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ABSTRACT
RNA-binding proteins (RBPs) are key regulators of posttranscriptional processes such as RNA maturation,
localization, turnover and translation. Despite their dysregulation in various diseases including cancer,
the landscape of RBP expression in human cancer has not been well elucidated. Here, we built
a comprehensive expression landscape of 1504 RBPs across 16 human cancer types, which revealed
that RBPs are predominantly upregulated in tumours and this phenomenon is affected by the tumour
immune subtypes and microenvironment. Across different cancer types, 109 RBPs are consistently
upregulated while 41 RBPs are consistently downregulated. These up-regulated and down-regulated
RBPs show distinct molecular characteristics and prognostic effects, whereas their dysregulation is
mediated by distinct cis/trans-regulatory mechanisms. Finally, we validated one candidate PABPC1L
that might promote colon tumorigenesis by regulating mRNA splicing. In summary, we built
a comprehensive expression landscape of RBPs across different cancer types and identified consistently
dysregulated RBPs which could be novel targets for developing broad-spectrum anticancer agents.
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Introduction

RNA-binding proteins (RBPs) are a group of conserved pro-
teins in eukaryotes, which play essential roles in co-
transcriptional and posttranscriptional gene regulation,
including RNA maturation, RNA turnover, RNA localization
and translation [1]. RBPs can interact with RNAs to form
protein-RNA complexes, such as ribosomes that serve as the
basic translational machinery, and small nuclear ribonucleo-
proteins (snRNPs) which are core component of pre-mRNA
splicing machinery. RBPs can also regulate splicing, transla-
tion by controlling accessibility and activity of these basic
machineries, for instance, the splicing enhancer/repressor
and translation regulators [2,3]. Based on RNA-binding
domain prediction and manually selection of RBPs from
literature, a census of 1542 human RBPs has been established
[4]. However, only a small proportion of them have been
functionally characterized.

Since RBPs have diverse functions in posttranscriptional
gene regulation, they are critical to many biological processes,
such as cell differentiation, proliferation and cell fate transi-
tion. For example, RBP MBNL1 and MBNL2 control splicing

of the 18th exon of transcription factor FOXP1 to switch
pluripotency and reprogramming of embryonic stem cells
(ESCs), while RBP NUDT21 directs alternative polyadenyla-
tion of thousands of transcripts to control cell fate transition
of ESCs [5–7]. Dysregulation of RBPs could cause severe
human diseases, including cancer [8]. For instance, SF3B1 is
mutated in around 10-15% of chronic lymphocytic leukaemia
(CLL) patients and is associated with poor survival rate [9,10].
In addition, mutations within four RBP genes U2AF, ZRSR2,
SRSF2 and SF3B1 were very frequent (~70%) in a cohort of
myelodysplasia (MDS) patients [11]. Besides mutation,
expressional dysregulation of genes encoding core splicing
and translational machinery component is required for MYC-
mediated lymphomagenesis in mice mode [12,13]. Besides, it
has been reported that RBP NELFE promote cancer progres-
sion via selectively regulating MYC-associated genes [14].

Despite extensive studies on selected RBPs, the general role
of RBPs in cancer development is still unclear. Recently,
somatic mutation landscape of splicing factors across 33
human cancer types, and mutation landscape of RBPs across
26 cancer types have been established [15,16]. However, the
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expression landscape of RBPs across different human cancer
types is still under debate. In normal human tissues, expres-
sion of RBPs is significantly higher than that of transcription
factors (TFs), other protein-coding genes (PCGs), miRNAs
and lincRNAs [4,17]. By comparing tumour samples from
The Cancer Genome Atlas (TCGA) to corresponding normal
tissue from human body map, Kechavarzi showed that RBPs
are overrepresented in top quantile upregulated genes [17].
However, a recent study found that RBPs are predominantly
downregulated in tumours comparing to the adjacent normal
tissue across 15 human cancer types only using TCGA data
[18]. In contrast, another study revealed that RBPs tend to be
upregulated in hepatocellular carcinoma comparing with nor-
mal liver tissues using the same TCGA data and one addi-
tional dataset [14]. Therefore, there is a pressing need to
clarify the true expression landscape of RBPs across different
human cancer types, explore the associations between expres-
sional dysregulation and somatic mutation, understand the
underlying regulatory mechanisms and investigate their roles
in cancer development.

Here we built a comprehensive expression landscape of
1504 RBPs in ~6700 clinical samples across 16 human cancer
types. We showed that RBPs are preferentially upregulated in
tumours compared to their adjacent normal and fractions of
upregulated RBPs were correlated with proliferation and
wound healing signatures and impacted by the tumour micro-
environment, such as stromal and leukocyte fractions. Across
16 cancer types, we identified 109 consistently upregulated
RBPs (cuRBPs) and 41 consistently downregulated RBPs
(cdRBPs). The cuRBPs are enriched in RNA modification,
transcription termination (3ʹ end processing) and tRNA func-
tional categories. Furthermore, we found that upregulation of
cuRBPs is largely associated with amplification of copy num-
ber, whereas downregulation of many cdRBPs is likely a result
of epigenetic silencing mediated by DNA methylation.
Besides, we constructed TF/miRNA-cuRBP/cdRBP regulatory
networks, in which we identified several hub TFs and
miRNAs. Finally, we validated one candidate, PABPC1L
might promote cancer progression in colon adenocarcinoma
(COAD) by regulating mRNA splicing. Our study provides
a comprehensive resource for studying RBPs across different
human cancers and the consistently dysregulated RBPs we

identified might be potentially helpful for developing broad-
spectrum anti-cancer agents.

Results

Predominantly upregulation of RBPs in TCGA tumour
samples is associated with tumour microenvironment

To dissect the dysregulation of RBPs in human cancers, we
analysed mRNA expression of 1504 RBPs in ~6700 clinical
samples from TCGA across 16 cancer types (Table 1). The
other 17 cancer types were excluded due to insufficient nor-
mal samples (n < 10). For each cancer type, dysregulated
RBPs were identified by comparing the mRNA expression in
tumours to adjacent normal tissues at BH-adjusted p < 0.001,
two-sided test and average RSEM value >1 in either normal or
tumour samples [14]. Interestingly, we found more upregu-
lated RBPs than downregulated RBPs in 14 out of the 16
cancer types, while this trend was not observed for TFs and
other PCGs (Fig. 1(a)). Furthermore, we analysed the global
expression changes of the entire set of RBPs and observed
a positive fold change in almost all 16 cancer types, except
KICH and THCA (Supplementary Fig. S1A). Next we ana-
lysed the expression of RBPs from 10 functional categories,
including RNA splicing, translation, transcription termination
(RNA 3ʹ end processing), RNA localization & transport, RNA
surveillance & degradation, RNA modification, ribosome,
tRNA, mitochondrial and enzymes (including helicase, nucle-
ase, ATPase and ligase), as well as unclassified RBPs.
Interestingly, RBPs are predominantly upregulated in BRCA,
COAD, LIHC, LUAD and LUSC for almost all categories. In
prostate cancer (PRAD), the most pervasively upregulated
categories are a translation, transcription termination, ribo-
some, tRNA and mitochondrial. In head and neck squamous
cell carcinoma (HNSC), the upregulated RBPs are enriched in
transcription termination (Fig. 1(b)). These results suggest
that tumour samples from different cancer types have distinct
posttranscriptional dysregulation signatures.

