoruba in Ibadan, Nigeria [YRI])

HDGP populations included were Yoruba in Nigeria (Yoruba) and Mozabite in Mzab, Algeria (Mozabite). Total sample size was n = 422.
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demonstrates the capacity for conducting large-scale genome

analyses in the region, speaking to the promise of building

research capacity on the African continent.11,28 We present re-

sults for several ELGs that have not been previously sequenced

or for which there is very little existing publicly available

sequence data. We demonstrate that we can observe a discern-

ible population structure among closely related populations,

even with limited sample sizes across groups. Our results are

consistent with results for populations already sequenced as

part of previous efforts, e.g., Yoruba from the 1000 Genomes

Project. We have added to this by sampling from a wider set of

ELGs across Nigeria. By using the NA19238 African control in

addition to the gold-standard NA12878 to perform bench-

marking using field standard strategies,29 we show that we

were able to well calibrate our variant-calling pipeline for variant

discovery and generate comparable variant counts between the

54gene dataset and NYGC’s AFR sample data.

Using a broader representation of genetic diversity within

Nigeria, we find several features of population structure within

ELGs within Nigeria. We observe specific groups that are more

genetically similar to one another within Nigeria (e.g., Yoruba,

Igbo, and Izon). A specific and notable example of population

structure is the gradient of North African-related ancestry

(approximated using Mozabite individuals) across multiple
groups in Nigeria. Previous literature has shown high North Afri-

can-related ancestry in Fulani individuals, but our analysis here

considers this across a much wider range of groups within

Nigeria.16 For example, we find elevation of this ancestry within

the Hausa and Kanuri groups from Northern Nigeria as well. A

finer-scale resolution of population structure could benefit from

more detailed sampling with respect to the ELG of an individual’s

grandparents to highlight. We anticipate that further studies

within these groups may shed light on potential trait-associated

variants at higher frequencies in specific ELGs relative to the

entire Nigerian population (e.g., elevated in Hausa), where

each ELG consists of a sizable number of people, highlighting

the importance of understanding fine-scale population structure

within this region.

In order to derive tangible benefits from genomics research for

global populations, making the resulting genomic data and

metadata available is essential. However, the accessibility and

availability of genomics data remains a persistent challenge

for the field.30 There are notable exceptions to this. The public

availability of data from the 1000 Genomes Project, HGDP,

and the UK Biobank—to name a few—has removed major bar-

riers to conducting human genetics research, particularly for

researchers with limited funding.10,31,32 There are additional

efforts for which a subset of the data are public (e.g., TOPMed,
Cell Genomics 3, 100378, September 13, 2023 7



Figure 5. Principal-component plot of ethnolinguistic groups listed in Table 1 in addition to Esan from 54gene and 1000Genomes Project and
Yoruba from 1000 Genomes Project and HGDP

An additional version of this plot with all ethnolinguistic groups is shown in Figures S3 and S4.
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imputation server but limited direct access to phased data) and

others that, though publicly funded, remain difficult to access

(e.g., H3Africa whole-genome sequences). We note that the

data presented here were not funded by major public grants or

other non-profit support, unlike some of the datasets highlighted

above. While the data are not completely publicly available, and

some level of access control is enforced, we are hopeful that this

is a step in the right direction, where both public and private ini-

tiatives make every effort to release and share data with the

broader research community.

While there is a critical need to facilitate open-access sharing

of high-quality genomic data, there is also a need to balance the

interests of the researchers generating the data and the ethical

and privacy obligations to the participants. Specifically,

ensuring the data are used for non-commercial purposes and

that the data producers fully benefit from their contributions in

the form of formal credit and/or acknowledgment drives prog-

ress and capacity building in genomics research in regions

such as Nigeria. Ethical use of genomic data requires that there

are safeguards for protecting patient privacy, confidentiality,

and prevention of data misuse or unauthorized access. Imple-

menting controlled and/or restricted access to genomic data

with robust but transparent governance mechanisms allows re-

searchers to find a balance between these challenges. Reposi-

tories such as the European Genome-phenome Archive (EGA)

and dbGAP can facilitate secure and structured methods of

data sharing. While this framework may create barriers in the

form of application procedures, documentation, and longer
8 Cell Genomics 3, 100378, September 13, 2023
turn-around times from assessment committees, it remains

the best current solution to address security concerns. How-

ever, the burden of enabling data sharing highlights a larger

need to re-evaluate international guidelines and best practices

in genomics for effective data sharing to maximize scientific dis-

coveries and health equity.

