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Abstract
Timely diagnosis of type 2 diabetes and early intervention and treatment of it are important for controlling metabolic disorders,
delaying and reducing complications, reducing mortality, and improving quality of life. Type 2 diabetes was diagnosed by Fourier
transform mid-infrared (FTIR) attenuated total reflection (ATR) spectroscopy in combination with extreme gradient boosting
(XGBoost). Whole blood FTIR-ATR spectra of 51 clinically diagnosed type 2 diabetes and 55 healthy volunteers were collected. For
the complex composition of whole blood and much spectral noise, Savitzky–Golay smoothing was first applied to the FTIR-ATR
spectrum. Then PCA was used to eliminate redundant data and got the best number of principle components. Finally, the XGBoost
algorithm was used to discriminate the type 2 diabetes from healthy volunteers and the grid search algorithm was used to optimize
the relevant parameters of the XGBoost model to improve the robustness and generalization ability of the model. The sensitivity of
the optimal XGBoost model was 95.23% (20/21), the specificity was 96.00% (24/25), and the accuracy was 95.65% (44/46). The
experimental results show that FTIR-ATR spectroscopy combined with XGBoost algorithm can diagnose type 2 diabetes quickly and
accurately without reagents.

Abbreviations: ATR = attenuated total reflection, DM = diabetes mellitus, FPG = fasting plasma glucose, FTIR = Fourier
transform mid-infrared, GBDT = Gradient Boosting Decision Tree, OGTT = oral glucose tolerance testing, PCA = principal
component analysis, XGBoost = extreme gradient boosting.

Keywords: extreme gradient boosting, Fourier transform mid-infrared attenuated total reflection spectroscopy, type 2 diabetes,
whole blood
1. Introduction
Diabetes mellitus (DM) is a group of metabolic disorders
characterized by hyperglycemia resulting from decreased
insulin secretion or insulin inaction.[1] As per the 2017 report
of the International diabetes foundation, diabetes affects 425
million adults worldwide, with the total set to reach 629million
by 2045. An estimated 90% are affected by type 2 diabetes,
which is largely preventable. One in 2 people with diabetes has
not yet been diagnosed and so their diabetes is not controlled.[2]
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When diabetes is uncontrolled, it can have dire consequences
for health and well-being and result in a number of serious
complications such as cerebral hemorrhage, cerebral infarction,
retinal disease, diabetes kidney disease, neurological and
cardiovascular diseases.[3] Therefore, timely diagnosis of type
2 diabetes and early intervention and treatment of it are
important for controlling metabolic disorders, delaying and
reducing complications, reducing mortality, and improving
quality of life.
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Table 1

Split of train set and test set.

Sample Total sample Type 2 diabetes Healthy volunteers

Total sample 113 51 62
Train set 67 30 37
Test set 46 21 25
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Currently, the clinical diagnoses of type 2 diabetes are
mainly carried out by fasting plasma glucose (FPG) and blood
glucose 2hours after oral glucose tolerance testing (OGTT).[4]

However, these clinical diagnosis methods have the disadvan-
tages of complicated procedures, time-consuming and high
cost, and are not suitable for the screening of type 2 diabetes in
large-scale populations.[5] To solve this problem, researchers
have tried many new methods to diagnose type 2 diabetes.
Tong et al[6] diagnosed diabetes by analyzing the content of
acetone in human exhalation. Although the method is simple
and time-saving, in practical applications, the acetone content
is low and the analysis results are greatly affected by other
gases. Kong et al[7] explored the clinical significance of 7
diabetes-related serummicroRNAs during the pathogenesis of
type 2 diabetes and found the expression levels of all 7
miRNAs of type 2 diabetes were significantly up-regulated
compared with healthy person. Only 70.6% of type 2 diabetes
subjects (12/17) were recognized by canonical discriminant
function, the sensitivity is low and serum miRNAs were
determined by real-time Reverse Transcription-Polymerase
Chain Reaction which is expensive. There are also various
methods for the determination of glucose have been reported,
such as colorimetry,[8–10] fluorescence,[11–13] electrochemis-
try,[14,15] chemiluminescence,[16,17] capillary electrophore-
sis,[18] surface-enhanced Raman scattering,[19] and surface
plasmon resonance.[20] However, in many cases, the compli-
cated material modification, intrinsic toxicity, and turn-off
sensing mode cause inevitable disadvantages, including
operational complexity, false results, and unsatisfactory
sensitivity, for type 2 diabetes diagnosis.[21] Therefore, it is
still a challenge to explore a simple, non-reagent, rapid, and
accurate method for the diagnosis of type 2 diabetes.
Vibrational spectroscopy has been widely used to discriminate