Contradictory to our results and previous studies [14,17],
Wang et al. showed that RBP expression is predominantly
downregulated in tumour [18]. As they used the Voom func-
tion in the Limma package to identify differentially expressed

Table 1. The number of samples used in this study.

RNA sequencing data DNA methylation data Copy Number data

TCGA
abbreviation Cancer types Normal Tumour Normal Tumour Tumour

BLCA Bladder Urothelial Carcinoma 19 408 17 410 404
BRCA Breast invasive carcinoma 113 1094 84 786 1088
COAD Colon adenocarcinoma 41 284 19 284 274
ESCA Oesophageal carcinoma 11 184 - - 184
HNSC Head and Neck squamous cell carcinoma 44 520 20 521 514
KICH Kidney Chromophobe 25 65 - - 65
KIRC Kidney renal clear cell carcinoma 72 533 24 320 517
KIRP Kidney renal papillary cell carcinoma 32 290 23 274 284
LIHC Liver hepatocellular carcinoma 50 371 41 373 366
LUAD Lung adenocarcinoma 59 515 21 459 496
LUSC Lung squamous cell carcinoma 51 502 - - 484
PRAD Prostate adenocarcinoma 52 496 35 496 492
READ Rectum adenocarcinoma 10 93 - - 93
STAD Stomach adenocarcinoma 35 415 - - 413
THCA Thyroid carcinoma 59 504 50 511 506
UCEC Uterine Corpus Endometrial Carcinoma 24 176 24 173 177
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Figure 1. Expression landscape RBPs across 16 human cancer types. (A) The ratio of the number of upregulated genes to that of downregulated ones when
comparing tumour with normal samples across 16 cancer types. (B) Fraction of RBPs in 11 functional categories that is significantly upregulated in tumour across 16
types. Colour key and pie chart illustrating the percentage. (C) Boxplot illustrating the fraction of upregulated RBPs, TFs and PCGs across 16 types. (D) Boxplot
illustrating fraction of upregulated RBPs, TFs and PCGs across six immune subtype samples. (E) Distribution of Pearson correlation between upregulated RBPs and xx
signatures. Y-axis indicating the difference in cohort numbers between positively correlated (r > 0.2) and negatively correlated (r < −0.2). Dot size and colour
representing average correlation across 16 types.
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genes, while we applied the t-test for the normalized expres-
sion data from TCGA, this might be the cause of discrepancy.
To investigate this, we compared the expression fold change
(tumour vs normal) of significant dysregulated RBPs in their
study with our results. It turns out that the expression fold
changes in these two are extremely similar (r = 0.978, p = 0,
Supplementary Fig. S1B), suggesting a high reproducibility
between our study and their study. However, without an
arbitrary expression fold change cut-off, we got much more
significant dysregulated RBPs (BH adjusted p < 0.001). By
employing the same cut-off (fold change >2) as Wang et al.
for the selection of dysregulated genes between tumour and
normal, cancer types such as BLCA, BRCA, KICH, PRAD and
THCA, indeed have more downregulated RBPs than upregu-
lated ones (Supplementary Table S1, marked in red).
Glioblastoma (GBM), which has much more upregulated
RBPs than downregulated ones in Wang et al., was excluded
from our study as there were only five normal samples.
Additionally, Wang et al. performed a combined analysis of
colon adenocarcinoma (COAD) and rectum adenocarcinoma
(READ), resulting in the comparison between 609 tumour
and 51 normal samples. We analysed them separately: 281
tumour compared to 41 normal samples in COAD and 93
tumour compared to 10 normal samples in READ. This might
also be a cause of the differences between their results and
ours. Nevertheless, the histogram of log2 (fold change) of all
dysregulated RBPs at BH-adjusted p < 0.001 shows a clear
skewed trend towards RBP upregulation, while many of them
have fold changes slightly lower than 2 (Supplementary Fig.
S1C). To tackle with this problem in terms of setting an
arbitrary fold change cut-off, an alternative approach was
used in our study to measure RBP dysregulations. Rather
than comparing the entire tumour group to normal group,
we measured the RBP expression in each tumour sample
versus the whole normal group (See Method, significantly
upregulated: tumour expression higher than 95% quantile of
normal expression; significantly downregulated: tumour
expression lower than 5% quantile of normal expression).
Next, we calculated the proportion of upregulated RBPs for
each tumour sample and showed that the proportions of
upregulation in RBPs are much higher than that of PCGs
and TFs except in THCA (Fig. 1(c)). In contrast, the propor-
tions of downregulated RBPs are quite close to that of TFs and
PCGs (Supplementary Fig. S1D). The above results demon-
strated that RBPs are predominantly upregulated in tumour,
especially for those RBPs with well-known posttranscriptional
functions such as splicing, translation, transcription termina-
tion, in BRCA, COAD, LIHC, LUSC and LUAD.

Both our analysis and Wang et al. showed that THCA and
KICH do not exhibit any preferential upregulation of RBPs,
which could be due to the intrinsic characteristics of these two
cancer types. Based on the recently established immune land-
scape across 33 TCGA cancer types, which classified tumour
samples into six immune subtypes including C1: Wound
Healing, C2: IFN-g Dominant, C3: Inflammatory, C4:
Lymphocyte Depleted, C5: Immunologically Quiet and C6:
TGF-b Dominant according to a series of gene expression
signatures [19], tumour samples from THCA and KICH are
enriched for subtype C3. We found that the proportion of

upregulated RBPs is much higher in C1, C2 and C4 samples
comparing with the rest, and is the lowest in C3 samples (Fig.
1(d)). This is coherent with our results, as most BRCA,
COAD and LUSC samples are C1 and C2 subtypes, while
the majority of THCA and KICH samples are C3 subtype.
Since the six immune subtypes were defined based on 60
signatures, next we directly correlated the upregulated RBP
proportions to each signature in 16 cancer types, respectively.
Among them, 53 signatures show significant correlation (|r| >
0.2, p < 0.001) in at least one cancer type, while the most
consistent and strongest correlations across different cancers
are from wound healing, proliferation and SCNA related
signatures (e.g. Aneuploidy score, number of fragments)
(Fig. 1(e)). Furthermore, the proportion of upregulated RBPs
is inversely correlated with stromal and leukocyte fraction,
across different cancers, suggesting that the upregulation of
RBPs in pure tumour cells might be even more evident than
we observed (Fig. 1(e)). These were consistent with a recent
finding that aneuploidy is positively correlated with the
expression of proliferation genes, while negatively correlated
with the expression of immune signalling genes [20].

