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Abstract

We propose a mechanism for copying of neuronal networks that is of considerable interest for neuroscience for it suggests
a neuronal basis for causal inference, function copying, and natural selection within the human brain. To date, no model of
neuronal topology copying exists. We present three increasingly sophisticated mechanisms to demonstrate how
topographic map formation coupled with Spike-Time Dependent Plasticity (STDP) can copy neuronal topology motifs.
Fidelity is improved by error correction and activity-reverberation limitation. The high-fidelity topology-copying operator is
used to evolve neuronal topologies. Possible roles for neuronal natural selection are discussed.
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Introduction

This paper is the result of taking seriously the idea that units of

selection exist in the brain [1–3]. A unit of selection is an entity

that can replicate, and have hereditary variation [4,5]. If these

units have differential fitness they can evolve by natural selection.

Examples of units of selection include: units of life [6] such as

organisms and lymphocytes evolving by somatic selection [7], but

also purely informational entities such as viruses, machine code

programs [8] and binary strings in a genetic algorithm [9]. Since

natural selection is an algorithm for generating adaptation [10], it

can have many implementations [11]. It is worthwhile considering

whether it may be utilized for cognition.

The theories of neural Darwinism [12] and neuronal selectionism

[13,14] propose that a primary repertoire of neuronal groups within

the brain compete with each other for stimulus and reward

resources. This results in selection of a secondary repertoire of

behaviourally proficient groups [15]. Both Edelman and Chan-

geux’s groups have produced an impressive range of detailed models

of hill-climbing type (exploration and exploitation) algorithms that

can explain a wide range of behavioural and cognitive phenomena

at various levels of abstraction [16]; such as category formation [12],

reinforcement learning using spike-time dependent plasticity

modulated by dopamine reward [17], visual-motor control in a

robotic brain-based device [18], temporal sequence learning [19],

effortful cognition in the Stroop task [20], and planning [21].

Importantly, both these research programs avoid the need for

replication of neuronal groups, i.e. none of their algorithms require

units of selection. This stimulated Francis Crick to distinguish

Edelman’s set of algorithms from the fundamental natural selection

algorithm as defined, for example, by John Maynard Smith’s

formulation of units of evolution [22,23]. At this stage, one might

also mention Richard Dawkins’ proposal of selective neuronal death

as a memory mechanism, again a selectionist but non-Darwinian

theory without need of replication [24].

It is crucial to be clear to what extent, if any, the algorithmic

capacity of ‘natural selection’ to produce adaptation is limited if one

removes the requirement for multiplication, and instead starts with

a primary repertoire of solutions that compete for limited resources.

We propose that the algorithms of Edelman and Changeux

fundamentally consist of a population of stochastic hill-climbers

[25]. Each neuronal group is randomly initialized, and those groups

that are closest to a good solution obtain a greater quantity of

synaptic resources allowing them to ‘grow’ and/or ‘change’. The

critical assumption is that when those groups that are better at time t

gain more synaptic resources, they are capable of transferring the

functions that were embodied in their existing structures to the new

substrate. Michod summarises the fact that in neuronal group

selection, synaptic change rules replace replication as a mechanism

of variability of the ‘unit of selection’: there is correlation between

the parental and offspring states of the same neuronal group even

without multiplication [26]. We contend that replication is the most

natural (but not the only) way to envisage this transfer of function

operation. Replication has the advantage of leaving the original

solution intact, so that a non-functional variant does not result in

loss of the original solution. Unless the neuronal group has the

capacity to revert to its original state given a harmful variation, in

which case it is effectively behaving as a 1+1 Evolutionary Strategy

[27], there is the potential that good solutions are lost.

Furthermore, in evolutionary theory there is an emerging

extended evolutionary synthesis [28] that addresses the issue of the

evolution of evolvability, that is; how exploration distributions (the

distribution of phenotypes that a given genotype produces) can be

structured by evolution, to maximize the probability that a

random genetic mutation produces a beneficial phenotype [29].

Although not without its critics [30], increasingly there is an

understanding that natural selection is capable of acting self-

referentially to improve itself as a heuristic search algorithm. For

the evolution of evolvability to be possible, the unit of selection
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must encode the mechanism of its own self-replication. Not all

units of selection are necessarily capable of this; however, a

neuronal implementation may be ideally suited for this kind of self-

referential encoding of a copying algorithm. It is for these reasons

that we put forward a neuronal copying mechanism, capable of

replication of neuronal group structure.

Explicit self-replication of neuronal groups has been proposed

previously by William Calvin [31]; however, his mechanism only

addresses half the problem; that of forming neuronal correspon-

dences between parent and offspring networks (e.g. between A and

A9 neurons in Figures 1, 2, 3), and not of reconstructing the parental

synaptic topology within the child network. Figure 1 directly

compares the genetic replicator system with our proposed neuronal

replicator system. In the genetic system a parental DNA strand acts

as a template for complementary activated nucleotides. Hydrogen

bond (h-bond) formation between nucleotides is responsible for this

association. Phosphodiester bond (p-bond) formation between the

newly attached activated nucleotides re-creates the topology of

connectivity found in the parental strand. William Calvin’s model as

we show later, achieves the equivalent of h-bond formation, but is

not able to carry out the more difficult task of recreating the

neuronal equivalent of the p-bonds, i.e. intra-layer connections.

Note that in the neuronal case, reconstructing the pattern of p-

bonds is a considerably more difficult problem than with DNA.

Another important contribution is that of Robert Aunger who

takes a neuro-memetic viewpoint, claiming that neuronal

organizations replicated within the brain prior to their ability to

undertake inter-brain memetic transfer [32]. Although recent

theoretical work hints at the possibility that linguistic constructions

[33] may undergo natural selection dynamics in language

acquisition [34], and may thus be one of the most plausible

candidates for neuro-memes, no neuronal implementation has

been proposed. Finally, the most explicit proposal so far of a

neuronal unit of selection comes from Paul Adams who claims that

synapses replicate and are neuronal units of selection, with

mutations being noisy quantal Hebbian learning events where a

synapse is made to contact an adjacent post-synaptic neuron

rather than to enhance the connection to the current post-synaptic

neuron [35]. Adams also proposes a mechanism for error

correction, which we discuss later.

Here we present a computational model of the copying of

higher-order neuronal units of selection (relative to Adam’s

synaptic replicators) at the neuronal group level. The unit consists

of a neuronal assembly with a particular topology of excitatory

connections. The mechanism of self-replication utilizes known

neurophysiological mechanisms; namely, topographic map forma-

tion [36,37], STDP [38] and neuronal resetting [39]. So far there

has been no systematic search for evidence to suggest that these

mechanisms in combination can achieve neuronal self-replication.

Therefore, we explore the implications of what we call the neuronal

replicator hypothesis, rather than providing confirmation of the

hypothesis empirically. Thus our aim is to explore a self-consistent

model that makes explicit what would be required for high-fidelity

neuronal topology copying.

For a theory of evolution by natural selection, heredity is an

indispensable element, and here we explore one mechanistic

solution of neuronal replication that rests on connectivity copying

of microcircuits. Note that this is not the only, and maybe not even

the most plausible or even relevant solution. Even in organismic

biology we have various systems for inheritance: inheritance based

on metabolic networks, on conventional genes and epigenetic

(including gene regulatory) mechanisms [40]. What matters for

there to be units of evolution is that multiplication combined with

heritable variation must somehow be solved. This can be done by

connectivity copying of smallish circuits, but also with the transfer

of activity patterns, an option explored elsewhere. The latter

approach also allows for the possibility that indeed individual

synapses or neurons may not matter too much, but groups of

neurons with many synapses do.

The organization of the remainder of the paper is as follows. We

present three models; each makes more assumptions about

neuronal functionality than the last. We divide the problem of

Figure 1. On the left is DNA replication, and on the right is neuronal replication. Green squares represent nucleotides and neurons of the
parent. Yellow squares represent nucleotides and neurons of the offspring. Hydrogen bonds are equivalent to between-layer vertical connections,
and phosphodiester bonds are equivalent to within-layer connections.
doi:10.1371/journal.pone.0003775.g001

Figure 2. At one extreme, anatomical projections from L0
neurons to L1 neurons may be possible, such that a small-scale
topographic map is obtained without the need for self-
organizing algorithms. The single bold connection in L0 refers to
a strong connection.
doi:10.1371/journal.pone.0003775.g002

Neuronal Topology Copying
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neuronal self-replication into two distinct parts: formation of a

one-to-one topographic map between two neuronal layers, and

reconstruction of the intra-layer topology of the parent in the

offspring layer. To solve the first part we utilize the process of

topographic map formation. We then examine the ability of two

forms of spike-time dependent plasticity (STDP) to undertake

intra-layer topology copying. Having observed that the explora-

tion distribution of variants in both cases of STDP has high

variance [29], i.e. that copying is of low fidelity, we present the

second model that introduces two error-correction mechanisms.