and classify normal and pathological populations using cells,
tissues, or biofluids.[22] FTIR-ATR is an excellent vibrational
spectroscopic technique for the analysis of biofluids (e.g., blood)
due to its rapidity and ease of translation to the clinical
environment, that is, Fourier transform mid-infrared attenuated
total reflection (FTIR-ATR) requires no sample preparation when
analyzing blood. In the past few years, FTIR-ATR spectroscopy
have been used for diagnosing a variety of diseases.[23] Hands
et al[24] report the application of FTIR-ATR spectroscopy for
stratified serum spectroscopic diagnostics capable of diagnosing
at brain tumor. Paraskevaidi et al[25] diagnose Alzheimer disease
using FTIR-ATR spectroscopy from blood. Lima et al[26] use
FTIR-ATR spectroscopy coupled with variable selected techni-
ques on plasma or serum specimens as an alternative approach
for early detection of ovarian cancer.
Due to complicated massive spectral data and multidimen-

sional analyses, a fast and accurate multivariate statistical
method is required to be developed for the applications of the
FTIR-ATR.[27,28] Extreme gradient boosting (XGBoost) is an
efficient implementation of the Gradient Boosting Decision Tree
(GBDT) algorithm, originally proposed by Dr Chen of the
University ofWashington.[29] It is used in Kaggle competition and
has attracted wide attention because of its superior efficiency and
high prediction accuracy. Liu et al[30] used visible near-infrared
shortwave infrared spectroscopy combined with XGBoost to
quantitative assessment of soil properties.
Classification of type 2 diabetes through FTIR-ATR spectra

using the XGBoost algorithms has never been studied. In this
paper, FTIR-ATR spectroscopy based on human whole blood
2

samples was used to diagnose type 2 diabetes. Savitzky–Golay
smoothing and principal component analysis (PCA) was used to
eliminate spectral noise and extract principal component.
The diagnosis model was established by XGBoost algorithm.
The model was optimized and a simple operation, reagent-free,
fast, and accurate method for diagnosis of type 2 diabetes was
proposed.
2. Materials and methods

2.1. Experimental apparatus

A Vertex 70 transform infrared spectrometer produced by
Bruker was used with an attenuated total emission sample
measurement attachment manufactured by Specac. The
ATR sample cell was made of a ZnSe crystal, with a 45°
incidence angle and 3 reflections. Each measured spectrum was
obtained from 4500 to 600cm–1 with a spectral resolution of 2
cm–1, the beam splitter was KBr and the number of scans was 32.
The laboratory temperature was 24±1 °C and the relative
humidity was 41%.
2.2. Experimental samples

The whole blood samples were collected from 113 volunteers (62
women and 51 men) in the Endocrinology Department of the
First Affiliated Hospital of Jinan University, of which 51 cases
were newly diagnosed with type 2 diabetes (28 women and 23
men). The average age of patients with type 2 diabetes and
healthy volunteers was 49±12 and 44±10 respectively. Blood
samples were collected in the fast manner and stored in 4 °C
refrigerator. All samples came from the same race and social
economic background. This study has been approved by ethics
committee of the hospital and all respondents have been informed
about the research program.
Baseline correction and dark background subtraction were

performed with the Application Programming Interface function
of the spectrometer when the spectrum was collected. During
spectral collection, the test tube was thoroughly shaken, and
0.075mL samples were placed in the sample plot. The FTIR
absorption spectra of samples were obtained through ATR. The
spectrum was collected 3 times for each sample, and the average
spectrum was calculated as the sample spectrum.
2.3. Split of sample set

All whole blood samples were split into train and test sets, and the
ratio was 3:2. The train set consisted of 67 blood samples,
among which 37 from healthy volunteers and 30 from type 2
diabetes. The test set of 46 blood samples included 25 healthy
volunteers blood samples and 21 type 2 diabetes blood samples
(Table 1).
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2.4. Extreme gradient boosting