Identification of consistently dysregulated RBPs across 16
human cancer types

As our results suggested that different cancer types have dis-
tinct posttranscriptional dysregulation signatures (Fig. 1(b))
and dysregulated RBPs, we hypothesized that there might be
some consistently dysregulated RBPs across 16 cancer types
analysed. Thus, we sought to find consistently up and down-
regulated ones by examining two features for each RBP: 1)
directionality in terms of difference of number of cancer
types (BH-adjusted p-value < 0.001) between up regulated
and down regulated (#up regulated cancer types – #down
regulated cancer types); 2) log2 fold change tumour/normal.
The definition of directionality was adapted from a previous
study [21]. Only the RBPs showing consistent up/down-
regulated expression across multiple cancer types could get
high absolute value, whereas those RBPs only dysregulated in
certain cancer types or upregulated in some cancers but down-
regulated in other cancer types will get small values. Based on
this we identified 109 cuRBPs and 41 cdRBPs (Fig. 2(a),
Material and Methods).

In a previous study, Kechavarzi et al. identified a group of
RBPs (SUR RBPs, n = 33) showing strong upregulation in
cancers by comparing RBP expression in tumour from TCGA
to corresponding normal tissue from human body map [17].
The log2 fold change (tumour/normal) of these RBPs are
required be above 9 in their study, whereas no RBPs showing
such dramatic overexpression when comparing tumour to
their adjacent normal in the present study. Moreover, seven
of them even showed significant downregulated expression
across different cancer types (Fig. 2(a)). These results strongly
suggested to include adjacent normal samples to study RBP
expression changes in tumour. In addition, a recent study
identified 36 significantly dysregulated RBPs by requiring
they are significantly dysregulated in at least 10 cancer types
using the TCGA data [18]. Indeed, many of them were also
included in our cuRBPs and cdRBPs list. However, their study
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missed many RBPs showing similar consistently dysregulation
and some of their candidates are bidirectional dysregulated in
terms of upregulated in some cancers but downregulated in
other cancers. Besides the expression, we also overlapped
cuRBPs/cdRBPs with RBPs and splicing factors that identified
as tumour driver based on somatic mutations [15,16]. It turns
out that they are poorly overlapped (Supplementary Fig. S2A),
suggesting that dysregulation of expression and mutation

might contribute to cancer development independently, con-
sistent with the view that alternative mechanisms of gene
regulation could function distinctly in tumorigenesis [22].

Among 109 cuRBPs, IGF2BP1, MEX3A, DNMT3B,
PABPC1L, IGF2BP3, EXO1, TERT, EZH2 and RDM1 showed
the most dramatic overexpression pattern (Fig. 2(b), marked in
red). DNMT3B and EZH2 are well-known epigenetic regulators
and both have strong oncogenic functions, while the promoter of

Figure 2. Consistently dysregulated RBPs across 16 human cancer types. (A) directionality and amplitude of the expression change in tumour compared with normal
for each RBP. The X axis represents the directionality that is defined by the number of cancer types RBP showing upregulated expression minus that showing
downregulated expression. The Y-axis is the average of the fold change across 16 cancer types. cuRBPs and cdRBPs were within the area with green and blue colour
respectively. SUR and significantly dysregulated RBPs defined in the previous study were marked with red and blue colours. RBPs pointed by yellow colour arrows are
RBPs showing bidirectional expression changes across cancer, while RBPs pointed by red arrows are examples showing consistently dysregulation but not included in
significantly dysregulated RBPs. (B) and (C) Heatmap illustrating expression fold change of 41 cdRBPs and 109 cuRBPs, respectively. The colour key illustrating the
log2 fold change of gene expression between tumour and normal. RBPs mentioned in the main text were marked in red.
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TERT is recurrently mutated in many cancers [23–28]. IGF2BP1
and IGF2BP3 are two oncofetal proteins which have been
reported to promote adhesion, migration and invasiveness of
tumour cells by mediating mRNA stability and translation
[29,30]. However, the functional roles of PABPC1L and
MEX3A in tumorigenesis remain unclear. For the 41 cdRBPs,
CPEB1, NOVA1, RBPMS2, PPARGC1A, RBM20, RBM24 and
AFF3 exhibited drastic downregulation pattern in many cancer
types (Fig. 2(c), marked in red). The CPEB family proteins has
been implicated in translation control of cancer cells, while
NOVA1 has been found to be downregulated in the gastric
cancer microenvironment [31–33]. Taken together, our study
identified a group of RBPs that were consistently up-/down-
regulated in the majority of cancer types we analysed in the
present study. Even though many of them overlap with pre-
viously identified dysregulated RBPs in cancers or have well-
known oncogenic/tumour suppressive functions, there are still
dozens of them, whose function in tumorigenesis is not very
clear. These largely expanded the current scope of universally
dysregulated RBPs across different human cancer types.

cuRBPs and cdRBPs show distinct molecular
characteristics and prognostic effects

As cuRBPs and cdRBPs are consistently dysregulated across
human cancers, we sought to explore their potential roles in
cancer development by investigating a series of characteristics,
including molecular function, oncogenic/tumour suppressive
potential, association with prognosis, connectivity between
each other and capacity to form protein complexes.
Interestingly, among 10 functional categories, cuRBPs are
significantly enriched in RNA modification, transcription ter-
mination and tRNA categories. In contrast, cdRBPs are only
slightly overrepresented in unclassified RBPs outside of the 10
functional categories (Fig. 3(a)). One interesting example is
TLR3, which is not involved in common posttranscriptional
regulations, but can sensor double-stranded RNA and trigger
type I interferon (IFN), as well as induce apoptosis in human
cancer cells [34].

Based on the TUSON explorer, 300 tumour suppressor genes
(TSGs) and 250 oncogenes (OGs) were identified in a previous
study [35]. Among 1478 RBPs (RSEM value >1), 42 of them are
potential TSGs and 22 of them are potential OGs, the proportion
of TSG is higher than the background (all PCGs) with statistical
significance (Hypergeometric test, p < 0.0004, one-sided).
However, there is a slightly overrepresentation of tumour sup-
pressors among 44 cdRBPs (Hypergeometric test, p < 0.1, one-
sided). As the TUSON explorer is based on the mutation pattern
of genes across thousands of tumour sample, these results are
consistent with the comparisons between cuRBPs/cdRBPs and
RBPs as tumour driver (Supplementary Fig. S2A).