The first error correcting mechanism fixes false positive synapses,

and the second type fixes false negative synapses. Although fidelity

is increased, non-local activity spread results in the constant

production of causal inference errors. The third model shows how

non-local activity reverberation can be limited, thus allowing

unlimited heredity of topology. Finally, we use the high-fidelity

mechanism to demonstrate natural selection, discuss predictions of

the neuronal replicator hypothesis and outline a research program

to test the hypothesis empirically.

Results

A range of potential solutions to the problem of neuronal

copying exists, from anatomical (activity-independent) mecha-

nisms, to self-organizing (activity-dependent) algorithms. The

neuronal copying problem can be bisected as follows: the

formation of neuronal correspondences between the parental

and offspring networks (h-bonds in Figure 1); and the copying of

the connection pattern present within the parental network, to the

offspring network (p-bonds in Figure 1). By ‘parental’ and

‘offspring’ network we mean the original and the copied networks

present in adjacent layers defined by a topographic map.

Figure 3. William Calvin proposes a hexagonal replicator on a single 2D surface layer of cortex. Each cell is a superficial pyramidal cell
that has standard length collaterals that project in a circle of radius 0.5 mm. If two such neurons have the same receptive field properties and are
separated by 1 mm, e.g. A and A, then these collaterals overlap at two points A9 and A9. The two neurons at A9 will receive superimposed correlated
firing from the A neurons and will therefore ‘copy’ the firing pattern of the A neurons. Neurons displaced from A within the same triangle, e.g. B and
B, will make similar copies, B9 and B9. However, this explanation does not explain how A’s connections to B will be copied between A9 and B9, i.e. how
‘p-bonds’ are formed.
doi:10.1371/journal.pone.0003775.g003

Neuronal Topology Copying

PLoS ONE | www.plosone.org 3 November 2008 | Volume 3 | Issue 11 | e3775



Topographic Map Formation
Figures 2, 3, 4 demonstrate a range of known methods for

forming a topographic map.

In Figure 2 we assume there is an anatomical mechanism for

achieving perfect projections between parental and child neurons

in each layer. That is, neuron A (B) in a parent layer will activate

the spatially corresponding neuron A9 (B9) in the child layer.

Figure 3 shows another anatomical mechanism, proposed by

Calvin for achieving one-to-one correspondence between neurons

between the parent and offspring, this time based on a hexagonal

organization of superficial pyramidal cells that possess a

‘‘doughnut’’ of activation [31]. Superficial pyramidal cells send a

halo of excitatory connections laterally in a circle with radius

0.5 mm. Where the doughnuts overlap, the neuron at that site

establishes the same receptive field as the parental neurons.

Figure 4 shows a self-organizing mechanism for topographic map

formation. By utilizing Hebbian learning with Oja’s synaptic

renormalization rule [41] in the between-layer connections, and

using lateral inhibition (soft-competition) in the child layer, it is

possible to self-organize a topographic map between layers. The

system starts with all-to-all connectivity from neurons in layer 0 to

neurons in layer 1, see Figure 4 part A (top), and all-to-all lateral

inhibition in L1, part A (bottom). Figure 4 part B shows a simple way

in which inputs and outputs could be mapped between parent and

child networks. We call this process I/O reallocation. Figure 4, part C

shows the results of 6 randomly initialized simulations of topographic

map formation using the above algorithm, see Methods for details.

For subsequent models, for ease of analysis, we assume that some

mechanism has been able to achieve a perfect one-to-one mapping

between parental and child neuronal networks, as in Figure 2.

Connectivity Copying
The second part of the copying operation is to re-construct

within the child layer, the pattern of connectivity present in the

parental layer, i.e. to make the p-bonds in Figure 1. Mechanism A

(below) is the simplest one we investigated for achieving such

copying. The weights in the parental layer (L0) are stabilized [17] .

Strong perfect topographic mapping is assumed; vertical weights

are assigned a fixed value of 20 mV+a random number drawn

from a uniform distribution ranging between 0 and 10 mV.

Neurons in L0 are stimulated randomly at low frequency by

external sources, e.g. at 5 Hz by Poisson spikes. Effectively, this

noise acts as a set of low frequency, random external interventions

[42]. If a strong enough weight exists between two neurons in L0

there will be fixed cross-correlation [43] between the firing of these

neurons. In mechanism A only this cross-correlation data are used

Figure 4. Part A (top) Formation of a topographic map using Hebbian learning and lateral inhibition. Assume that layer 0 (green neurons) project to
layer 1 (yellow neurons) via initially all-to-all Hebbian Oja type neurons (purple). Weights in L0 are fixed (in this case only the weight from A to B is
strong, all others are weak), and weights in L1 are plastic due to STDP. (bottom) There is all-to-all lateral inhibition in L1. Part B. A fixed topology I/O
map with vertical correspondences is used to calculate the functions mapped by L0 and L1. Part C. ‘‘Shifts’’ and ‘‘Compression’’ are observed when
the Hebbian learning+Oja rule+lateral inhibition algorithm is used in stochastic simulation using Izhikevich neurons [53]. See that the thick blue
weights connecting L0 to L1 in Part C are not perfectly vertical, and neither are they always injective. In Part C(1) we see a ‘‘shift’’, i.e. the
representation of neuron B is shifted to the A9 position. Part C(5) and Part C(6) also contain shifts. However, in Part C(2) there is a perfect vertical
mapping. In Part C(3) there is a ‘‘compression’’. Compressions occur when the two (or more) parental neurons are highly correlated. In such a case,
copying with compression may in fact be functionally beneficial in reducing information redundancy. In further experiments we assume perfect
vertical strong connections.
doi:10.1371/journal.pone.0003775.g004

Neuronal Topology Copying

PLoS ONE | www.plosone.org 4 November 2008 | Volume 3 | Issue 11 | e3775



to allow L1 (the offspring layer) to infer the underlying pattern of

connectivity in L0. Due to the topographic map between L0 and

L1, neurons in L1 share a similar pattern of cross-correlation to

neurons in L0; however, the weights between neurons in L1 are

initially set to all be random and weak.

Mechanism A for Connectivity Copying: STDP
The crucial baseline mechanism for copying is spike-time

dependent plasticity (STDP) [37]. This is an asymmetric synaptic

weight change rule that increments the weight between two

neurons if a presynaptic spike arrives prior to the firing of the post-

synaptic neuron, and decrements the weight if a post-synaptic

spikes fires before a pre-synaptic neuron. In the absence of

conduction delays and interference, this strategy should increment

weights from causal neurons to effected neurons. We prevent

weights from growing beyond an upper threshold that is set to

30 mV. In contrast to earlier work this means that just one pre-

synaptic spike (rather than two) is sufficient to stimulate a post-

synaptic cell [44], see Methods for details.

The phenomological STDP function is defined such that given

uncorrelated pre- and post-synaptic spike trains, there will be a net

decrease in synaptic strength. This is achieved by making the

negative area of the function greater than the positive area of the

function, see Figure 5. We use the parameters and model for

STDP described by Eugene Izhikevich [44]. STDP is permitted

only to modify the strength of weights between L1 neurons. L0

synapses are set to a particular configuration that we want to copy,

and are held fixed, see Methods for details.

Figure 6 shows that a binary sequence of excitatory connections

of unlimited length could be copied with very high fidelity. The

chain of neurons of length 50 (and 10, Figure 6, right) contained

strong weights interspaced at regular intervals. The strong weights

were always causally independent of each other, i.e. there were no

neurons that were connected to two other neurons by strong

weights. Structural copying was completely without error, as can

be seen by examination of the weight matrix over time (Figure 6,

top left). The duration of the experiment was 1000 seconds.

However, whether sufficient weight change can occur within this

period depends on the concentration of dopamine (DA), which in

our experiments is set to a constant value of 0.3 mM, see Methods.

Figure 7 shows that mechanism A cannot copy all possible three

neuron motifs without self-connections. We chose 3-node motifs

because recent work has studied their prevalence in brain networks

[45]. The systematic errors made by the copying mechanism are of

four types:

1. Mistaken Dependence. In motif A, neuron 1 causes 0

and 2 to fire, but 0 and 2 are independent conditional on 1.