This resource provides an approach for conducting further

population genomic studies in Nigeria using WGS with larger

sample sizes to provide more definitive insights into novel or

rare variation in certain ELGs and to provide a high-level sum-

mary of population structure. Our results also emphasize the util-

ity of publicly available WGS data from under-sampled African

populations as a resource to enable better cataloging of genetic

variation to drive initiatives in precision medicine, improvement

of human reference genomes, and the elucidation of population

histories.

Limitations of the study
The sample sizes across the self-reported ELGs in our cohort

and their depths of coverage limit the interpretations that can

be made from the discovery of clinically relevant variants and

potential conclusions that can be made about the distribution

of pathogenic disease-associated variants in Nigeria. This also

limits our ability to make conclusions on the relative frequencies

of novel or known pharmacogenetic variants that exist within

the population. Nevertheless, our findings of the relative counts

of ACMG-reportable variants and broad comparisons of patho-

genic and pharmacogene variant frequency can serve as a
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template for cataloging variation at the level of ELGs. An addi-

tional limitation of the currently generated data is that the lower

depth of coverage limits our ability to draw demographic in-

sights from patterns of rare-variant sharing across ELGs. Data

of higher depth and quality and increased sample sizes across

lesser-represented ELGs will allow for more robust conclusions

about complex genomic regions and mutations that could have

significant impacts on health or disease outcomes. As more

complete demographic and health data emerge for these

understudied population groups, we foresee significant oppor-

tunities for health interventions that will improve the health

and well-being of patients, particularly in areas such as

pharmacogenomics.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Raw and analyzed data This paper EGA: EGAS00001007036

NYGC 1000 Genomes Project WGS dataset Byrska-Bishop et al.1 ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/

1000G_2504_high_coverage/working/20190425_NYGC_

GATK/CCDG_13607_B01_GRM_WGS_2019-02-19_

chr[1-22,X,Y].recalibrated_variants.vcf.gz.

BROAD Resources: known sites VCFs and

scattered calling intervals

BROAD Institute https://s3.amazonaws.com/broad-references/broad-

references-readme.html

Human reference genome NCBI build 38, GRCh38 Genome Reference

Consortium

http://www.ncbi.nlm.nih.gov/projects/genome/assembly/

grc/human/

Software and algorithms

Illumina bcl2fastq2 Illumina https://support.illumina.com/downloads/bcl2fastq-

conversion-software-v2-20.html

54gene-wgs-germline This paper https://54gene-wgs-germline.readthedocs.io/en/latest/

FastQC Andrew et al.35 https://www.bioinformatics.babraham.ac.uk/projects/fastqc/

Fastp Chen et al.36 https://github.com/OpenGene/fastp

BWA Li et al.37 N/A

GATK McKenna et al.38

Poplin et al.39
http://www.genome.org/cgi/doi/10.1101/gr.107524.110

https://www.biorxiv.org/content/10.1101/201178v3

Samtools and bcftools Danecek et al.40 https://github.com/samtools/samtools

VerifyBamID Jun et al.41 https://github.com/statgen/verifyBamID/

Somalier Pederson et al.42 https://github.com/brentp/somalier

Ensembl Variant Effect Predictor (VEP) McLaren et al.43 https://useast.ensembl.org/info/docs/tools/vep/script/

index.html

hap.py Krusche et al.29 https://github.com/Illumina/hap.py

PLINK Purcell et al.49 https://www.cog-genomics.org/plink/

ADMIXTURE Alexander et al.50 https://dalexander.github.io/admixture/

Code for figure generation This paper https://gitlab.com/data-analysis5/wgs_449_figure_generation