The recently established human pathology atlas provides
the association between overall survival rate and expression of
PCGs, in which 3755 favourable and 4476 unfavourable prog-
nostic genes were identified [21]. Interestingly, comparing to
TFs and PCGs, a higher proportion of RBPs are prognostically
unfavourable (chi-squared test, p < 1.1e-18), in which
increased expression is associated with poor overall survival
rate. A more extreme trend is observed for cuRBPs, in which

more than ~65% of cuRBPs are prognostically unfavourable
while less than 5% are prognostically favourable. On the
contrary, cdRBPs have a higher proportion of favourable
prognostic genes than unfavourable ones (Fig. 3(b)).

As the consistently dysregulated RBPs might come from
some common protein complex or functional modules, we
checked the protein connectivity within cuRBPs and cdRBPs,
while consistently upregulated TFs (cuTFs) and consistently
downregulated (cdTFs) were used as a background as RBPs
are a key regulator of posttranscriptio while TFs are key
regulators of transcription. Based on protein–protein interac-
tions (PPIs, requiring experimental evidence, see Materials
and Methods) extracted from the STRING database [36], we
found that the number of PPIs within cuRBPs was much
higher than those in the other three groups (Supplementary
Fig. S2B). By constructing a PPI network, we observed three
most extensively interacted modules: 1) small nuclear ribonu-
cleoproteins (snRNPs), 2) ribosomal proteins, and 3) ribo-
some biogenesis-related proteins (Fig. 3(c)). Although there
are 363 RBPs in the RNA splicing functional category based
on our classification, majority of them are splicing factors and
only 12 of them are components of snRNPs, while we found
that 8 of them are cuRBPs. Another interesting observation is
that in module 2 there are six mitochondria ribosomal pro-
teins (6 out of 75), but only two are ribosomal proteins (2 out
of 93). The PPI only shows the interaction within each group,
what is their potential to interact with other outside group
proteins remains unclear. To address this, we scanned
through each RBP for its potential to form protein complexes
based on the protein complex annotation from CORUM [37].
We found that approximately half of the cuRBPs have the
potential to form protein complexes, while more than 80% of
the cdRBPs could not form any annotated protein complex
(Supplementary Fig. S2C). Taken together, we showed that
RBPs involved in RNA modification, transcription termina-
tion and tRNA related functions, as well as a component of
snRNPs were consistently upregulated in tumours and they
are extensively interacted with each other. Their overexpres-
sion might promote cancer progression as they were asso-
ciated with poor prognosis.

cis- and trans-regulatory mechanisms underlying the dys-
regulation of cuRBPs and cdRBPs across cancers

cis- and trans-regulatory mechanisms underlying the
dysregulation of cuRBPs and cdRBPs across cancers

Gene expression can be modulated by cis- and trans-regulatory
mechanisms, such as copy number alteration (cis-), the abun-
dance of transcription factors and miRNAs (trans-), and DNA
methylation at the promoter region (cis-) [38–40]. To explore
their relationship with dysregulation of RBP expression in can-
cer, we first analysed somatic copy number alteration (SCNA) by
comparing the tumour to normal samples. As expected, cuRBPs
have significant amplification of copy numbers (Mann-Whitney
test, p < 4.9e-77, one-sided, 16 cancer types together), while
cdRBPs have significant loss of copy numbers (Mann-Whitney
test, p < 6.7e-22, one-sided, 16 cancer types together). This trend
is consistent across almost all analysed cancer types except KICH
and THCA (Fig. 4(a)). To investigate whether the SCNA do
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result in the dysregulation of RBPs in cancer, we analysed the
correlation between SCNA andmRNA expression for each PCG.
Interestingly, we observed a much stronger positive correlation
for the cuRBPs (median of r = 0.42, p < 2.1e-160, Mann-Whitney
test) compared to the PCGs background (median of r = 0.2) (Fig.
4(b)). This suggests that the overexpression of cuRBPs in
tumours is largely associated with amplification of copy num-
bers, which might be critical to drive cancer progression.

Besides changes in copy numbers, variation in the abun-
dance of TFs such as MYC, and miRNAs could also result in
dysregulated expression of RBPs [13,41]. To identify potential
TFs and miRNAs which might be involved in the dysregula-
tion of cuRBPs and cdRBPs across different cancers, we

utilized the gene sets (C3 sub-collection MIR: microRNA
targets and C3 sub-collection TFT: transcription factor tar-
gets) from the GSEA molecular signature database (MSigDB),
in which targets of TFs/miRNAs were predicted by searching
the sequence motif either at the promoter region or within 3ʹ
UTR, respectively, [42]. In total, 500 TF and 221 miRNA gene
sets were obtained from the MSigDB. For each TF/miRNA-
RBP pair, we calculated the correlation in RNA expression
across different samples between TF and its putative RBP
targets predicted by binding motif at promoter, as well as
miRNAs and its RBPs targets predict by motif within 3ʹ
UTRs in each cancer type, respectively. To find consistent
TF/miRNA-RBP targeting relationships across different

Figure 3. Distinct characteristics of cuRBPs and cdRBPs in molecular function, prognostic effect and connectivity with other proteins. (A) Enrichment of cuRBPs and
cdRBPs across 10 functional categories. Circular size indicating their proportion in each category. (B) Distribution of the prognostic favourable, unfavourable and
ambiguous RBPs. (C) PPI network of cuRBPs. Three most extensively connected modules are shown in red (snRBPs), blue (ribosome proteins) and green (ribosome
biogenesis related) colours, while other proteins are shown in grey colour.
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Figure 4. Cis- and trans-regulatory mechanisms underlying dysregulation of cuRBPs and cdRBPs across cancers. (A) The SCNA distribution of the cuRBPs, cdRBPs and
background (all PCGs) across 16 cancer types in TCGA. The black horizontal-dashed line indicates the median of the SCNA of all PCGs across 16 types. (B) Density distribution
of Pearson correlation coefficient between SCNA and gene expression for different gene groups. The p value represents the significance between cuRBPs and background.
(C) regulatory network between TFs and their potential target cuRBPs (see Material and Methods). Hub TFs and cuRBPs were marked with grey boundary. (D) Epigenetically
activated, silenced, ambiguous and no changed cuRBPs and cdRBPs genes across 11 types. Left panel are the 16 cuRBPs and right panel are 22 cdRBPs.
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cancers, we required the correlation should be consistent in
more than eight cancer types. Finally, 113 TF-cuRBP pairs (51
TFs, 50 cuRBPs), 84 TF-cdRBP pairs (48 TFs, 20 cdRBPs) and
16 miRNA-cdRBP pairs (13 miRNAs, 5 cdRBPs) passed these
criteria, while no miRNA-cuRBP pairs managed to fulfil this
requirement (Supplementary Table S2).