However, if there is an asymmetric delay in the influence of

neuron 1 on neuron 0 and 2, then one will tend to consistently fire

before the other. In this case, STDP will mistakenly infer that

there was a direct causal link between 2 and 0.

2. Transitive Inference. The new connection in motif B,

exhibits the phenomena of transitive inference, i.e. because neuron

2 fires before neuron 0, a direct connection is made between 2 and

0, even though in the parental circuit, neuron 0 exerts its causal

influence indirectly only via neuron 1.

3. Reciprocal Interference. In motif C, neuron 2 connects

reciprocally with neuron 1. Since STDP when neuron 1 fires and

causes neuron 2 to fire will decrease the weight from 2 to 1 more

than it increases the weight from 1 to 2, there will be a net

decrease in weights in both directions. Mechanism A mistakenly

interprets the neurons as independent of each other, when in-fact

they mutually cause each other to fire.

4. Causal Dominance. A direct causal process (if it is faster)

may interfere with the copying of a slower indirect causal process.

Motif E shows there are two pathways from neuron 1 to 0, direct,

and indirect (via neuron 2). Neuron 0 is activated more rapidly by

the direct pathway than by the indirect pathway. Since this

activation results in neuron 0 firing before neuron 2, there will be a

tendency for destructive interference with the real causal parental

connection from 2 to 1.

The erroneous copying of other motifs can be interpreted using

the above principles; for example in motif G, equivalence

interference causes loss of a reciprocal connection, however, since

neuron 1 is stimulated more often than neuron 2 (since it receives

inputs from neuron 0), the reciprocal interference is asymmetric,

with the weight from neuron 1 to 2 winning out. Once the

pathway 0R 1 R 2 has been established, then transitive inference

establishes a direct connection from 0 R 2.

Motif H tends to form a common-cause motif since neuron 1

has the highest activation level because it receives 2 inputs whereas

neurons 0 and 2 only receive 1 input each, i.e. asymmetric

reciprocal interference is the explanation.

Figure 5. The STDP curves used. t+ = t2 = 20 ms, A+ = 0.1, and A2 = 0.15, B2 = 0.05. The blue curves show the parameters used here and in [44].
The red curve shows the new LTD,LTP parameter B2 = 0.5 that we use here for more copying.
doi:10.1371/journal.pone.0003775.g005

Neuronal Topology Copying
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The loop in Motif I loses one of its links 70% of the time due to

a special kind of causal dominance, i.e. neuron 2 causes neuron 1

to fire via neuron 0. Because this indirect route causes neuron 1 to

fire after neuron 0, it results in interference with the real causal

link from neuron 1 to neuron 2.

The capabilities of mechanism A were tested with various

modifications to the algorithm. Figure 8 shows the result of

modifying the ratio of (long-term depression) LTD to LTP (long-

term potentiation) by decreasing t2 from 20 ms to 10 ms,

resulting in a smaller negative area under the STDP curve. In

Figure 6. (Top Left) Weight matrices for two 50 neuron layers at the beginning, middle and end of the experiment. Weights in L0 are copied
without error to L1. (Middle Left) Dynamics of weight change during the 1000 s experiment. Weights in L1 increase monotonically. (Bottom Left)
A sample of the pattern present in L0. Strong weights pass from left to right, separated by weakly connected neurons. (Right) The weight matrix and
corresponding view of the two layers at the end of an experiment with this time only 10 neurons in each layer. Again, copying is perfect, i.e. the red
left-to-right connections (the neuronal equivalent of p-bonds) are copied perfectly from L0 to L1. Thick blue lines show fixed vertical connections
from L0 to L1 (the neuronal equivalent of h-bonds).
doi:10.1371/journal.pone.0003775.g006

Figure 7. Motifs and the exploration distribution of offspring variants [29] resulting from copying by mechanism A. Red arrows show
new connections, and yellow arrows show lost connections. The proportion of copies of each type is displayed above the copy structure. Neurons are
referred to in the text as neuron 0 (top), neuron 1 (right), neuron 2 (bottom).
doi:10.1371/journal.pone.0003775.g007

Neuronal Topology Copying
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contrast to figure 7, new red arrows (false positive connections)

dominate over lost yellow arrows (false negative connections).

Some motifs are copied perfectly which were not copied at all

before, e.g. Motif F and E.

We remark here that the STDP function observed experimen-

tally is closer to this second formulation, i.e. EPSP amplitude

decrease with negative interspike intervals is not as large as the

EPSP amplitude increase observed with positive interspike

intervals [46]. Next, we examine two error correction mechanisms

that compare the ‘‘phenotypes’’ of the two networks, i.e. the spike

timings, and make directed changes to the ‘‘genotypes’’, i.e. the

underlying topologies. This is in contrast to error correction in

DNA replication where only the genotype is checked for errors.

Mechanism B for Connectivity Copying: Error Correction
Mechanisms

Mechanism B adds error correction to mechanism A by

detecting neuronal spike-mispairing between layers and modifying

afferent weights in the copy layer accordingly, see Figure 9. Error

correction depends on modifying the child network based on

observed differences between its activity and the parental

network’s activity. These methods attempt to remove false positive

connections (red arrows, Figure 7–8) and increase weights where

there are false negative connections (yellow arrows, Figure 7–8).

Figure 10 shows the result of introducing the false positive error

correction described in algorithm EC1 (figure 9) to both STDP

copying algorithms previously studied. Figure 10a (left) shows the

parental motif from which a copy is made (15 motifs are shown

going down the column), 10b shows a typical offspring produced

by Mechanism A without any error correction, and 10c shows a

typical offspring produced by Mechanism B with EC1.

Error Correcting Algorithm EC1 (See figure 9)

1. An observer neuron EC1 fires if A9 fires whilst A has not fired

in the previous T (typically 10) milliseconds.

2. Neuron EC1 sends neuromodulatory efferents to A9 resulting

in a decrease of synaptic eligibility traces of neurons afferent

upon A9 in proportion to w (typically 4) times their

instantaneous eligibility traces.

This error correction system has the effect of punishing the

neurons that caused A9 to fire when A did not fire. However, we

see that when this error correction mechanism is used there is a

tendency for the production of occasional false negatives

(Figure 10c). This tendency can be tuned by adjusting a crucial

parameter; the time period, T, within which A must have fired

before A9 fires for there to be no down-regulation of afferents to

A9. If T is too long then there is insufficient down-regulation, and if

it is too short there is too much down-regulation, thus biasing the

exploration distribution of variants [29]. By setting T = 10 ms, EC1

could improve the fidelity of copying compared to using

LTD,LTP STDP alone, see figure 10 part C (compared to part

B which shows Mechanism A without EC1).

The second kind of error correction, EC2, involves enhancing

inputs to a child neuron that is inactive when its parental counterpart

is active. For example, Figure 9b shows that when neuron B is

activated (by stimulus 2), that neuron C9 is under-activated relative to

C. The EC2 neuron would then increase the weights of all synapses

afferent upon C9, which includes the synapse from B9.

Error Correcting Algorithm EC2 (See figure 9)

1. An observer neuron EC2 fires if C fires and C9 does not fire at

least S (typically 5 ms) after C.

Figure 8. Motifs and the exploration distribution resulting from copying by mechanism A with modified LTD/LTP ratio. t2 = 10 ms.
Red arrows show new connections and yellow arrows show lost connections. The proportion of copies of each type is displayed above the copy
structure.
doi:10.1371/journal.pone.0003775.g008

Neuronal Topology Copying
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2. Neuron EC2 sends neuromodulatory efferents to C9 resulting

in an increase of synaptic eligibility traces of all synapses

afferent upon C9 by a small fixed increment e = 0.001.

Figure 10 Part D shows the significant improvement in copying

obtained by the introduction of EC2 compared to using only EC1.

See Methods for a justification for EC1 and EC2.

Next we examined the effect of sparse activation by reducing the

background random thalamic input to 1 Hz. This is consistent

with the spontaneous firing rate of neocortical pyramidal neurons

[17]. Figure 10 columns E, F & G show the control, EC1 and

EC1+EC2 copying mechanisms with sparse activation. Sparse

activation considerably improves the fidelity of copying, even

without reducing the time available for copying. The copies in

Figure 10 Part G show the greatest similarity to their parental

motifs. Sparse activation is beneficial for copying because it limits

the extent of cross-correlations arising from non-causal associa-

tions, i.e. correlations due to the random associations in external

stimuli that activate the parental layer, rather than causal relations

produced by the parental layer itself.

Figure 11 shows the dynamics of copying with Mechanism B,

for a sample of motifs. Copying takes 1000 seconds in all cases, at

which point the child motif is complete.