The XGBoost algorithm is a class of lifting algorithms composes
of a series of base classifiers. The principle is to divide the original
data set into multiple sub-data sets. Each sub-data set is randomly
assigned to the base classifier for prediction, the results of base
classifier are calculated according to a certain weight, and the
final result is the accumulation of weak classifier predictions. The
base classifier of this paper is CART tree. Selecting the regression
tree is based on our original experience.
Selecting CART as the basis function of the model, then the

result of the Mth prediction for a single CART is:

f mðxÞ ¼ TðX; umÞ

Thus, the basis function has been determined, where T
represents the decision tree, m represents the number of base
classifiers, and u represents the path of the decision tree. The final
prediction result is the previous prediction result plus the current
decision tree, and the error term can be expressed as:

Lðy;_yÞ ¼ Lðy; f m�1½x�Þ þ TðX; umÞ

Lðy;_yÞ is the sum of the difference value between the true value
yi and predicted value

_y i. At this point, the error loss has been
quantified. The Gini coefficient, pruning, and depth of control
trees are important tools for CART classification. Actually, the
variance and bias of the model are controlled by the above
methods, making the model more capable of generalizing and
fitting. For example, the structural complexity function can be
defined by the number of leaf nodes T and the L2 square of the
Leaf Score:

fðuÞ ¼ gT þ 1
2
l
XT

J¼1
W2

j

Where g represents the complexity coefficient of the control
tree, which is equivalent to the pruning of the tree of the XGBoost
model; and l represents how much proportion is used to change
the regular terms, which is equivalent to give a penalty to the
complex model, preventing the model from over-fitting. The
comprehensive of deviation function and variance function can
give the following objective functions:

ObjðuÞ ¼
X
i

lðyt þ yiÞ þ gT þ 1
2
l
XT

j¼1
W2

j

The predecessors’ method for the Gradient Boosting Decision
Tree algorithm is to repeatedly calculate the error of the objective
function so that the error becomes smaller and smaller, which is
often referred to as the gradient descent algorithm. According to
this method, as long as we get weak classifiers in this way each
time, and then add each weak classifier, the result of the final
model must be optimal.
The formula for gradient descent is as follows:

� ∂Lðy; f ½xi�Þ
∂f ðxiÞ

� �
f ðxÞ ¼ f m�1ðxÞ

Since the number of base classifiers used by the XGBoost
algorithm is large, we need a more general algorithm to achieve
gradient descent. The inventor of the XGBoost algorithm uses
Taylor second-order expansion instead of the original first-order
derivative, making the algorithm more universality.
3

The objective function after adding Taylor second-order
expansion:

ObjðuÞ ¼
Xn

i¼1
lð½yi; yim�1� þ f m½xi�Þ þ fðf mÞ

In the formula, n represents the number of used samples, m
represents the number of current iterations, fm indicating the
error of the current iteration.
Taylor expansion

f ðxþDxÞ ffi f ðxÞ þ f
0 ðxÞDxþ 1

2
f 00ðxÞDx2

Definition:

gi ¼ ∂yðm� 1Þlðyi; yðm�1ÞÞ; hj ¼ ∂2yðm� 1Þ

Substituting in the formula:

Objm ffi
Xn

i¼1
ðl½yi; ylm�1� þ gif m½xi� þ

1
2
hif m

2½xi�Þ þ fðf mÞ
2.5. Evaluation index of model parameter

The performance of the model and the choice of optimal
parameters need to be measured by appropriate evaluation
indicators. The sensitivity, specificity, and accuracy are the most
commonly used evaluation indicators in the classification problem.
Sensitivity (SEN) (Equation (1)) and specificity (SPC) (Equation
(2)) show the ability of the model to correctly classify true positive
as positive and true negative as negative respectively, where tp, tn,
fp, and fn are true positive, true negative, false positive, and false
negative respectively. The accuracy (Equation (3)) is the sum of the
correctly classified divided by the total number of classes. In this
paper, accuracy is regarded as the selection criterion of the optimal
parameter, and the performance of the model uses sensitivity,
specificity, and accuracy as evaluation index.