For TFs that potentially target cuRBPs, 21 of them are
positive correlated (r > 0.2) and 32 are negative correlated
(r < −0.2), while 10 TFs are positive and 38 TFs are negative
correlated with cdRBPs (Supplementary Fig. S2D). By con-
structing a putative TF-cuRBP regulatory network, we found
that most of TFs only target one to two cuRBPs, while SP1,
E2F1, MAZ, MYC, TCF3 and ELK1 target multiple RBPs (n
� 5) which might be hub TFs. On the other hand, several
cuRBPs, including GAPDH, TSEN54, THOC6 and POLR2H,
are targeted by multiple TFs (n � 5), which could be hub
cuRBPs (Fig. 4(c)). Interestingly, SP1 is positively correlated
with three and negatively correlated with 10 cuRBPs, which is
consistent with the previous view that SP1 is able to both
enhance or repress promoter activity [43]. Among 16 miRNA-
cdRBP pairs, 13 miRNAs were consistently negative corre-
lated with 5 putative RBP targets, including CPEB2, CPEB3,
CPEB4, RBMS3 and ZCCHC24 (Supplementary Fig. S2E).
Therein, CPEB2, CPEB3 and CPEB4 might be potentially co-
regulated by MIR25, while CPEB4 and RMBS3 could be co-
regulated by MIR19A. Surprisingly, eight miRNAs out of 13,
including MIR30B/D, MIR141, MIR191, MIR200A/B/C and
MIR429, are all potentially regulating ZCCHC24. Unlike
CPEB and RBMS3, functional relevance of ZCCHC24 in
tumorigenesis is unknown.

DNA methylation has been shown to be an important epige-
netic mechanisms for the regulation of gene expression [39].
Based on TCGA data, we were able to analyse DNAmethylation
in 4607 tumours and 358 normal samples for around 0.3 million
CpG sites across 11 cancer types (for the other five cancer types
data were not available). Adapted from the method as described
in previous study [44], we classified CpG sites into three groups:
epigenetically activated group (DNA hypermethylated (beta
value >0.3) in more than 90% of samples, while became hypo-
methylated (beta value <0.1) in at least 10% tumour samples),
epigenetically silenced group (DNA hypomethylated (beta value
< 0.1) in more than 90% of samples, while became hypermethy-
lated in at least 10% of tumour samples) and non-significantly
changed group. Genes are defined as epigenetically activated or
silenced if their promoter region only contains either epigeneti-
cally activated or silencedCpG sites, respectively. If the promoter
region contains both epigenetically activated and silenced CpG
sites, it will be considered as ambiguous. In total, 9 out of 109
(8%) cuRBPs were epigenetically activated, while 22 out of 44
(50%) cdRBPs were epigenetically silenced in at least one cancer
types (Fig. 4(d)). We noted that even though IGF2BP1 is pre-
dicted to be potentially epigenetically silenced based on DNA
methylation at the promoter, its mRNA expression level still
significantly increased in tumour comparing with normal. This
might be due to the gain of additional copies (Supplementary
Table S3).

All these results suggest that dysregulation of cuRBPs/
cdRBPs could be due to either cis- and trans-regulatory

mechanisms across cancers. In cis, the upregulation of
cuRBPs is correlated with amplification of copy number,
while downregulated expression of many cdRBPs could be
due to epigenetic silencing mediated by DNA methylation.
In trans-, the following TFs, SP1, E2F1, MAZ, MYC, TCF3
and ELK1 might function as hub regulators of cuRBPs.
Besides, five cdRBPs were potential regulated by miRNAs,
including ZCCHC24 which might be regulated by multiple
miRNAs and function in tumorigenesis is totally unexplored.

Characterization of potential novel cancer-related RBPs
in colon adenocarcinoma (COAD)

As TCGA-COAD is one of the cancers showing strongest upre-
gulation of RBPs, we sought to confirm this pattern with addi-
tional expression datasets. Indeed, transcriptome analysis of
a public dataset (GSE104836), and in-house microarray
(Clariom) of 10 normal colon tissue versus 10 COAD tumours,
reveals that both of them show similar predominant upregula-
tion of RBPs as TCGA-COAD (Fig. 5(a)). As the mRNA abun-
dance might not truly reflect the gene expression, we next
analysed the protein expression in COAD and normal colon
tissues from a previous study [45]. Again, we found that protein
expression of RBPs is significantly upregulated in tumours and
this trend is even more evident for cuRBPs (Fig. 5(b)).

Hierarchical clustering of samples based on the protein
expression of cuRBPs could distinctively separate tumour
and normal, while proteins from the same functional module
shared similar expression pattern and clustered together, such
as the snRNPs and proteins related to ribosome biogenesis
(Fig. 5(c)). Interestingly, we found several RBPs (RAE1,
ALYREF, PPIH and PABPC1L) which has similar protein
expression profile across 120 samples to the RBPs in
snRNPs, while XPO5, XPOT and OAS3, were clustered
together with the ribosome biogenesis related RBPs based on
expression pattern (Fig. 5(c)). Among them, PABPC1L and
RAE1 are frequently (~10%) amplified in COAD tumour
samples (Supplementary Fig. S3A). While RAE1 has been
revealed to function in tumour immunity, chromosome seg-
regation and RNA transport [46–48], functions of PABPC1L
is not very clear. Moreover, among the many cancer types in
which PABPC1L is overexpressed or amplified, large intestine
ranked as the most significant (Overexpressed in more than
32% and amplified in more than 12% of tumour samples, see
Table 2). As its expression is correlated with RBPs in snRNPs
across 120 samples, such as SNRPD1, SNRPE and SNRPF, we
hypothesized that it should have a global effect on pre-mRNA
splicing. To check this, we compared the index of aberrant
splicing between samples with high expression of PABPC1L
(PABPC1L_high: 77 samples) and low expression of
PABPC1L (PABPC1L_low: 77 samples) from TCGA-COAD.
Indeed, 2502 significant aberrant events were more spliced in
PBBPC1L_high group, while only 84 events were more spliced
in PABPC1L_low group, suggesting that suggesting that high
expression of PABPC1L might potentially induce aberrant
mRNA splicing in TCGA-COAD (Supplementary Fig. S3B).
Furthermore, we performed q-PCR in the COAD cell line
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Figure 5. Characterization of potential novel cancer-related RBPs in COAD. (A) Proportion of dysregulated genes (tumour versus normal) in three independent
datasets. TCGA-COAD: COAD dataset from TCGA project; GSE104836: public dataset containing the RNA sequencing data of 10 normal and 10 tumour COAD samples.
Clariom: in-house microarray data for 10 COAD and 10 normal colon samples. (B) Distribution of the protein expression fold change between COAD tumour and
normal colon samples. (C) Heatmap illustrating the protein expression of cuRBPs in normal and tumour samples. The horizontal bar: green stands for 30 normal
samples and red for 91 tumour samples. The right vertical bar: red stands for the proteins related to splicing machinery, green for the proteins involved in ribosome
biogenesis and the blue for the proteins related to translation machinery. The colour and definition in the vertical bar is the same as Fig. 3B. PABPC1L is highlighted
in the purple box. (D) Soft agar assay of DLD cells upon PABPC1L, MYC knockdown. Error bar: SEM. t-test. *: p < 0.05, **: p < 0.01; ****: p < 0.0001. (E) Kaplan-Meier
survival analysis of TCGA-COAD datasets based on segmentation values of PABPC1L expression.
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DLD1 to validate candidates which showed aberrant splicing
in PABPC1L_high group comparing with PABPC1L_low
group. Among the eight candidates we selected, we were
able to detect aberrant-spliced transcripts for six of them.
Even though 5 out of 6 showed decreased expression for
both normal and aberrant spliced isoforms, the ratios between
aberrant spliced and normal transcripts were decreased for
three candidates upon PABPC1L knockdown, while none of
the candidates showed increased ratios (Supplementary Fig.
S3C and S3D).