Figure 12 shows the distribution of copying fidelity produced by

Mechanism B. We define fidelity simply as the Euclidean distance

between corresponding weights in L0 and L1. A Euclidean

distance of 30 corresponds to a total difference of one maximal

weight over all 6 weights.

A criticism at this stage is that copying fidelity is extremely poor.

Mechanism A (STDP alone without error correction at 5 Hz

activation, figure 10B) could only copy 2 out of 15 3-node motifs

correctly, and Mechanism A with sparse (1 Hz) activation

(figure 10E) could only copy 8 out of 15 motifs correctly. For

mechanism B (Figure 10D) with 5 Hz activation only 7 of 15

motifs are accurately copied, 5 motifs were semi-accurately copied

(‘‘semi-accurate’’ here means connections that should have had a

low or high weight instead exhibited a moderate weight), whilst 3

motifs were inaccurately copied. For mechanism B (Figure 10G)

with sparse (1 Hz) activation, the accuracy of copying is improved

compared to Figure 10D). The main type of error is the

production of weak weights. Figure 11 shows this more clearly,

e.g. motif NULL and I possess weak weights that are half the

strength of the maximum weight. These weights are determined

by the parameters of the EC1 error correction mechanism. A

stronger error correction mechanism results in smaller steady-state

weak weights. One pre-synaptic spike with a synaptic conductance

of 20 mV is insufficient to produce a post-synaptic spike.

Furthermore, adjustment of EC2 and EC1 mechanisms may be

expected to improve fidelity. These error correction mechanisms

are admittedly high in parameters and it is likely they are not

the optimum settings for copying of all topologies. For

example, with sparse activation EC2 actually makes copying less

accurate, compare Figure 10G (with EC1) with Figure 10F

(without EC1).

Figure 12 is evidence that copying rarely makes an error of

more than one maximum weight (30 mV). If all weights were

copied incorrectly the error would be 180 mV, and with random

copying the error would be 60 mV on average. Some of the

distributions of fidelities are multimodal, e.g. for the fully

connected topology. Some motifs are copied perfectly, e.g. the

fan-in motif (D) and the fan-out motif (A) whereas others are never

perfectly copied, e.g. the chain motif (B).

Figure 9. False positive error correction mechanism implemented using ‘observer’ neurons (EC1) that negatively neuromodulate
neuron A9 in the copy layer on the basis of differences in firing between the parental (A) and copy (A9) layer neuron. We assume C is
undergoing stimulation (1) when EC1 acts. False negative error correction mechanism (EC2) implemented using ‘observer’ neurons that positively
neuromodulate inputs that pass to a poorly firing neuron (C9) in the copy layer from the neuron that is undergoing interventional stimulation (in this
case we assume B is undergoing stimulation (2)) when EC2 acts. EC1 and EC2 type neurons are required for each neuron pair, A, A9, B, B9 and C, C9 and
their neuromodulatory outputs must pass widely to all synapses in the child layer.
doi:10.1371/journal.pone.0003775.g009
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Figure 10. Typical offspring motifs produced by Mechanism A (column B) when copying parent motifs (column A). Read the figure by
comparing the motifs in each column with the parent motif on the left column. Error correction mechanisms are introduced (EC1 in column C &
EC1+EC2 in column D). Sparse activation is introduced in columns E, F and G. (Mechanism A = E, Mechanism B with EC1 only = F, Mechanism B with
EC1+EC2 = G) Part A. Parental motifs. Part B. Control case. LTD,LTP type STDP with no error correction. Part C. As above but with error correction
type 1. EC1 T = 10 ms. Part D. As above but with both types of error correction in use. EC1 T = 10 ms+EC2 S = 5 ms, e= 0.01. Part E. Sparse activation.
Control case. Part F. Sparse activation. EC1 T = 10 ms. Part G. Sparse activation. EC1 T = 10 ms+EC2 S = 5 ms, e= 0.01. * = accurate copy, + = ‘semi-
accurate copy’, 2 = erroneous copy (total error .30 mV).
doi:10.1371/journal.pone.0003775.g010
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Figure 11. 5 Motifs (Null, C,F, I & J) and their copying dynamics. Note that after error correction begins the weights change significantly. Note
some zero weights in the parent stabilize at intermediate levels in the offspring. These intermediate level weights correspond to low probability of a
pre-synaptic spike producing a post-synaptic spike. The tendency to produce these intermediate level weights can be tuned by adjusting the ratios of
EC1 to EC2.
doi:10.1371/journal.pone.0003775.g011
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Mechanism C for Connectivity Copying: Activity
Reverberation Limitation

To summarise, Mechanism A had poor fidelity for copying

neuronal topology from one layer to another layer. It worked by

first establishing a topographic map between the parental and the

offspring layers. Spike-time-dependent plasticity in the offspring

layer was then used to infer the underlying topology of the

parental layer, on the basis of activity received from the parental

layer neurons as they were randomly activated. To improve

copying fidelity of neuronal topology, error-correction mecha-

nisms were hypothesised that measured the difference in activity

between corresponding neurons in parent and offspring layers. On

the basis of this discrepancy of activity, they modified the afferents

to the offspring neuron accordingly. Two types of error correction

neuron were proposed to be required, false-positive and false-

negative error correctors.

Both mechanism A and mechanism B show imperfect copying

and extend poorly to arbitrary topology networks greater than 3-

node motifs. This was because activity reverberation (re-entry)

occurs to a greater extent in larger networks. When stimulating

one neuron in layer 0, activity can spread over a wide range of L0

and L1, and this allows the four types of causal inference error

previously described, i.e. mistaken dependence, transitive infer-

ence, reciprocal interference and causal dominance. These non-

local cross-correlations mean that many possible underlying

topologies can account for the phenomena. Activity spread is a

particular problem due to the high synaptic conductances used.

Mechanism C is a modification added to Mechanism B that

prevents this kind of activity reverberation, see Figure 13. During

the copy procedure, recall that only layer 0 is stimulated with one

spike at a time at frequency 1–4 Hz. Assume that the source of

depolarizing current to each neuron can be classified as either

intra-layer, Ii, (from afferent neurons within the same layer), or

inter-layer, Ie, (from afferents outside the layer). If Ii/Ie.h, where

h= 0.1, then the post-synaptic neuron does not send a spike to

neurons within the same layer, but does send a spike to neurons in

other layers (i.e. passes the signal vertically but not horizontally).

This ensures that if most of the current causing the neuron to fire is

from a neuron within the same layer, the post-synaptic neuron

does not pass this signal onto other neurons within the same layer,

but only along vertical fibres to neurons in other layers. Despite

this we allow STDP to occur at all intra-layer synapses onto the

post-synaptic neuron. On the other hand, if the current is mainly

external, then a spike is produced that passes to both intra-layer

and inter-layer neurons. The effect of this modification is to force

only local horizontal spread of activation, but allow global vertical spread.

This eliminates causal inference errors that are made due to non-

local correlations, and allows larger networks to be copied.

In Figure 13 we show that an associated inhibitory neuron

undertakes this classification operation by sending dendrites to

contact the intra- (red) and inter- (blue) layer afferents to the

excitatory post-synaptic neuron. If the inhibitory neuron is

activated then it blocks the intra-layer spike from passing to the

downstream intra-layer neuron, but allows the spike to pass to the

corresponding neuron in the child layer. We assume the inhibitory

Figure 12. The 15 parental motifs are shown on the left of the histogram of the distribution of Euclidean distances of 40 offspring
from itself. A Euclidean distance of 30 corresponds to a total weight difference equivalent to one maximal weight (30 mV).
doi:10.1371/journal.pone.0003775.g012
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neuron can calculate the function ‘if Ii/Ie.h then fire’, see

Methods for details.

To summarise, the crucial requirement to copy large networks is

a phase without external sensory stimulus in which (i) depolarisa-

tion of the neuron can be categorised as coming from either intra-

layer or inter-layer afferents and, (ii) collateral (output) gating can

limit the outgoing spike to inter-layer collaterals on the basis of this

categorisation. This produces local spread within a layer, but

allows unhindered spread of activity along topographic collaterals.

Mechanism C is sufficiently accurate that we can use it to evolve

desired topologies in a neural implementation of a 1+1

evolutionary strategy (ES) [27] as shown in Figure 14. A 1+1 ES

is a simple evolutionary algorithm that works as follows. If the

offspring (yellow in parts 1,2,3 and 4) does not have fitness higher

than the parent (green in parts, 1,2,3 and 4), then the offspring is

erased and another attempt at copying the parent can be made

(not shown). If the offspring has fitness higher than the parent,

then the parent is erased and the offspring becomes the new parent

and makes a new offspring in what was previously the parental

layer, (see parts 5,6,7,8).