Sensitivity ¼ tp
ðtpþ fnÞ ð1Þ

Specificity ¼ tn
ðtnþ fpÞ ð2Þ

Accuracy ¼ ðtpþ tnÞ
ðtpþ tnþ fnþ fpÞ

� �
ð3Þ
2.6. Ethics approval and consent to participate

The study has been approved by the ethics committee of Jinan
University. And written-informed consent was obtained from
each participant.
3. Results

3.1. Spectral analysis

The comparison of the average FTIR-ATR spectrum of the
normal and the type 2 diabetes samples are shown in Fig. 1. As

http://www.md-journal.com


Figure 1. Comparison of the average FTIR-ATR spectra of 62 healthy volunteers blood and 51 type 2 diabetic blood. (A) Wavelength range of 700 to 4500cm�1

and (B) wavelength range of 1000 to 1500cm�1. ATR=attenuated total reflection, FTIR=Fourier transform mid-infrared.
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shown in Fig. 1A, the different pathologic groups are similar in
spectral peak shape, in which the 2 main water-peak bands of
3000 to 4000cm�1 and 1500 to 1800cm�1 are the major
absorption areas, but the difference in absorption intensity is
significant. The vibrations and rotations of the various groups are
overlapping due to the complex components of whole blood. It
can be seen that there are many peaks in the range of 1000 to
1500cm�1, which is overlapping with the fingerprint area. The
fingerprint region can be used to identify specific molecules, in
this region, the vibrations of chemical bond are vulnerable to the
effects from the adjacent chemical bond vibration, and minor
structural changes may result in differences in this part of the
spectra. Therefore, these bands are required to be separately
displayed (Fig. 1B).
As shown in Fig. 1B, the average FTIR-ATR spectrum of the

type 2 diabetes and healthy volunteers are similar in peak shape in
the region of 1000 to1500cm�1 while a significantly different in
absorption intensity can be clearly seen. The assignments of the
peaks in this region are listed in Table 2. In the average FTIR-
ATR spectrum of patients with type 2 diabetes, the absorption
intensities of those peaks were lower than that of healthy
volunteers, which may be caused by more severe metabolism.
Hence, the differences in the FTIR-ATR spectrum of the type 2
diabetes patients and healthy volunteers indicated that the FTIR-
ATR spectroscopy can be effectively used for detection of type 2
diabetes.
Table 2

Major band positions observed from the region of 1000 to 1500
cm�1 along with their assignments.

Band (cm�1) Assignment

1082 Symmetric vibration of phosphodiester bond
1130 Stretching vibration of C–O
1174 Stretching vibration of C–O in hydroxyl amino acid
1250 Antisymmetric vibration of phosphodiester bond
1317 Stretching vibration of C–N
1402 Bending vibration of OH, Symmetrical stretching vibration of O–C–C
1454 Scissor bending vibration of CH2

4

3.2. Savitzky–Golay smoothing

The composition of the whole blood sample is very complicated,
especially the anticoagulant is also added to make the purity of
the sample not high, and various instrument noises are generated
during the detection process. Therefore, it is necessary to perform
smooth denoizing of the whole blood spectra. Savitzky–Golay
smoothing is the most commonly used smoothing algorithm in
spectral smoothing. This paper selects the optimal smoothing
mode based on the best accuracy of XGBoost model. The
polynomial has a search range of (1, 4) and a step size of 1; the
search range of the window size is all odd values of (5, 25), and
Figure 2. Optimization process for the best Savitzky–Golay smoothing mode.

Table 3

Optimization results for Savitzky–Golay smoothing mode.

Polynomial Search range Optimal window size Optimal accuracy (%)

1 5:25 13 95.3
2 5:25 23 94.2
3 5:25 23 94.2
4 5:25 19 93.2



Figure 3. Comparison of (A) original FTIR-ATR Spectra and (B) Savitzky–Golay Smoothed FTIR-ATR Spectra. ATR=attenuated total reflection, FTIR=Fourier
transform mid-infrared.

Figure 4. Optimization process for the best number of principal component.
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there are 44 Savitzky–Golay smoothing modes. Figure 2 is the
optimization process of the Savitzky–Golay smoothing mode.
The results of the optimization are shown in Table 3.
The results show that the Savitzky–Golay smoothing modes in

the 2nd and 3rd order polynomial have the same processing
effect. The Savitzky–Golay smoothing mode in the 1st order
polynomial has the best processing effect, the best accuracy was
95.3%, which is 1.1% higher than the 2nd and 3rd order, and
2.1% higher than the 4th order. Therefore, this paper selects 1st
order polynomial and window size of 13 points as the optimal
Savitzky–Golay smoothing mode.
The original spectrum of the whole blood sample and

Savitzky–Golay smoothed spectrum are shown in Fig. 3, it can
be seen that the Savitzky–Golay smoothed spectrum has been
significantly improved, indicating Savitzky–Golay smoothing has
obvious effect on spectral denoising.