Therefore, to further investigate the oncogenic function of
PABPC1L, we performed soft-agar assay to assess its impact on
cell proliferation in DLD1 cells. siRNA-mediated knockdown of
the PABPC1L transcript resulted in a ~ 50% reduction in
PABPC1L mRNA expression (Supplementary Fig. S3E) and
a concomitant, significant reduction in cell proliferation relative
to the control (Fig. 5(d)). Moreover, higher expression of
PABPC1L is correlated with poor overall survival rate in both
our analysis and the result from human pathology atlas (http://
www.proteinatlas.org/ENSG00000101104_PABPC1L/pathol
ogy/tissue/colorectal+cancer), suggesting that its dysregulation
does contribute to cancer progression (Fig. 5(e)).

Discussion

In this study, with transcriptome analysis of RBP transcript
expression in ~6700 samples, we built a comprehensive
mRNA expression landscape of RBPs across 16 human cancer
types. Although the landscape has been characterized pre-
viously in several studies, their results are not quite consistent
and even contradictory with each other. The first study com-
pared mRNA expression of ~800 RBPs in tumour samples
from TCGA to corresponding normal tissue from human
body map across nine cancer types. They found RBPs are
overrepresented in top quantile of upregulated genes across
different cancers [17]. Another study analysed mRNA expres-
sion of ~1500 RBPs in TCGA-LIHC and one public dataset
and revealed that RBPs are preferentially upregulated in
tumour [14]. In addition, a recently study, which characterizes
the expression of ~1500 RBPs across 15 human cancer types
in TCGA, claimed that RBPs are predominantly downregu-
lated in tumour comparing to normal [18].

Here, our study provides much more evidences supporting
that RBPs are predominant upregulated in tumour across
different cancers by using two different comparison
approaches, additional public RNA-seq dataset beside
TCGA, in-house microarray data and protein expression
data. This unbalanced upregulation pattern is most evident
in BRCA, COAD, LIHC, LUSC and LUAD for those RBPs
genes with known functions in common posttranscriptional
regulations, such as splicing, transcription termination, trans-
lation, RNA modification. Moreover, our results reveal that
fractions of upregulated RBPs across different samples were
impacted by their tumour immune subtypes and microenvir-
onment, and tumour samples with high upregulated RBP
factions are associated with high proliferation rate and a low
fraction of stromal and leukocyte (Fig. 1(e)). These findings
could even explain the heterogeneities in RBPs upregulation
amplitude across different cancers. For instance, two outliers,
THCA and KICH, which do not show preferential upregula-
tion of RBPs could be due to majority samples from them are
C3: inflammatory immune subtype, which is characterized
with low or moderate proliferation and low overall SCNA.

Despite the observation that dysregulated RBPs are quite
heterogeneous across different cancers, we still identified
more than 100 consistently dysregulated RBPs in terms of
cuRBPs and cdRBPs. Many of them have been extensively
studied, while the remaining few have unclear functions in
tumorigenesis. These RBPs are poorly overlapped with pre-
vious identified dysregulated RBPs based on both mutation
and expression, which greatly expanded the current scope of
RBPs that are commonly dysregulated across different cancer
types. Interestingly, we found that cuRBPs are significantly
overrepresented in RNA modification, transcription termina-
tion and tRNA related functional categories. Indeed, wide-
spread 3ʹ UTR shortening actives oncogenes in cancer cells,
and intronic polyadenylation induced truncation of tumour
suppressor genes in leukaemia has been revealed previously
[49,50]. Both of them could be mediated by upregulation of
RBPs involved in transcription termination, however why the
upregulated activity of transcription termination specifically
affects those oncogenes and tumour suppressor genes needs to
be explored in the future. Besides, METTL3, a RBP belongs to
N6-adenosine-methytransferase has been showed promoting

Table 2. Somatic point mutation, RNA expression and somatic copy number alteration of PABPC1L across different cancer types based on the data obtained from
COSMIC database (https://cancer.sanger.ac.uk/cosmic).

Points mutations RNA expression Copy number

Mutated
(%)

Total tested
samples Over-expressed (%)

Total tested
samples

Gain
Copy
(%)

Total tested
samples

Large intestine 2.8 2320 32.8 610 12.4 773
Stomach 1.3 861 24.9 285 8.8 501
Oesophagus 0.3 1513 13.6 125 2.4 546
Cervix 0.9 329 13.4 307 1.3 313
Ovary 0.1 895 11.3 266 1.5 729
Skin 1.3 1288 9.7 473 0.8 650
Liver 0.7 2163 8.3 373 0.4 692
Breast 0.5 2522 7.9 1104 1.7 1544
Urinary tract 0.6 697 7.8 408 2.4 419
Kidney 0.2 2177 6.7 600 0.2 1027
Lung 1.1 2468 6.2 1019 1.1 1185
Pancreases 0.1 1815 6.2 179 0.1 929
Prostate 0.2 2051 5.6 498 0.1 1037
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translation in human cancer cells [51]. However, compared to
splicing and translation, studies on these three functional
categories are much less investigated. Thus, our results not
only provide insights to understand posttranscriptional dysre-
gulations in tumorigenesis, but also implies some novel RBPs
with oncogenic and tumour suppressive potential.

Furthermore, we revealed that overexpression of cuRBPs is
correlated with amplification of copy numbers, while the down-
regulation of cdRBPs could be due to DNA-methylation-
mediated epigenetic silencing. These suggest that dysregulation
of cuRBPs and cdRBPs are not just passenger effect, but may
have driver function in tumorigenesis. Additionally, we con-
structed TF/miRNA-RBP regulatory networks for cuRBPs/
cdRBPs and found that several TFs might function as common
hub regulators of cuRBPs across cancers. Among them, SP1,
E2F1, MYC, TCF3 have been extensively investigated in thou-
sands of studies for their critical roles in tumorigenesis, while
MAZ and ELK1 were much less studied, especially, their roles as
hub TFs controlling overexpression of cuRBPs across cancers.