Note that neuromodulation is critical in the function of the 1+1

ES circuit in three ways. Firstly, the direction of copy making

depends on modulation to open and close vertical up and down

gates at different times. Gating of all types is a subject of recent

intense interest [47]. Secondly, neuromodulation is necessary to

switch on and off STDP based plasticity in L0 and L1

alternatively, this has been discussed above. Thirdly, a mechanism

is necessary to reset the layer (i.e. reduce weights in the layer) that is

to be overwritten. As discussed by Francis Crick, this may be one

of the functions of deep sleep [39,48].

Because copying using mechanism C has high fidelity, explicit

mutation operators had to be introduced. After copying, each

offspring layer receives one new random synapse, with an initial

random weight from the range 0 to 30 mV. This ‘‘mutation

operation’’ does not depend on errors intrinsic to the copy

operation, but is externally imposed. In reality, mutation would

also occur due to errors in the topographic map.

Evolution of 6-Node Neuronal Topology
Here we initialise the parental and offspring 6-node network

layers with weak all-to-all connections, i.e. within each layer,

neurons are fully connected with random weights in the range 0

and 1 mV in magnitude. This corresponds to a ‘‘genome size’’ of

30 synapses. Between layers, strong collaterals connect the parent

to the offspring network in perfect one-to-one vertical correspon-

dence. Collateral weights are randomly initialized between 20 and

30 mV, i.e. they are all strong. A desired topology in the parental

layer (L0) is generated by randomly choosing 50% of weights to be

strong. Figure 15 shows an example evolutionary run in which the

fitness function is the Euclidean distance to this desired 6-node

topology. Note that within 300 generations a topology very close to

the desired topology has evolved.

Evolution of 10-Node Neuronal Topology
Figure 16 shows an example evolutionary run in which a 10-

node neural network is evolved using the same copying algorithm.

This corresponds to a ‘‘genome size’’ of 90 synapses.

In both cases the desired topology was evolved successfully.

Methods

The topology of our network consists of two layers. Each layer is

a fully connected three-neuron network (without self-connections).

Layer 0 projects to layer 1 by vertical topographic connections, see

Figure 1. In all experiments apart from those shown in Figure 3 we

assume the vertical weights are strong and fixed, set to

20 mv+rand(0,1)610 mV. rand(0,1) is a floating point random

number drawn from a uniform distribution with range between 0

and 1.

Are we justified in assuming very strong synaptic strength

between and within layers so that on average one spike in the pre-

synaptic neuron is sufficient to produce one spike in the post-

synaptic neuron? Certainly such an assumption would seem

unwarranted in light of Abeles’ argument that ‘‘In the cortex,

reliable transmission of activity is possible only between popula-

tions of cells connected by multiple diverging and converging

connections.’’ (p210) [49], which is based on experimental

calculations of asynchronous synaptic gain (ASG) that is the

probability that a spike occurs in the post-synaptic neuron after a

spike in the pre-synaptic neuron, over and above background

spiking levels. Cortico-cortical connections typically have ASGs of

0.003 going up to 0.2 at best (p102 ibid), although thalamo-cortical

connections have higher ASGs. Using the synaptic gains assumed

by Izhikevich, at least 2 pre-synaptic neurons must fire close

together for a post synaptic neuron to fire. However, recent work

by Alain Destexhe’s group has shown that high-conductance

states, i.e. where neocortical neurons are subject to intense

synaptic bombardment, can result in enhanced responsiveness and

gain modulation, i.e. there can be a response even to single

presynaptic spikes [50]. Furthermore, it appears that the ‘‘up’’

state of slow wave sleep is a high-conductance state [51], a finding

that is parsimonious with the finding that sleep improves the

human ability to solve insight problems. We have proposed

elsewhere that insight problem solving may require heuristic

search by natural selection [52]. In addition, within Izhikevich’s

framework several mechanisms exist for increasing the sensitivity

Figure 13. A reverberation limitation mechanism. Layer 0 is the
parent layer that receives external random input at 1–4 Hz. Layer 1 is
the offspring layer whose intra-layer synapses undergo STDP. Consider
the case where external input A depolarizes the soma sufficiently to
produce a spike. Since Ie.II, i.e. since the inputs from outside the layer
are greater than the inputs from inside the layer, output spikes are sent
along both axon collaterals. This results in activation of the neuron
above, and the neuron to the right. The neuron to the right will
experience depolorization, and STDP at the intra-layer synapses,
however, the spike will be inhibited from passing to further intra-layer
neurons because Ii.Ie in this case. The inhibitory neuron associated
with each excitatory neuron is responsible for implementing the rule ‘if
Ii/Ie.h then block intra-layer spike transmission’.
doi:10.1371/journal.pone.0003775.g013

Neuronal Topology Copying

PLoS ONE | www.plosone.org 12 November 2008 | Volume 3 | Issue 11 | e3775



Figure 14. A neuronally implemented 1+1 ES using the STDP based copying mechanism. 1. The circuit to be copied exists in the lower
layer L0. The black connections in L0 show the original circuit. 2. Horizontal UP connections are activated, e.g. by opening neuromodulatory gating.
These are the equivalent of the h-bonds in DNA copying. 3. A copy of the topology of L0 is made in L1, using STDP and error correction. 4. The layers
are functionally separated by closing neuromodulatory gating of the UP connections. The fitness of each layer is assessed independently. 5. The layer
with the lowest fitness is erased or reset, i.e. strong synaptic connections are reduced. In the above diagram we see that L1 fitness .L0 fitness, so L0
experiences weight unlearning. 6. DOWN vertical connection gates are opened. 7. STDP in layer 0 copies the connections in L1. 8. After DOWN
connections are closed, fitness is assessed and the cycle continues.
doi:10.1371/journal.pone.0003775.g014
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of a neuron to a single spike, for example, using a mixed mode

neuron described by the following parameters (a = 0.02, b = 0.2,

c = 255, d = 4, I = 2), a single EPSP of 10 mV is sufficient to cause

a post-synaptic spike [53].

Weights in both layers are initialized to rand(0,1)60.5. Only in

the experiments shown in Figure 3 we assumed the vertical weights

were modified by Oja’s rule [41] with Hebbian learning rate (g) 0.5,

and weight decay rate (a) 0.002, plus lateral inhibition mediated by

winner take all inhibitory spikes of 230 mV emitted to all excitatory

neurons in Layer 1 by interneurons connected to any neuron that

fired in Layer 1. The intention was that Oja’s rule would prevent

many-to-one connections from Layer 0 to Layer 1, and that lateral

inhibition would prevent one-to-many connections from Layer 0 to

Layer 1, thus producing a 1-to-1 topographic map.

Note that in Figure 3 there are still shifts and compressions at

the neuron-to-neuron level. This can be abolished by assuming

hard competition (winner-take-all dynamics) as is standard in

many models [25,54]. STDP models have indeed been shown to

be capable of refining topographic maps [37] (see Figure 6 of that

paper), and recently it is observed that the gamma cycle can

implement a rapidly repeating winner-take-all algorithm [55].

Adams has also proposed the existence of topographic maps

refinement systems in corticothalamic loops [35,56]. Despite these

precedents it is still correct to question the difficulty of obtaining a

perfect topographic map, to which we can provide two responses.

Firstly we believe microscopic topology, although difficult to

observe, is fundamental to neural function. Unfortunately, we do

not yet know the details of local microcircuitry at the resolution of

single neurons for most regions of the brain. A widely held view is

that ‘‘human cognitive functions depend on the activity and

coactivity of large populations of neurons in distributed networks’’

[57], however this does not logically imply that single synapses

cannot influence behaviour. Although ‘‘alterations of single

synapses or cells have not been shown to have similar macroscopic

effects’’ to alterations in single base-pairs [57] this metaphor is

misleading for the reason that neither have alterations in single base-

pairs been shown to affect ecosystem dynamics. Natural selection,

like human creativity, is hard to predict. In arguing that we should

not worry about microscale circuitry, Sporns et al (2005) say that

‘‘individual neurons and connections are subject to rapid plastic

changes’’ such as changing synaptic weights, structural remodelling

of dendritic spines and presynaptic boutons, and ‘‘switching

synaptic connections between large numbers of potential synaptic

sites’’ [57]. However, we suggest it is these very features, i.e. ‘‘the

vast number, high variability, and fast dynamics of individual

neurons and synapses’’ that render them appropriate as basic neural

information processing elements in a natural selection algorithm.

