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Abstract

Parapoxvirus ovis (PPVO) is known for its immunostimulatory capacities and has been successfully used to generate vector
vaccines effective especially in non-permissive host species. Murine conventional and plasmacytoid dendritic cells (cDC and
pDC) are able to recognize PPVO. The PPVO-sensing receptor on pDC is hitherto unknown. In this study we aimed to define
the pattern recognition receptor responsible for the activation of murine pDC by inactivated and replication-competent
PPVO. We show that PPVO-induced expression of type I and type III interferons, pro-inflammatory cytokines, and co-
stimulatory CD86 by bone marrow-derived pDC but not cDC is blocked by chloroquine, an inhibitor of endosomal
maturation. The activation of pDC is independent of viral replication and depends mainly on TLR9. Moreover, the use of
phosphatidylinositol 3-kinase inhibitor wortmannin or C-Jun-N-terminal kinase inhibitor SP600125 results in significant
reduction of PPVO-induced pDC activation. Taken together, our data identify endosomal TLR9 as PPVO-sensing receptor in
pDC.
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Introduction

Parapoxvirus ovis (PPVO), also known as orf virus, is an

enveloped virus with a GC-rich genome [1,2] and the prototype

species of the genus parapoxvirus in the Poxviridae family.

Replication-competent as well as inactivated virus preparations

are known for their immunomodulating activities [3–6]. PPVO

enhances innate immune mechanisms such as phagocytosis, the

generation of reactive oxygen intermediates, pro-inflammatory

cytokines and especially production of type I interferons (IFN) [4–

7]. Recently, the induction of type III IFN in plasmacytoid

dendritic cells (pDC) by PPVO has been shown [7]. Type III IFNs

share the antiviral and immunomodulatory properties of type I

IFNs and are known to act especially on epithelial surfaces [8,9].

With its effects on innate immune mechanisms PPVO was shown

to interfere with the replication and pathogenesis of other viruses

in vivo and in vitro [10]. Moreover, with its immunomodulatory

properties PPVO efficiently primes adaptive immune responses

when used as a vaccine vector even in non-permissive host species

[11–14].

Priming of the adaptive immune response requires prior

activation of the innate immune response. Dendritic cells (DC)

play a central role in the interaction between the innate and the

adaptive immune response. Upon activation by pathogen-associ-

ated molecular patterns (PAMP), DC induce and orchestrate

adaptive immune mechanisms by cytokine and co-stimulatory

surface molecule expression. Conventional dendritic cells (cDC)

sense PPVO independently of the TLR signalling molecules

MyD88 and TRIF, whereas pDC depend on the adaptor molecule

MyD88 that is used by several TLRs [6]. pDC are specialised for

the detection of foreign nucleic acids by their endosomal TLRs

[15]. A hallmark of the subsequent pDC activation is the

production of type I and type III IFN [16]. The endosomal TLRs

are transferred from the ER to the endolysosome, where they are

enzymatically cleaved to gain functionality (reviewed in [17]).

Mature TLR3, TLR7, and TLR8 can sense ds and ssRNA

molecules, respectively, whereas TLR9 is able to interact with

DNA at GC motifs [18]. Nucleic acid recognition by endosomal

TLR is the underlying mechanism for IFN induction in pDC by

RNA viruses (e.g. Newcastle disease virus) and DNA viruses (e.g.

Herpesvirus) [19,20]. For the Poxviridae two main TLR in pDC

are known. While the detection of myxoma virus and ectromelia

virus is TLR9-dependent [21–23], the highly attenuated modified

vaccinia virus Ankara is sensed by DC even in absence of TLR9.

Nevertheless, the stimulation of DC by UV-inactivated modified

vaccinia virus Ankara relies on TLR9 [23]. Less attenuated

vaccinia virus strains potently block immune stimulation. After

heat inactivation these viruses activate pDC via TLR7 [21]. Thus,

TLR7 and TLR9 were both potential candidates for the MyD88-

dependent recognition of PPVO by pDC.

Here, after confirming the endosomal sensing of PPVO in pDC

using chloroquine, we identify TLR9 as main PPVO-sensing

receptor triggering the activation of pDC by using TLR9-

inhibitory CpG-ODN as well as TLR92/2 pDC. For PPVO-
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induced TLR9-dependent immune stimulation of pDC, phospha-

tidylinositol 3-kinase (PI3K) and C-Jun-N-terminal Kinase (JNK)

signalling is shown to be necessary.