3.3. Principal component extraction

Although most of the noise interference of spectral data are
eliminated by Savitzky–Golay smoothing, there is still a lot of
redundant information. If they are all model inputs, the
complexity of the model structure will be directly increased,
affecting its performance and modeling time. Therefore, it is also
necessary to extract principal components from the smoothed
data to increase modeling efficiency and reduce model complexi-
ty. PCA has good performance in removing redundant data and
extracting the principle components of data.
This paper used the best accuracy of XGBoost as a selection

index to find the best number of principal components, which is
similar to the selection of Savitzky–Golay smoothing mode. The
search range of the principle component number is (1, 10) and
the step size is 1. Figure 4 shows the optimization process for the
optimal number of principal components.
It can be seen from Fig. 4 that when the number of principle

components is 5, the best results of discrimination is achieved. At
this time, the accuracy is 97.6%. Five principle components are
extracted from 2022 features in the spectrum, which simplifies
the modeling process and contributes to obtain a robust model.

3.4. XGBoost modeling

Constructing an XGBoost model is easy, but there are some
difficulties in improving the performance of model. There are
5

many parameters of the XGBoost algorithm. To increase the
performance and generalization ability of the model, optimizing
themodel parameters is an indispensable step. This paper uses the
grid search algorithm to optimize the relevant parameters,
including n_estimators, learning_rate, min_child_weight, alpha,
gamma, and subsample.
The search range of the relevant parameters are set as follows:

the search range of n_estimators is (1, 300) and the step size is 10;
the search range of learning_rate is (0, 0.2), the step size is 0.01;
the search range of min_child_weight is (1, 9), the step size is 1;
the search range of alpha is (0, 10), the step size is 0.2; the search
range of gamma is (0, 14), the step size is 1; the search range of
subsample is (0, 1), the step size is 0.1. Figure 5 shows the GS
optimization process for the parameters of XGBoost model. The
results of the optimization are shown in Table 4.
According to Table 4, the optimal parameters of XGBoost

model are n_estimators=40, learning_rate=0.05, min_child_-
weight=1, alpha=0.2, gamma=0, subsample=0.7. The optimal
parameters were used in XGBoost model and the classification
results of test sets were shown in Table 4.
As shown in Table 5, the optimized XGBoost model has good

performance in identifying type 2 diabetes, and the sensitivity,

http://www.md-journal.com


Figure 5. Optimization process for XGBoost model parameters. XGBoost=extreme gradient boosting.

Table 4

Optimization results of XGBoost model parameters.

Accuracy

Parameters Step size Search range Optimal value Train Test

n_estimators 10 1:300 40 0.99 0.95
learning_rate 0.01 0:0.2 0.05 1 0.96
min_child_weight 1 1:9 1 1 0.96
alpha 0.2 0:10 0.2 1 0.96
gamma 1 0:14 0 1 0.96
subsample 0.1 0:1 0.7 0.99 0.96

XGBoost= extreme gradient boosting.

Guang et al. Medicine (2020) 99:15 Medicine
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Table 5

Classification results of XGBoost model.

Sample Sensitivity Specificity Accuracy

Whole blood 95.24% (20/21) 96.00% (24/25) 95.65% (44/46)

XGBoost=extreme gradient boosting.

Guang et al. Medicine (2020) 99:15 www.md-journal.com
specificity, and accuracy were 95.24%, 96.00%, and 95.65%
respectively.
4. Discussion

This article applied the XGBoost algorithm to the data
classification of FTIR-ATR spectral of whole blood samples in
order to achieve rapid diagnosis of type 2 diabetes. For the
problem that the purity of whole blood sample was not high and
redundant information in spectra was too much, the Savitzky–
Golay smoothing algorithm and PCAwere used to preprocess the
FTIR-ATR spectral data successively, eliminating the influence of
most spectral noises and improving the modeling efficiency. In
order to build a model with high accuracy, relevant parameters of
XGBoost were optimizing and the diagnosis model of type 2
diabetes was established using the XGBoost algorithm combined
with the whole blood FTIR-ATR spectral data processed by SG
smoothing and principal component extraction. The results were
encouraging and show the potential of the technique to diagnose
of type 2 diabetes, and it may be used in the future as ancillary
tools for clinical diagnostics.
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