Indeed where we have been able to explore microcircuitry, we have

found that an almost perfect one-to-one microtopographic maps exists.

David Marr writes that in the cerebellum ‘‘Each climbing fibre

makes extensive synaptic contact with the dendritic tree of a single

Purkinje cell (p), and its effect there is powerfully excitatory.’’ [58].

Other examples of high resolution topographicity include cortical

layer 6 neurons that project with small terminals to the some

thalamic nuclei [59]. Therefore, although we accept that perfect

topographicity is not ubiquitous, there is evidence for it in some

Figure 15. (Top Left) desired topology. (Top Right) Fitness vs. Generations. (Bottom) 12 examples of parent (top) – offspring (bottom) pairs. The
neuronal copying algorithm is capable of sustaining evolution by natural selection to optimize the topology of a 6-neuron topology motif. The
desired topology is shown on the top left. The 12 pairs of graphs show the parent (top) and offspring (bottom) networks at 100-generation intervals.
The initial topology was fully connected by weak weights. The blue line in the fitness graph shows the fitness of the parent, and the red dots show
the fitness of the offspring. The relationship of the blue line to the red dots shows that fitness (as defined here) is heritable for most configurations.
doi:10.1371/journal.pone.0003775.g015
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brain regions and therefore it is a reasonable basis for a model at this

exploratory stage.

Our second response is that a perfect topographic map is not

necessary for neuronal topology copying. We emphasize that the

assumption is only made for the ease of analysis by giving the

following example. Assume that neuron A in layer 0 has a

receptive field that represents stimulus A and Neuron B in layer 0

produces response B. Imagine that neuron A in layer 0 projects to

neuron B in layer 0. That is, the function of layer 0’s neural topology

constitutes the stimulus-response relation ‘‘stimulus A causes

response B’’. Now imagine an imperfect topographic map. Here,

instead of neuron A mapping to neuron A9 in layer 1, it maps to

neuron C9 in layer 1. Similarly assume that neuron B in layer 0

maps to neuron D9 in layer 1. STDP in layer 1 will now

reconstruct the relation between A and B, but now displaced and

embodied between neurons C9 and D9, not between neurons A9

and B9. Because in this paper we are interested purely in topology

copying, we would have had to apply a graph isomorphism

algorithm to the topologies in both layers in order to establish their

similarity. There are an infinite number of ways of measuring the

similarity of two graphs. No way is more justified than another

without reference to function. By assuming perfect topographicity

we can simply use Euclidean distance as a measure of the similarity

between two node-labeled graphs. In reality, a selection algorithm

would act on the function of a layer, not its topology. For the copy

layer to have the same function as the parent layer, it follows

logically that an input/output reallocation algorithm would have

to be invariant to this translation. Alternatively, if response space

and stimulus space are themselves topographically organized, an

assumption for which there is an enormous amount of evidence,

e.g. retinotopic maps, topotopic maps, somatotopic maps and

motor maps [60] then an inexact mapping will represent a

mutated stimulus-response function. Therefore, imperfect topo-

graphic mapping is one method for producing mutations. It is the

combination of the extent of topographicity between layers, and

the compositionality of the mapping of function to each layer by an

I/O reallocation method that determines the fidelity of function

copying. A further discussion of function copying is not necessary for

the internal consistency of claims made here.

We use a neuronal and weight change model very similar to that

used in [17]. We model two layers of cortical spiking neurons with

spike-time-dependent plasticity (STDP) modulated by dopamine

(DA) reward occurring only in the offspring layer L1. Weights in

the parental layer L0 are fixed. In all experiments we hold [DA]

fixed. The STDP function (Figure 4) determines weight change

indirectly, by producing a synaptic tag or eligibility trace molecule.

It is the interaction between this eligibility trace at each synapse

and the global reward signal (DA) that results in weight change.

Are we justified in assuming that different synapses are subject

to different weight change rules? There is considerable evidence

that synapses vary in plasticity, and that the extent of plasticity is

under the control of neuromodulatory neurons [61–65]. It is a

standard assumption in many models that neuromodulation can

alter learning rates [66,67]. Furthermore, recent research suggests

that pre-synaptic inhibition is synapse-specific [68,69], and thus

can define a ‘‘weight modulation’’ matrix which can allow

‘‘switching’’ between different subtasks that require different

plasticity profiles in the circuit [70], e.g. copying alternatively

from L0 to L1 and from L1 to L0. Abbott’s group propose that

synapses have distinct states of stability and plasticity [71]. This

kind of process is called metaplasticity, ‘‘the plasticity of synaptic

plasticity’’ [72,73]. Therefore, we feel justified to assume that a

Figure 16. (Top Left) desired topology. (Top Right) Fitness vs. Generations. (Bottom) 11 examples of parent (top) – offspring (bottom) pairs. The
neuronal copying algorithm is capable of sustaining evolution by natural selection to optimize the topology of a 10-node motif. Desired topology on
the top left (randomly initialized with 10% connectivity). Fitness (Euclidean distance between desired and actual topology) of parent (blue) and
offspring (red) over 600 generations. Bottom graphs shows 11 parent-offspring pairs taken at intervals of 50 generations.
doi:10.1371/journal.pone.0003775.g016

Neuronal Topology Copying

PLoS ONE | www.plosone.org 15 November 2008 | Volume 3 | Issue 11 | e3775



neural mechanism could be capable of holding weights fixed in

some layers whilst allowing weights in other layers to vary. Note

also that fixed inter-layer weights are not critical. Although we do

not model this process further in this paper, from research in

evolutionary computation and computational neuroscience (e.g.

the Leabra algorithm [74]) it is known that Hebbian learning can

bias the copying operator or the hill-climbing operator so as to

structure the exploration distribution of variants, thus potentially

optimizing evolutionary search [29]. Finally, the extent of STDP

can differ depending on the dendritic location of the synapse [75],

suggesting that vertical connections may be prevented from

undergoing STDP whilst horizontal connections may be subject to

STDP, even in the absence of neuromodulation.

Neuronal Model
All neurons were excitatory neurons of the regular spiking type

[44], and were fully connected within layers. The spiking model is

from Izhikevich’s seminal paper [53]:

dv

dt
~0:04v2z5vz140{uzI ð1Þ

du

dt
~a bv{uð Þ ð2Þ

with resetting after a spike as follows..

if vw~z30mV, then
v/c

u/uzd

�
ð3Þ

v represents membrane potential, and u represents a membrane

recovery variable. When v reaches +30 mV (the apex of the spike,

not to be confused with the firing threshold), v and u are reset.

b = 0.2, c = 265, a = 0.02, d = 8, corresponding to cortical

pyramidal neurons with regular spiking. I is the input from other

neurons, and external sources. Input was provided to one random

neuron in layer 0 at a time, as an external activation (spike) of

17 mV being given with a probability ms21 per layer of 0.02 (or

0.005 in the sparse activation regime). This resulted in a 5 to 1 Hz

firing of neurons in layer 0. No direct external input was given to

layer 1 neurons. The axonal conduction delay between intra-layer

neurons was set to 1 ms for mechanism A, however, when EC1

and EC2 were introduced (Mechanism B), it was necessary to

increase this intra-layer delay to 10 ms. Figures 6 & 7 were

produced with 1 ms delays, and figure 9 was produced with 10 ms

delays. Between layer delays were always set to 1 ms.

There is evidence for the kind of operations required by EC1

and EC2 mechanisms. For example, feedforward inhibition

mediated by ‘fast-spike’ interneurons in layer 4 of neocortex could

potentially implement the EC1 mechanism for abolishing false

positives [76]. This system inhibits neurons in the cortex that do

not fire synchronously with the corresponding neuron in the

thalamus, and could thus have the same function as the EC1

neurons described above by preventing the firing of all but the

corresponding neuron. Its effect would be indirect compared to

the EC1 neuron because STDP would be responsible for the decay

of weight from the inhibited neurons to the correct neuron.