Materials and Methods

Viruses
Parapoxvirus ovis D1701 was propagated and titrated in bovine

kidney cells and purified via sucrose gradient centrifugation. The

bovine kidney cell line BK-KL 3A [24] was kindly provided by T.

Schlapp, Bayer AG, Monheim, Germany. Virus batches were

divided into replication-competent PPVO (PPVO) and inactivated

PPVO (iPPVO), the latter was treated with beta-propiolactone for

chemical inactivation. Newcastle disease virus (NDV) was prop-

agated in embryonated egg cultures, purified by sucrose gradient

centrifugation and quantified by haemagglutination assay.

Dendritic cell culture
To generate DC in vitro, bone marrow (BM) of C57Bl/6 WT

mice (Janvier) or TLR92/2 mice (provided by Dr. S. Bauer with

permission from Dr. S. Akira) on the C57Bl/6 genetic background

[25] were flushed and cells were cultured for 6.5 days in RPMI

with 10% fetal bovine serum, 1% sodium pyruvate, 50 mM 2-

mercaptoethanol and 50 ng/ml fms-like tyrosine kinase 3 ligand

(Flt3L) to reach high numbers of pDC [26]. Cells were stained and

purified using a FACSAriaIII into cDC (CD11c+; CD11b+;

B2202) and pDC (CD11c+; CD11b+/2; B220+) to a purity of at

least 98%. Pure subpopulations were stimulated for 24 h with the

indicated stimuli. Supernatants were harvested for determination

of cytokine levels by ELISA and cells were stained and analysed

for activation marker expression on a BD Fortessa.

Ethics statement
All bone marrow samples were derived from euthanized mice.

Mice were euthanized with CO2. The protocol for this study was

approved by the Animal Care and Usage Committee of the

Landesdirektion (state office) Sachsen in Leipzig, Germany (Permit

number: T 01/14). All efforts were made to minimize animal

suffering.

Stimuli and inhibitors
Cells were stimulated with sucrose gradient-purified PPVO that

was left untreated or chemically inactivated by beta-propiolactone

at a MOI of 10. Purified Newcastle disease virus (NDV), CpG-

ODN 2216 (5-GsGsGGGACGATCGTCsGsGsGsGsGsG-3;

s = phosphothioate) (1 mM; Enzo Life Sciences, Lausen, Switzer-

land) and medium stimulation served as controls. For the

competitive inhibition of TLR9, G-type inhibitory ODN (se-

quence 59-ctcctattggggtttcctat-39) (5 mM; Enzo Life Sciences,

Lausen, Switzerland) were added to the stimulations. Endosomal

maturation was prevented by the addition of chloroquine (0.4 mg/

ml; Sigma Aldrich, St. Louis, MO, USA). To interfere with PI3K

and JNK signalling, chemical inhibitors wortmannin (1 mM;

Sigma Aldrich, St. Louis, MO, USA) and SP600125 (up to

10 mM; Sigma-Aldrich, St. Louis, MO, USA) were used.

Antibodies and ELISA
For surface marker staining the following antibodies were used:

anti-mouse CD11c (clone N418); anti-mouse CD11b (clone M1/

70); anti-mouse B220 (clone RA3-6B2); anti-mouse CD86 (clone

GL1); anti-mouse MHC-II I-A/I-E (clone M5/114.15.2) and

respective isotype controls (all: ebioscience, Frankfurt, Germany).

IFNs and cytokines were detected in sandwich-ELISA with the

following reagents: IFN-a: anti-mouse IFN-a antibody (clone:

RMMA-1), polyclonal rabbit anti-mouse IFN-a-purified immu-

noglobulin G (R&D Systems GmbH, Wiesbaden, Germany); IFN-

b: anti-mouse IFN-b antibody (clone: RMMB-1), polyclonal rabbit

anti-mouse IFN-a-purified immunoglobulin G (R&D Systems

GmbH, Wiesbaden, Germany); IL-12p40: anti-mouse IL-12p40

antibody (clone: 5C3), biotinylated goat anti-mouse IL-12p40-

purified IgG (provided by M. Gately, F. Hoffmann-La Roche Ltd.,

Nutley, NJ); IL-12p40 ELISA standard was kindly provided by

Schering-Plough Biopharma (Palo Alto, CA, USA); IL-6: anti-

mouse IL-6 antibody (clone MP5-20F3; BD Biosciences, Heidel-

berg, Germany), biotinylated anti-mouse IL-6 antibody (clone:

MP5-32C11; BD Biosciences, Heidelberg, Germany); Interferon

l: Mouse IL-28A/B (IFN-lambda 2/3) DuoSet (R&D Systems

GmbH, Wiesbaden, Germany).