Finally, we found several RBP candidates which might
contribute to tumorigenesis in COAD, including PABPC1L
and RAE1, whose expression patterns are quite similar to the
RBPs in snRNPs (Fig. 4(c)). As the copy numbers of
PABPC1L and RAE1 are frequently amplified in COAD, we
speculate that PABPC1L and RAE1 might regulate the expres-
sion of RBPs in snRNPs. Both these two belong to RNA
transport pathway, while PABPC1L is also involved in
mRNA decay. Further studies should be performed to deter-
mine how they regulate snRNPs. Besides, we showed that the
expression of PABPC1L is associated with mRNA splicing,
cell proliferation and overall survival rate in COAD, suggest-
ing that PABPC1L might promote cancer progression via
regulating snRNPs expression. Therefore, dysregulation of
PABPC1L might have similar functional consequences as
other regulators of snRNPs biogenesis, such as PRMT5, and
it could be a potentially valuable target for drug discovery to
inhibit cancer progression as well.

Materials and methods

Reagents

Reagents are as follows: siGENOME SMARTpool siRNA
reagents (Dharmacon) for negative control (NC) (siNC),
PABPC1L (siPABPC1L) and MYC (siMYC); DharmaFECT 1
transfection reagent (Dharmacon); Trizol reagent
(ThermoFisher), Dulbecco’s modified Eagle medium
(DMEM) (ThermoFisher), OptiMem reduced serum media
(ThermoFisher), foetal bovine serum (FBS) (ThermoFisher),
Trypsin-EDTA (ThermoFisher).

Primers

hs-EZH1-L_F_qP: CCCAACTGTTATGCCAAAGGT
hs-EZH1-L_R_qP: ACTAAGATTGAGAGGGGCCT
hs-CDK10-L/S_F: GGCCTCCAGTATCTGCACA
hs-CDK10-L_R: CGAAATCCGCTGTCTTCACA
hs-CDK10-s_R: TTCAGGGGCTCGGTACAAAT
hs-XAF1-L_F: GGTTCCTGGTCCTGTGTCC

hs-XAF1-L_R: CACATCGTACACCCAACCTG
hs-XAF1-s_F: TCTCTGCCAACTTCACCCTC
hs-XAF1-s_R: CACATCGTACACCCAACCTG
hs-SMARCD3-L_F: CATCAGgtgaggtggccc
hs-SMARCD3-L_R: aagtccagcccttcgtgtc
hs-SMARCD3-s_F: CATGTCATCAGCGTGGACC
hs-SMARCD3-s_R: GTGGATAGGAGGAAGCTGCT
hs-NOXA1-L_F: TTGGGCAACTCAGgtggg
hs-NOXA1-L_R: GTCCTCACCTGGGGCTAG
hs-NOXA1-s_F: ACTCAGTTACCTAGCCCCAG
hs-NOXA1-s_R: ACATCGGGCTCTTCACACAG
hs-ACCS-L_F: CACTCTGAGGTCTGGGGATC
hs-ACCS-L_R: GGTTCTGCCTGACTCCCA
hs-ACCS-s_F: CACCCCTTACTATGGCGCTA
hs-ACCS-s_R: TGACCTTCACACCCTCAGAG
hs-CD46-L_F: ATTCAGTGTCGACTTCTTCCAC
hs-CD46-L_R: ACAGCAATGACCCAAACATCC
hs-CD46-s_F: TCCAAAGTGTCTTAAAGTGTCGA
hs-CD46-s_R: CGGGACAACACAAATTACTGC
hs-METTL3-L_F: tggggcccaattcaataggt
hs-METTL3-L_R: TGACACCAACctgctcacc
hs-METTL3-s_F: CACTGCTTGGTTGGTGTCAA
hs-METTL3-s_R: CGAGTGCCAGGAGATAGTCT
hs-CPNE7-s_F: CTTCACCGTGGCCATTGAC
hs-CPNE7-s_R: ATAGTCCTGGCAGATCTCGC
hs-CPNE7-L_F: TCCACTTCACCACAAAACGT
hs-CPNE7-L_R: ATAGTCCTGGCAGATCTCGC
hs-PABPC1L_F: GCCAGCCTATTCGCATCATG
hs-PABPC1L_R: CACGCCACCTTGCAAGAG
hs-GAPDH_F: AGCCACATCGCTCAGACAC
hs-GAPDH_R: GCCCAATACGACCAAATCC

Soft agar assay

A 0.6% agarose base was prepared in six-well dishes. At 24
h post-transfection, DLD-1 cells were trypsinized, re-
suspended and counted. The cells (15 x 103) were mixed
with complete growth medium and agarose to a final agarose
concentration of 0.3%, which was added above the base. The
cells were grown at 37°C in a humidified atmosphere with 5%
CO2 and were fed with complete growth medium every 2
days. After 8 days, the colonies were imaged under 4× mag-
nification and quantified using ImageJ v.1.51k.

Omics data and annotation resource

The RNA sequencing and the somatic copy number alteration
(SCNA) as well as the DNA methylation data from TCGA
project were downloaded and processed by TCGA-
Assembler2 [52]. In total, the normalized mRNA expression
(RSEM value, provided by The Genomic Data Commons) of
20,530 genes in ~6700 clinical samples across 16 cancer types
was obtained (Supplemental Table S1). The processed SCNA
results contain the somatic copy number alteration of around
~16,000 genes in each cancer in average. To exclude the
impact of different platforms on the DNA methylation data,
only the data from Infinium HumanMethylation450K
BeadChip (Illumina) were used for the analysis, which
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includes the normalized beta value for more than ~50 million
CpG site across the genome.

Besides the data from the TCGA project, a public dataset
which contains 10 normal and 10 COAD tumour samples
(GSE67526) were obtained from GEO. The protein expression
data of 30 normal and 90 COAD tumour samples were obtained
from a previous study [45]. The 1542 RBPs were defined from
RBP census [4], while only 1502 of them have available expression
data in the TCGA datasets. The functional categories of RBPs
were manually generated by combining relevant GO terms and
KEGG pathways, while top 10 categories with the largest number
of RBPs were selected. Among them, there are 363 RBPs in
splicing, 289 RBPs in translation, 122 RBPs in transcription ter-
mination (3ʹ end processing), 205 RBPs in RNA localization &
transport, 119 RBPs in RNA surveillance & degradation, 157 RBPs
in RNAmodification, 374 RBPs in ribosome, 158 in tRNA, 158 in
mitochondrial, 262 in enzymes (helicase & nuclease & ATPase &
ligase). These 10 categories are not exclusive as some RBPs might
have multiple functions. It needs to be noted that spliceosome is
integrated into splicing categories, while ribosome is separated
from translation. This is due to 98% of RBPs from GO terms
spliceosome is also included in GO terms RNA splicing, whereas
only half of RBPs were overlapped between ribosome and transla-
tion categories. One thousand two hundred and ninety TFs were
derived from DBD human transcription factor database [53]. The
oncogenes and tumour suppressor genes were defined based on
the TUSON explorer score as described in a previous study [35].
In brief, 18,679 genes were ranked by q value, the top 300 with
smallest TUSON_q_value_TSG and top 250 with smallest
TUSON_q_value_OG were selected as oncogenes and tumour
suppressors, respectively. Six thousand one hundred and fourteen
prognostic favourable genes and 6834 unfavourable genes were
obtained from the human pathology atlas [21]. Therein, 2357
genes that could be observed in both prognostic favourable and
unfavourable lists were defined as ambiguous. Three thousand
seven hundred and fifty-six prognostic favourable genes and 4476
unfavourable genes were defined by removing those ambiguous
ones. The genetic alteration of seven candidate RBPs were
obtained from cBioPortal [54].