Furthermore, the complex pattern of inhibitory interneurons in

cortex is poorly understood and could certainly support similar

intra-cortical operations. Note that in evolution, the number of

inhibitory neuron types has increased. Various activity-dependent

heterosynaptic inhibitory modulation mechanisms are known

[77,78]. Although it is not known whether the topology of these

circuits correspond to those presented here, their existence means

that EC1 type mechanisms are not out of the question. There is

less evidence for an EC2 mechanism; however, it is not ad hoc for it

can utilize the same coincidence detection device as EC1 and

needs only to potentiate rather than inhibit afferents to the post-

synaptic neuron. Furthermore, independent of a natural selection

algorithm, there are good reasons to believe that neuronal

topology error-correction may be required in the brain. Abeles

shows that due to neural death, 0.5 percent of cortical cells die at

random every year. Almost all chains in a set of parallel

independent chains of 100 cells will become inoperative. At least

60,000 parallel chains would be required to ensure at least one

remains intact after 20 years (p210) [49]. The solution he proposes

is the synfire chain consisting of converging/diverging connections

between nodes where each node is between 5 and 360 neurons in

size. Another solution one should at least consider is error-

correction in which a broken chain is repaired by ‘observing’ the

behaviour of other chains.

Reverberation limitation is implemented by assuming an

associated inhibitory neuron can classify inputs as being intra-layer

or inter-layer and gate an output collateral accordingly. We

certainly do not exclude that there may be more ways of

implementing this reverberation limitation operation. One inter-

esting possibility is that synchrony by slow wave oscillations can gate

activity in a directional manner [79]. This is particularly relevant

given the recent finding that in prefrontal cortex, during slow

oscillation, there is a fine balance between excitation and inhibition

that ‘‘may allow for rapid transitions between relatively stable

network states, permitting the modulation of neuronal responsive-

ness in a behaviourally relevant manner’’ [80]. Also, complex

functions can be calculated within the dendritic tree itself [81].

More straightforwardly, a recent study has found that sparse activity

in the excitatory neurons of layer 2/3 or layer 5 of the

somatosensory cortex results in the recruitment of a recurrent

inhibitory circuit consisting of inhibitory interneurons that are

somatostatin positive. Through this mechanism, one pyramidal cell

can inhibit an estimated 40% of its neighbours. When two

pyramidal cells are spiking the resultant recurrent inhibition

increases nonlinearly as a result of a tenfold increase in the

recruitment of the inhibitory interneurons which receive convergent

inputs [82]. Such a circuit would limit activity spreading in the

horizontal layers, thus preventing reverberation, while the principal

neuron continues to integrate information and convey it to the next

processing region. The somatostatin neurons in question are

activated only when one or a few pyramidal neurons are spiking.

A circuit with similar properties occurs in the hippocampus [83].

STDP Model
As described in [15] each synapse has two variables, a synaptic

weight w and an eligibility trace e.

de

dt
~{c=tezSTDP tð Þd t{tpre=post

� �
ð4Þ

dw

dt
~eD ð5Þ

where D is the extra-cellular concentration of DA in mM (which we

always keep at 0.3 mM in all experiments) and d(t) is the Dirac

delta function that increases e by an amount specified by the STDP

curve in Figure 2, although parameters differ depending on

whether we choose to use the LTD.LTP variant or the
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LTP.LTD variant of STDP. t= tpost2tpre2delaypre-to-post, i.e. the

interspike interval. If a pre-synaptic spike reaches the post-synaptic

neuron (taking into account condition delays) before the post-

synaptic neuron fires, then STDP(t) is positive. If a pre-synaptic

spike reaches a post-synaptic neuron after it fires, then STDP(t) is

negative. The eligibility trace e decays with time constant te = 1 s.

The synaptic weight w changes as the product of e and D. Weights

were limited to a range from 0 to 30 mV.

The implementation of STDP is as follows. Every time a neuron

fires, an STDP variable for that neuron is reset to 0.1. As described

in [44] A.3, every millisecond timestep, STDP decreases by 0.956
STDP so that it decays exponentially according to 0.1e2t/20 ms, as

in Figure 4. When a neuron fires, we increase the eligibility of each

afferent synapse onto this neuron by an amount STDP(t). Also, we

make a data structure that represents the spike that was fired, and

we track when it reaches each neuron that is efferent from the

spiked neuron (taking delays into account again). When that spike

reaches each of the efferent neurons, we decrement the eligibility

by 1.56STDP(t). Note the co-efficient 1.5. This is the setting used

in the LTD.LTP version of STDP. In the LTD,LTP version of

STDP the co-efficient is 0.5. For computational efficiency, weight

change is only undertaken every 1 s, by equation 5.

Discussion

We proposed three increasingly accurate neuronal mechanisms

for the copying of network topology from one region of brain to

another. It is important to clarify that this is quite different from

the STDP mechanism proposed to account for cortical reorgani-

zation of receptive fields due to deafferentation of sensory cortex

[84]. Our mechanism allows local circuitry and not just receptive fields to

be copied between regions (Figure 9). In contrast, William Calvin’s

neural ‘copying’ mechanism only explains how receptive fields are

copied (Figure 2).

This contribution can be understood at several layers. First, it

can be regarded as a purely theoretical exercise to demonstrate

that, regardless of what actually is happening in the brain, one

could use and tune known component processes of the brain to

construct neuronal replicators. This interpretation allows for the

possibility that, alas, the proposed connectivity-copying replicators

in the brain do not exist. Second, our proposal can be regarded as

a hypothesis on how parts of the brain actually work: we offer in

this sections some arguments and facts that this interpretation is

also legitimate. Third, the thoughts here can be regarded as

stimulants for other ideas (including those resting on the transfer of

activity patterns without connectivity copying) that might be more

plausible or real.

We proposed a novel function for topographic maps; to act as

the neuronal equivalent of h-bonds for copying operations. This

adds to recent ideas formulated by Gary Marcus about the

function of topographic maps in cognition [85]. We make the

empirical prediction that our neuronal replicators should be found

perpendicular to topographic maps outside sensory areas, for

example perpendicular to CA1 hippocampo-entorhinal projec-

tions and nigrostriatal projections.

In the process of thinking about promising mechanisms, we

discovered two serendipitous ancillary benefits of copying. The

first was that the mechanism of neuronal copying was a neuronal

implementation of causal inference [86]. The capacity of STDP to

capture temporal relations consistent with causality rather than

just correlations has been described by several authors

[65,87,88,89]. However, to our knowledge, STDP has until now

not been used in an algorithm to explicitly infer whole causal

networks. Considerable attention has been paid recently to the

capacity of animals such as New Caledonian crows [90], rats [91],

non-human apes [91], children [92] and human adults [92] to

undertake causal reasoning tasks, i.e. tasks in which good

performance cannot be well explained by pair-wise associative

learning alone. A Bayesian account can be given of performance in

some tasks [93]. Another approach is to give a constraint-based

reasoning account that involves graph operations on a Bayes Net

and interventions to discover conditional independencies between

nodes [42]. Recent work reveals that humans use temporal order,

intervention, and co-variation to produce generative models of

external events [94]. The STDP-based copying algorithm we

describe shares the above features with human causal inference; it

infers a dynamical causal model from a set of spike trains that arise

from an underlying and invisible causal graph (another neuronal

network). If instead this set of spike trains arises from a sensory

system, in which the underlying causal graph exists in the outside

environment, then the same inference mechanism can be used to

produce a neuronal generative model [95] of these external

stimuli. Such forward models feature in emulation theories of

cognition [96,97].

Let us critically consider some of our assumptions. We assume

that neuron-to-neuron correspondence between layers can be

established anatomically perhaps with activity-dependent refine-

ment. However, we do not assume that connectivity information

could directly pass between layers. For example (referring to

Figure 2), we assume neuron A9 can ‘know’ about A, but we do not

assume that the connection between A9 and B9 could ‘know’ about

the strong connection between A and B directly by trans-axonal

signalling. Such information transmission would obviate the need

for a causal inference type algorithm. Although trans-axonal

signalling has been identified in the peripheral nervous system

[98], no such mechanism in known in the CNS, in which there is

reason to believe the task would be much more difficult.

The neuronal implementation of EC1 and EC2 require neurons

with the following properties. The neuronal replicator hypothesis

predicts their existence. Firstly, they must be capable of computing

an XOR function, i.e. A ^ A’ (for EC1) and A ^ A’ (for EC2) with

modifiable temporal windows defined by T and R respectively.

Secondly, they must modulate afferents to A9. EC1 neurons should

down-regulate eligibility of synapses to A9 and EC2 neurons

should up-regulate eligibility of synapses to A9. This introduces a

requirement for non-local plasticity, i.e. spike timing of inputs P, Q

at dendrites of neuron X, should be capable of modifying synapses

on dendrites of neurons P, Q. Remarkably, Paul Adams had

proposed a very similar mechanism of Hebbian proofreading that

occurs in a canonical neocortical microcircuit [56]. There are

Hebbian connections from thalamic neurons to cortical spiny

stellate cells. Adams proposes that some deep pyramidal cells (K

cells) are coincidence detectors that only reinforce the connection

between the thalamic neuron and the stellate cell, if both fire

together. Using this, Adams intends to reduce synaptic quantal

mutations and prevent an error catastrophe [99]. To modify this

mechanism to fit our hypothesis would require the K cells to

positively gate all the inputs to the stellate cell when the thalamic

input was detected but a stellate cell output was not detected. And

vice versa, to negatively gate the high eligibility inputs to the

stellate cell when thalamic input was not detected, but stellate

output was detected. If this modification to K-cell function is

confirmed, our hypothesis predicts that thalamic-stellate cells may

represent two layers (L0 and L1), between which copying occurs,

i.e. the thalamocortical loop may be a mechanism for running a

natural selection algorithm utilizing neuronal copying.