Statistics
For the determination of statistically significant differences 2-

way ANOVA and Bonferroni post-test were done with Graph-

PadPrism 5. Differences are marked by asterisks (*p,0.05; **p,

0.01; ***p,0.001).

Results

Endosomal maturation is a prerequisite for PPVO-
induced activation of pDC, but not of cDC

In a previous study we showed that chemically inactivated

PPVO (iPPVO) activates conventional dendritic cells (cDC) in a

MyD88- and TRIF-independent manner, whereas the activation

of plasmacytoid dendritic cells (pDC) relies on TLR-related signal

adaptor MyD88 [6]. pDC especially express endosomal TLRs. A

prerequisite for endosomal TLR7, 8 and 9 function is their

cleavage after endosome maturation [27]. We tested whether

endosomal maturation is necessary for PPVO-mediated pDC and

cDC activation. Highly purified (.98%) BM-pDC (CD11c+

CD11b+/2B220+) and BM-cDC (CD11c+CD11b+B2202) gener-

ated from bone marrow cells in the presence of fms-like tyrosine

kinase 3 ligand (Flt3L) were stimulated with replication-competent

PPVO, iPPVO and the control stimulus CpG-ODN in the

absence and presence of chloroquine, an inhibitor of endosome

maturation. As expected, activation of BM-pDC and BM-cDC by

TLR9-dependent control stimulus CpG-ODN was abolished in

the presence of chloroquine. In BM-pDC the blockade of

endosome maturation also largely diminished upregulation of co-

stimulatory CD86 and abolished the secretion of IFN-ab, IFN-l
and pro-inflammatory cytokines to both PPVO preparations. In

contrast to pDC, purified BM-cDC were activated by replication-

competent PPVO and iPPVO, reflected by cytokine secretion and

upregulation of surface markers CD86 and MHC-II, even in the

presence of chloroquine (Figure 1 and data not shown). Thus,

whereas PPVO is sensed in BM-cDC outside of the endosomal

compartment, BM-pDC recognize PPVO with an endosomal

receptor.

TLR9-inhibitory iCpG-ODN antagonize PPVO-induced
IFN-a and IFN-l production by purified plasmacytoid
dendritic cells

Taking the high GC content [1,2] of the parapoxviral genome

into account, the endosomal DNA-recognizing receptor TLR9

might be involved in sensing PPVO in pDC. To test this

hypothesis, we stimulated purified BM-pDC in the absence or

presence of TLR9-specific inhibitory (i)CpG-ODN. Replication-

competent PPVO and iPPVO induced considerable levels of IFN-

a and IFN-l in BM-pDC. The specific blockade of TLR9

Plasmacytoid Dendritic Cells Recognize PPVO by TLR9
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significantly reduced secretion of IFN-a and IFN-l by BM-pDC in

response to replication-competent PPVO, iPPVO, and CpG-

ODN (Figure 2). Additionally, the secretion of IL-12p40 or IL-6

by pDC was induced by both, replication-competent and

inactivated PPVO preparations as well as CpG-ODN. The

presence of TRL9-specific iCpG-ODN led to lower levels of these

pro-inflammatory cytokines (Figure 2).

Upon activation, DC present antigen via MHC molecules and

express co-stimulatory surface antigens such as CD86 and thereby

activate adaptive immune mechanisms. PPVO is able to induce

the upregulation of MHC-II and CD86 expression on BM-pDC

[6]. TLR9-specific iCpG-ODN reduced the ability of BM-pDC to

up-regulate CD86 (Figure 2) and MHC-II (data not shown)

surface expression in response not only to CpG-ODN but also to

replication-competent PPVO and iPPVO.

Taken together, these data provide evidence for a substantial

involvement of TLR9 in PPVO recognition and subsequent pDC

activation.