Pong Behr et al.51 https://github.com/ramachandran-lab/pong

Other

ENCODE Blacklist regions Amemiya et al.44 https://github.com/Boyle-Lab/Blacklist/tree/master/lists

ClinVar Database of clinically relevant variation Landrum et al.45 https://www.ncbi.nlm.nih.gov/clinvar/

ACMG v3.0 List of genes from secondary findings Miller et al.19 N/A

dbSNP Database for SNPs Sherry et al.46 https://www.ncbi.nlm.nih.gov/snp/

Genome-in-a-bottle: genome stratification regions Krusche et al.29 https://github.com/genome-in-a-bottle/genome-stratifications

NIST high-confidence regions Krusche et al.29

Zook et al.47
https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/

giab/release/
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and data should be directed to and will be fulfilled by the lead contact, Colm O’Dush-

laine (codushlaine@gmail.com), or by Segun Fatumo (segun.fatumo@gmail.com).

Materials availability
This study did not generate new unique reagents.
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Data and code availability
d The whole-genome raw sequence data reported in this study cannot be deposited in a public repository because of ethical and

subject/patient privacy restrictions. Sequence data in the form of CRAMs and aggregate, per-chromosome VCF files have been

deposited at the European Genome-phenome Archive (EGA), which is hosted by the EBI and the CRG, under the study acces-

sion number EGAS00001007036. They are available through controlled access. Further information about EGA can be found on

https://ega-archive.org.34 Access can be requested by contacting the NCD-GHS consortium through the lead contact, Colm

O’Dushlaine (codushlaine@gmail.com) or Segun Fatumo (segunfatumo@gmail.com), and providing information about the in-

tended non-commercial use of the requested data.

d All original code is available in this paper’s supplemental information.

d Any additional information required to reanalyze the data reported in this paper can be made available from the lead contact

upon request.
EXPERIMENTAL MODEL AND STUDY PARTICIPANTS

Individuals for this study were recruited from numerous study sites across Nigeria (Figure 2).8 The hospital study sites cared for pa-

tients with non-communicable diseases including cardiovascular diseases, neurological diseases, thyroid disorders, diabetes mel-

litus, solid and hematological cancers, and sickle cell disease. Patients within these diseases of interest were introduced to the study

by their attending physician and subsequently recruited if they met the following inclusion criteria: (1) participants aged 18 years or

older, and (2) participants voluntarily provided informed consent. Upon obtaining informed consent, study-specific Research Assis-

tants (RAs) administered questionnaires collecting basic demographic, behavioral, and medical history information from the partic-

ipant. Thereafter, a laboratory technician collected and processed the requisite blood biospecimen.

METHOD DETAILS

Sample processing and whole Genome sequencing
Whole blood aliquots at a volume of four (4) milliliters were collected from participants using sterile Vacutainer blood collection kits

(BD Vacutainer�) and subsequently biobanked at �80�C for DNA extraction. DNA was extracted from peripheral whole blood using

the automated KingFisher Extractor and using theMagMax DNAmulti-sample extraction kit, according tomanufacturer protocol rec-

ommendations (Thermo Fisher, U.S.A.). Resulting genomic DNA was assessed for concentration and purity using Promega DNA

quantification kit on the Promega Quantus Fluorometer (Promega, Germany) and measurement of A260/A280 ratio on the

MultiSkan Sky High spectrophotometer (Thermo Fisher, U.S.A.). DNA libraries were prepared using the Illumina DNA PCR-Free Li-

brary Preparation kit, Tagmentation, and following Illumina recommended protocol (Illumina, U.S.A.).