It is an open question what kinds of heritable function neuronal

units of selection may possess. At one extreme (the position taken
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here), function depends on single-neuron connectivity. For

example, input I1 may pass to A and A9 and output O1 may

leave from neuron B and B9. The perfect copy with such a rigid

input/output reallocation between parent and offspring would

need to maintain precise neuron-to-neuron and connection-to-

connection identity. However, this is the most difficult case

imaginable. At the other extreme, the heritable trait (that co-varies

with fitness [100]) is a network property, e.g. the separation

property of a neuronal microcircuit [101]. This may mean only

the degree distribution of a layer need be copied. The I/O

reallocation of inputs and outputs could then be mediated by a

single-layer perceptron for example. In general we predict a trade-

off in the sophistication of an I/O reallocation device and the

demands on fidelity of a copying device.

The functions that natural selection may have in behaviour and

cognition are not primary focus of this paper. Candidate functions

are category formation [12], global executive control [19–21],

selective attention using a variant of biased competition theory

[102,103], habit formation [104] and memory reconsolidation

[105]. For example Miller and Cohen (2001) write ‘‘processing in

the brain is competitive: Different pathways, carrying different

sources of information, compete for expression in behaviour, and

the winners are those with the strongest sources of support’’ [103].

Desimone & Duncan, (1995) describe how top-down attentional

processes bias this competition [102]. Competition is just one

aspect of natural selection. We have begun to understand that

natural selection undertakes a very powerful kind of heuristic

search [29]. Heuristic search may be an algorithm that underlies

all the above cognitive functions, in short, it may underlie tasks

requiring insight [106].

In which parts of the brain could a natural selection algorithm

be implemented? We have relatively little data about the details of

cortical circuit topology [45,107]. Recent developments may allow

mapping of microscopic neural circuit topology [108], but in the

absence of direct evidence for topology copying we can merely

highlight potential candidates. The first possible sites are the loops

between medial temporal cortex (including the hippocampus) and

the neocortex. . Sirota and Buzsáki (2008) have proposed

‘reciprocal information transfer’ in contrast to the unilateral and

passive information–transfer process generally considered [109].

Temporal correlation of the source and recipient neuronal

assemblies is a prerequisite for transfer. Topological evolution

and copying may occur in these kinds of loops.

Importantly, the loops between the medial temporal cortex

(containing the hippocampus) and the neocortex have been

implicated in memory consolidation and reconsolidation, process-

es that involve gradual reorganization of circuits. The ‘‘integrative

function [of the hippocampus] is taken over by the medial

prefrontal cortex’’ (Fig 1 [110–112]) at least for semantic

memories. Consolidation has been supported by experimental

evidence demonstrating that the anterior cingulated cortex is

involved in the remote memory for contextual fear conditioning

which is a hippocampus-dependent task [113,114]. Reconsolida-

tion refers to the process that follows recall. Recall places stable

memories in labile and active states. Reconsolidation ensures that

the memory is converted back into a stable state and integrated

with the recall event [111]. Firstly, topology copying may be

involved in this transfer of function from hippocampus to

neocortex.

Secondly, we propose that a process of neuronal topology

evolution may play a role in the multiple trace theory of

consolidation and reconsolidation. Multiple trace theory (MTT)

proposed by Nadel and Moscovitch (1997) suggests that complex

interactions between the hippocampus and the neocortex

including the prefrontal cortex are involved in consolidation and

recall of episodic memories [115]. Neuroimaging studies show that

when detailed episodic memories are retrieved, the hippocampus

is activated [116–118]. The MTT proposes that a new

hippocampus-dependent memory trace is created whenever an

episode is retrieved. The trace may then be strengthened or/and

altered and even made more detailed by being linked to additional

information from the context. In experiments it has been found

that repeated retrieval of the memory caused the memory to be

more accessible and more detailed with a concomitant increase in

activation within the neocortical regions while activation was

maintained within the medial temporal lobe with continued

hippocampal activation [119]. Nadel et al (2000) have explicitly

proposed that memory traces ‘‘decay (i.e. disappear) and can

replicate’’, in a model that explains some properties of the loss of

memory as a function of lesion size [120]. However, there is no

description of the internal structure or dynamics of a memory

trace.

Some of the features of the hippocampus that may allow

memory trace formation include synaptic plasticity, formation of

new synapses on dendrites (via stabilization of filopodia in a

calcium dependent manner [121]) and unsilencing of silent

(AMPA) synapses [122] particularly in conjunction with adult

neurogenesis, which is the formation of new (immature) neurons in

the dentate gyrus region of the hippocampus [123]. New neurons

have been proposed to prevent catastrophic interference of the

new memories with existing traces of older memories [124,125].

The unsilencing of silent synapses, would likewise enable new or

modified traces to be formed without interfering with existing

traces. The formation of new synapses in a manner based on

calcium dependent signalling selecting the survival of a potential

synaptic partner formed by a filopodia [121] could be envisaged to

allow new contacts to be made between neurons in the same layer.

The second possible site where a natural selection algorithm

may be implemented is in the cerebellar cortex. The cerebellum is

the site for motor learning. The circuitry of the cerebellum is

designed so as to facilitate the learning of a number of contexts by

each Purkinje cell. The Purkinje axons are the only output from

the cerebellum. Input to the Purkinje neurons are via direct input

from the climbing fibres from the Inferior Olive (1:1 mainly) and

via indirect input from the mossy fibres, which originate in the

vestibular nuclei and synapse onto the granule cells of the

cerebellum. Granule cells make diverging contacts to dendritic

arbours of several Purkinje neurons via the parallel fibres.

Different views of motor learning have been postulated including

the ‘codon representation of an input’ by David Marr in which

afferent input events that are communicated by the mossy fibres to

the cerebellar cortex are converted into a language of small subsets

before being stored [58]. The theory that is most striking is that

regarding the possibility of different locations for the memory

traces for short- and long-term memories (see [126] for review).

Evidence for this theory has recently been found using the

horizontal opto-kinetic response (HOKR). The memory for the

HOKR has been found to be shunted transynaptically from the

cerebellar cortex to the inferior olivary nucleus [127]. A functional

memory trace is formed initially within the parallel fibre-Purkinje

cell synapses of the cerebellar cortex (flocculus) by an LTD

mediated mechanism, and later shunted to the vestibular nuclei

(medial vestibular nucleus). There it appears to be consolidated

into a long-term memory trace [127]. The mechanism of this shift

of the memory from one region of the brain to another is not

understood. Because topology copying offers a means of function

passing, we propose here that it is a hypothesis worthy of serious

consideration.
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Neuronal replication, in contrast to DNA replication (Figure 1),

is a formidable problem, mainly because the p-bond connectivity

in the latter is one-dimensional, in contrast to being two-

dimensional in the former. Reproduction of cells is so obvious

that the molecular basis of this process has been sought with much

energy for a long time. Just by looking at neuronal networks we

feel that nothing seems to replicate. No miracle that no efforts

have been made so far to identify copying in them. Historically,

some people have been fascinated by the algorithm of natural

selection producing cumulative adaptations, and postulated that

something like that can/must exist in the brain. It has even been

said that such a theory can be formulated without a mechanism of

neuronal replication, since Darwin did not know the mechanism of

inheritance either [32]. Here we aimed at showing how copying in

neuronal networks might be feasible. From the proposal it is

obvious that evidence for copying would require careful

experimentation rather than simple ‘‘looking at’’ networks.

We call attention to the fact that copying of connectivity beyond

one dimension has become an issue in replicative nanotechnology

as well [128], where the different nodes are identified by unique

combinations of linker DNA sequences. Successful replication

requires a series of disassembly—copying—reassembly cycles.

Neuronal copying is difficult because disassembly is not an option,

and template and replica are spatially fixed in position. Yet it now

seems that neuronal replication is feasible by sending information

through some axons, whereby connectivity implemented by other

axons can be copied.
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