Reduced PPVO-induced IFN-a and IFN-l production by
purified TLR92/2 plasmacytoid dendritic cells

Competitive blocking of TLR9 by iCpG-ODN resulted in

substantially reduced but not completely abrogated PPVO-

mediated pDC activation. This suggests either an incomplete

inhibition of TLR9 by iCpG-ODN or a redundant receptor

capable of sensing PPVO. To distinguish these two possibilities, we

used BMDC from TLR92/2 mice [25]. BM-pDC from TLR92/2

mice were incubated with replication-competent and inactivated

PPVO preparations as well as CpG-ODN. TLR92/2 BM-pDC

secreted significantly less IFN-a and IFN-l than wild type (WT)

BM-pDC. IFN-b levels were not reduced as prominently in

response to replication-competent and iPPVO (Figure 3). It is

noteworthy that especially after stimulation with replication-

competent PPVO, TLR92/2 BM-pDC still are able to produce

residual IFN-a and IFN-l amounts. This confirms our previous

result with TLR9-inhibiting iCpG-ODN leading to a substantial

but not complete reduction of IFN production.

TLR92/2 BM-pDC produced also less of the pro-inflammatory

cytokines IL-12p40 and IL-6 and up-regulated CD86 surface

expression to a lower degree than WT BM-pDC upon encounter

with replication-competent PPVO, iPPVO or CpG-ODN,

whereas TLR7-dependent NDV [20] activated both TLR92/2

and WT BM-pDC (Figure 3). This and the IFN-b production in

response to PPVO by TLR92/2 BM-pDC demonstrate that

TLR92/2 BM-pDC are capable to produce WT levels of IFNs.

Thus, the reduced secretion of IFN-a, IFN-l, pro-inflammatory

IL-12p40 and IL-6 as well as MHC-II and CD86 expression in

response to PPVO is TLR9-specific. Even though the residual

activation of TLR92/2 pDC indicates the presence of additional

receptors sensing PPVO, these data clearly identify TLR9 as the

predominant PPVO-recognizing receptor in pDC.

Inhibition of PI3K and JNK signalling leads to reduced
activation of pDC by PPVO

Phosphatidylinositol-3 kinases (PI3Ks) are required for IFN-a
induction by CpG-ODN in human pDC, but do not regulate pro-

inflammatory cytokine production or costimulatory molecule

expression [28]. The stimulation with PPVO in the presence of

the PI3K inhibitor wortmannin led not only to reduced IFN-a and

IFN-l secretion but also diminished IL-12p40 and IL-6 secretion

Figure 1. PPVO sensing requires endosomal maturation in pDC but not in cDC. BMDC were generated in the presence of Flt3-ligand and
pDC and cDC purified by FACS as described in material and methods. Purified pDC and cDC were stimulated in triplicates as indicated for 24 h in the
absence or presence of chloroquine and supernatants were analysed for the indicated cytokines. Concentrations of cytokines are presented as mean
+/2 SEM. One representative experiment of three is presented for cytokine data. Remaining cells were stained and analysed for the expression of co-
stimulatory CD86 presented as mean +/2 SEM of the median fluorescence intensity. Pooled data of two experiments are shown for CD86 expression.
Statistically significant differences between stimulations in the absence and presence of chloroquine were determined by 2-way ANOVA and
Bonferroni post-test and are indicated by asterisks.
doi:10.1371/journal.pone.0106188.g001
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as well as CD86 expression by pDC (Figure 4A). Moreover we

interfered with JNK signalling, known to be involved in TLR-

mediated induction of pro-inflammatory cytokines in DC [29], by

using the JNK inhibitor SP600125. As shown in Figure 4B, this

was accompanied by reduction of the secretion of type I and type

III IFNs upon PPVO, iPPVO and to a lesser extent upon CpG-

ODN stimulation. Production of pro-inflammatory cytokines IL-6

and IL-12p40 as well as upregulation of costimulatory CD86 was

also affected (Figure 4B). Thus, our data suggest that activation of

pDC by PPVO involves PI3K and JNK signalling.