Resulting libraries were subjected to whole-genome sequencing (WGS) on the Illumina Novaseq 6000 sequencer, and pooled to

achieve a desired target of 30x genome coverage, accepting aminimumof 20x.WGSwas carried out at the 54geneNigeriaMolecular

Genetics Laboratory. A portion of samples (256/449 subjects) were sequenced at our partner laboratory at Yale Center for Genome

Analysis (YCGA), at a target of minimum 30x coverage using paired end sequencing aswell (Figure S2). This was carried out using the

Illumina Novaseq 6000 instrument and the Lotus DNA library preparation kit.

FASTQ generation
Raw FASTQs were provided for samples sequenced by YCGA. Samples sequenced in-house were converted from raw binary base

call (BCL) files to FASTQ using Illumina’s bcl2fastq2 (v2.20) utility available on their BaseSpace Sequence Hub platform, using the

following parameters: minimum trimmed read length and masking of short adapter reads set to 35, barcode mismatches set to 0,

and adapter stringency set to 0.9. Additional flags applied to the BCL conversion were: ‘–find-adapters-with-sliding-window‘,

‘–ignore-missing-bcls‘, ‘–ignore-missing-filter‘, ‘–ignore-missing-positions‘, and ‘–ignore-missing-controls‘.

Variant calling and QC
The 54geneWGS germline pipeline (see key resources table) was used to process the raw sequencing data. FastQC (v0.11.9) reports

were generated for all raw FASTQs,35 followed by read trimming and adapter removal with fastp.36 A second pass of FastQC was

performed to confirm effective adapter removal and trimming. Reads were aligned to the GRCh38 reference genome using bwa-

mem,37 followed by deduplication. GATK (v4.2.5.0)38,39 BaseRecalibrator was used to generate a recalibration table for base quality

scores using the VCFs for known SNP and INDELs sites in dbSNP (build 138) from the Broad’s genome references on Amazon Web

Services, then applied to each BAM file. Samtools stats (v1.15) were then generated for all BAMs.40 Variant calling was performed

using GATK’s HaplotypeCaller. Joint genotyping was performed using GATK’s GenomicsDBImport tool to generate database stores

for each sample, parallelized across fifty (50) regions using interval lists of approximately 59Mb each in size made available by the

Broad Institute . The database stores for each of these regions were subsequently passed to GenotypeGVCFs. Variant normalization

was applied and multiallelic variants were split into multiple records using ‘bcftools norm‘.40 Hard-filtering was performed using

GATK’s VariantFiltration tool.
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Post-calling subject-level QC consisted of the following steps: contamination checks were performed using VerifyBamID

(v2.0.1)41; subject relatedness was estimated using Somalier (0.2.14) in order to identify unexpected genetic duplicates42; sex dis-

cordances were detected using two orthogonal techniques, Somalier and the ‘bcftools guess-ploidy‘ plugin (v1.10).40,42 Samples

were excluded based on the following thresholds: het/hom ratio above 2.5, average depth less than 20x, and a contamination esti-

mate above 0.03.

Variant annotation

We used Ensembl’s Variant Effect Predictor (VEP)43 to annotate variants using the Homo sapiens database version 106. Annotations

were performedwith the following flags: ‘–sift b –polyphen b –variant_class –symbol –canonical –check_existing –af –max_af –af_1kg

–af_esp –af_gnomad‘. Additionally, the following regions were acquired from the hg38 UCSC Genome Browser track and applied as

custom annotations: repeatmasker, simpleRepeat, microsatellite, segdups, windowmaskerSdust, centromeres, telomeres, and

gaps. Finally, a custom annotation was applied for variant presence in the ENCODE blacklist, hg38 version 2.44 Annotations for

variant classifications of clinical importance using the ClinVar Database (v.20221113),45 ACMG v3.0 list of genes from secondary

findings, and variant labels (rs IDs) from dbSNP (v.154) were also included.19,46