Transcriptome data analysis

As TCGA datasets we studied contain at least 10 normal and
many more tumour samples (usually hundreds of samples) in
each cancer cohort (Supplemental Table S1), we performed the
t-test to evaluate expression difference between tumour and
normal samples in each cancer cohort and used Benjamin-
Hochberg [15] approach to adjust the p-value similar to previous
study (Dang et al. 2017). The genes with BH-adjusted p-value
smaller than 0.001 were considered as dysregulated genes. For
each cancer type, the ratio between upregulated RBPs and down-
regulated RBPs was compared to that of TF and background that
contains all the 20,531 PCGs. The significance of the difference
between RBPs and TFs, RBPs and PCGs were estimated by the
hypergeometric test.

We also used an alternative approach to estimate dysregu-
lation of gene expression in tumour. Simply, for each gene in
each cohort, instead of comparing the entire tumour samples
to normal samples directly, we compared its expression in

each tumour sample to the entire normal samples to check
whether it’s significantly dysregulated in this sample. If its
expression in this tumour sample is above 95% quantile of
normal expression, it will be defined as upregulated, while
lower than 5% quantile will be defined as downregulated.
With these approaches, we could access fraction of upregu-
lated RBPs/TFs/PCGs in each tumour samples. In each
cohort, we further correlated the fractions of upregulated
RBPs with 60 signatures from immune landscape paper [19].

The consistently up/down-regulated RBPs and TFs were
defined based on two metrics: the directionality and amplitude.
For each gene, the directionality was the difference between the
number of cancer types, in which the gene is upregulated and the
number of cancer types, in which the gene is downregulated. The
amplitude was the average of the expression fold change across 16
cancer types. The RBPs with directionality larger than 8 and
amplitude larger than log2(1.5) was defined as cuRBPs, while
those with directionality smaller than −8 and amplitude smaller
than – log2(1.5) were defined as cdRBPs. In total, 109 cuRBPs and
41 cdRBPswere obtained. Similarly, 45 cuTFs and 137 cdTFs were
defined by the same criteria. All of the heatmaps of gene expres-
sion in normal and tumour samples were generated by R function
heatmap.2 from ‘gplots’ package.

Microarray preparation

RNA quality was assessed by using the Agilent Model 2100
Bioanalyzer (Agilent Technologies, Palo Alto, CA). 150nanogram
of total RNAwas processed for use on themicroarray by using the
Affymetrix WT plus kit according to the manufacturer’s recom-
mended protocols. The resulting biotinylated cRNAwas fragmen-
ted and then hybridized to the Clariom D array (Applied
Biosystems). The arrays were washed, stained, and scanned
using the Affymetrix Model 450 Fluidics Station and Affymetrix
Model 3000 7G scanner using the manufacturer’s recommended
protocols by the Microarray Facility. Expression values were gen-
erated by using Expression Console software (Affymetrix). Each
sample and hybridization underwent a quality control evaluation.

SCNA analysis

Based on the SCNA data from TCGA, copy number alterations of
cuRBPs and cdRBPs were compared to the corresponding back-
ground of all the PCGs with Mann-Whitney-Wilcoxon test for
each cancer type. In addition, the Pearson correlation coefficient
between the gene expression (log-transformed normalized RSEM
value) and SCNA were calculated for each gene in a group. The
significance of difference of the correlation coefficients between
the gene sets (cuRBPs/cdRBPs/cuTFs/cdTFs) and background
(PCGs) were estimate by Mann-Whitney-Wilcoxon test.

Tf/miRNA analysis

To identify potential TF/miRNA regulators of RBPs, 500 gene sets
of TFs, 221 gene set of miRNAs were obtained from molecular
signature database (MSigDB, version 6), in which targets of TFs/
miRNAs were predicted based on the motif at the promoters/3ʹ
UTRs. To determine whether dysregulation of a TF/miRNA in
tumour is really functional to its target cuRBPs or cdRBPs, we
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calculated the correlation in expression between this TF/miRNA
and each of its target cuRBP and cdRBP in each cancer type
separately. The TF-cuRBP and TF-cdRBP pairs with correlation
larger than 0.2 in more than eight cancer types were defined as
positive regulation, while correlation smaller than −0.2 were
defined as negative regulation. For the miRNA-cuRBP and
miRNA-cdRBP pairs, the correlation smaller than −0.2 in more
than eight cancer types were required.

DNA methylation analysis

To investigate the link between DNA methylation and transcrip-
tion of a gene, only the CpG sites at its promoter region were
selected. Based on the GENCODE (Version 27 liftover to hg19)
annotation and definition from the DNA methylation database
[55], 5ʹUTR and 1700bp (TSS200 and TSS1500) upstream region
of transcription start site [21] of a genewere defined as a promoter.
By comparing normalized DNA methylation values (β) between
tumour and normal samples, the epigenetically silenced and acti-
vated CpG sites were determined with a similar approach as
described in the TCGA project. The epigenetically silenced CpG
site must fit the following three criteria: 1), more than 90% of
normal samples are un-methylated (β < 0.1); 2) the difference of
DNA methylation average between tumour and normal is larger
than 0.2; 3) The difference between tumour and normal should be
significant (BH-adjusted p < 0.05). The epigenetically activated
CpGsiteswere identified by a similar approachbut the change is in
the opposite way: 1), at least 90% of normal samples is methylated
(β > 0.3), 2) the difference is smaller than −0.2; 3) BH-adjusted p <
0.05. Those genes, whose promoter only contains epigenetically
activated/silenced CpG site were defined as epigenetically acti-
vated/silenced. If the promoter of a gene contains both the epi-
genetically silenced and activated CpG sites, it was defined as
ambiguous.

Protein–protein interactions and protein complexes

The putative protein–protein interactions (PPIs) within each
groups, including the cuRBPs, cdRBPs, cuTFs and cdTFs were
identified based on the STRING database (version 10.5) [36]. The
medium confidence with interaction score >0.4 was set as cut-off
for an existing interaction between two proteins and only the
interactions with experimental evidence were used. To evaluate
the capacity of each protein to form protein complexes, the com-
plex annotation was downloaded from the CORUM database
[37]. To compare the connectivity within each group, the ratio
of the number of nodes (proteins) and edges (PPIs) was assessed
and the significance between different groups was estimated by
the hypergeometric test.
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