Post-calling variant filtering
We explored different variant filtering strategies to apply to our dataset and to evaluate sensitivity and specificity (Table S2, Supple-

mental Notes). Several of these filtering strategies includedmasking for the aforementioned regions that are prone to yield missing or

unreliable data, applied as custom annotations that encompassed simple repeats, centromeric and telomeric regions, segmental

duplications, microsatellites, and custom regions defined in the ENCODE blacklist. We applied the filtering strategies to two control

samples, the Genome in a Bottle (GIAB) NA12878 genome (benchmarked against the NIST high confidence call set47) and NA19238,

a Yoruba reference sample from the 1000 Genomes Project (benchmarked against a publicly available HiFi call set).48 We selected

these controls to assess sensitivity and specificity of our variant calling and filtering in both a well-characterized European-ancestry

sample and a sample more representative of the ancestries we are studying.

To assess performance of variant calling, we used BED files provided by the Genome in a Bottle Consortium and T2T Consortium

to stratify true positive, false positive, and false negative variant calls over difficult regions of the genome, corresponding to the union

of all tandem repeats, all homopolymers >6bp, all imperfect homopolymers >10bp, all difficult to map regions, all segmental dupli-

cations, GC <25% or >65%, "Bad Promoters", and "OtherDifficult" regions (including regions from the T2T-consortium for GRCh38

only).29,33 We used hap.py (v0.3.15) to assess performance and applied various variant and region filtering strategies; see Supple-

mental Notes for details on all filters applied.29

Preparing publicly available data

Weacquired publicly available data produced by the NewYorkGenomeCenter (NYGC).1We subsetted the data to 661 subjects from

the populations in the African-ancestry regional grouping (ACB, ASW, ESN, GWD, LWK, MSL, and YRI) (Table 2) and removed all

second degree relatives, leaving 650 subjects available for merging with the 54gene dataset. Prior to merging, we applied the anno-

tation and filtering criteria as described above for the 54gene dataset. Similarly, we also acquired publicly available data produced by

the Human Genome Diversity Project (HGDP),31 subsetting the data to 420 subjects from population groups spanning Africa, Europe

and the Middle-East; (Adygei, Bantu Kenya, Bantu South Africa, Basque, Bedouin, Bergamo Italian, Biaka, Druze, French, Man-

denka, Mbuti, Mozabite, Orcadian, Palestinian, Russian, San, Sardinian, Tuscan, Yoruba).

Analysis of population structure
We merged the subsetted VCFs containing population groups of interest from the NYGC (n=650) and HGDP (n=420) datasets, with

our 54gene dataset (n=449) (Table 2). We used BCFtools40 (v1.10) with the ‘-m none‘ to output no new multiallelics, but multiple re-

cords instead, and the ‘–force-samples‘ parameter. Using PLINK49 (v1.9), a starting call set of 53,649,772 variants were filtered to

0.5% minor allele frequency within the cohort (18,721,257 variants), and data were subjected to principal component analysis: var-

iants were filtered to genotype missingness less than 5% and Hardy-Weinberg Equilibrium exact p-value greater than 0.001.

Variants were also filtered out if they exhibited patterns of non-random missing genotypes based on a ‘plink –test-mishap‘ p-value

less than 1e-5. The resulting set of 5,726,648 variants was further filtered for linkage disequilibrium with successive passes through

‘plink –indep 50 5 2‘ and ‘plink –indep-pairwise 50 5 0.2‘. Variants in the MHC regions (25 - 35Mb on chromosome 6) were removed,

leaving 611,322 variants for population genetic analyses. Principal components were estimated using the default settings of

‘plink –pca‘.49 We used ADMIXTURE50 (v1.3.0) to characterize the population structure of 54gene samples, alongside African and

European samples from the 1000 Genomes Project.1 We applied the clustering approach in ADMIXTURE across a range of cluster

counts (K), from K=1 to K=10. The admixture plots were generated using Pong.51

QUANTIFICATION AND STATISTICAL ANALYSIS

Included in Method Details.
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