Discussion

Parapoxvirus ovis (PPVO), replication-competent and inacti-

vated, is a potent stimulator of innate immune responses in

permissive and non-permissive species as well as a viral vector

shown to effectively induce adaptive immune responses

[3,11,12,30]. A hallmark of the immune stimulation is the

induction of high amounts of type I interferons (IFN) [3]. IFN as

well as pro-inflammatory cytokines are secreted by pDC as well as

cDC. For the recognition of DNA viruses like herpes simplex virus

Figure 2. PPVO-induced pDC activation is blocked by TLR9-specific iCpG-ODN. Purified BM-pDC were stimulated in triplicates as indicated
for 24 h in the absence or presence of iCpG-ODN (iCpG) and supernatants were analysed for the indicated cytokines. Concentrations of cytokines are
presented as mean +/2 SEM. One representative experiment of three is presented for cytokine data. Remaining cells were stained and analysed for
the expression of co-stimulatory CD86 presented as the mean +/2 SEM of the median fluorescence intensity. Pooled data of three experiments are
shown for CD86 expression. Statistically significant differences between stimulations in the absence and presence of iCpG-ODN (5 mM) were
determined by 2-way ANOVA and Bonferroni post-test and are indicated by asterisks.
doi:10.1371/journal.pone.0106188.g002
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Figure 3. Stimulation of pDC by PPVO is greatly diminished in the absence of TLR9. BMDC of WT and TLR92/2 mice were generated and
purified as described in material and methods. Purified pDC were stimulated in triplicates with the indicated stimuli and supernatants and cells were
harvested after 24 h. Cytokines were determined in culture supernatants using ELISA and expression of CD86 by flow cytometry. One representative
of three independent experiments is depicted for cytokine data. Histograms of one representative and pooled data of three independent
experiments are shown for CD86 expression. Cytokine concentrations and CD86 expression were statistically analyzed using 2-way ANOVA and
Bonferroni post-test, and significant differences between WT and TLR92/2 pDC responses are indicated by asterisks.
doi:10.1371/journal.pone.0106188.g003
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Figure 4. Inhibition of PI3K and JNK signalling greatly diminishes activation of pDC by PPVO. BMDC of WT mice were generated and
purified as described in material and methods. Purified pDC were stimulated in triplicates with the indicated stimuli in the absence or presence of
PI3K inhibitor wortmannin (A) or JNK inhibitor SP600125 (10 mM) (B) and supernatants and cells were harvested after 24 h. Cytokine concentrations
were determined in culture supernatants using ELISA and are depicted as mean +/2 SEM. Surface expression of CD86 was analysed by flow
cytometry and is depicted as mean +/2 SEM of the median fluorescence intensity. Cytokine concentrations and CD86 expression were statistically
analysed using 2-way ANOVA and Bonferroni post-test and differences are indicated by asterisks. One representative experiment of at least three is
presented for cytokine data. Pooled data of two (A) or three (B) experiments are shown for CD86 expression.
doi:10.1371/journal.pone.0106188.g004
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(HSV)-1 or adenovirus, TLR-dependent and TLR-independent

pathways are engaged [19,31]. Also for PPVO-mediated activa-

tion of cDC, TLR-dependent and -independent mechanisms were

shown to be important [6]. However, the receptors sensing PPVO

remained elusive. Our data show that chloroquine, an inhibitor of

endosomal maturation, prevents PPVO-induced activation of

pDC but not cDC (Figure 1). This is consistent with our previous

observation of MyD88-independent cDC activation [6] and points

to endosomal pDC activation by PPVO (Figure 1).

pDC are specialised to sense nucleic acids [15]. Poxviridae such

as ectromelia virus and myxoma virus are sensed by the DNA-

recognising TLR9 [21,23]. However, DNA viruses such as HSV-1

or heat-inactivated vaccinia virus are also sensed by pDC in a

TLR9-independent fashion [19,21]. The induction of IFN by

vaccinia virus requires the RNA sensor TLR7 [21]. Similarly, the

activation of BM-DC by the highly attenuated strain modified

vaccinia virus Ankara is mainly independent of TLR-related

signalling molecules MyD88 and TRIF [32]. Vaccinia virus

subverts the action of cytoplasmic nucleic acid sensors such as

protein kinase R by sequestering nucleic acids by its Z-DNA/RNA

binding protein E3 [21]. This protein is also able to counteract the

detection of myxoma virus and CpG-ODN by TLR9 [21].

Parapoxvirus ovis encodes for a homologue of vaccinia virus E3,

i.e. OV20.0L, that in contrast to myxoma virus homologue

M029L shares the Z-DNA binding domain of vaccinia virus E3

[33–35]. Thus, to successfully sense PPVO, DC might employ

multiple receptors and signalling pathways.

We demonstrate the dependence of PPVO, with its genome rich

in GC motifs [1,2], on TLR9 for the activation of pDC by using

iCpG-ODN and TLR92/2 cells (Figures 2 and 3). Thus, in

contrast to TLR7-dependent sensing of heat-inactivated vaccinia

virus, pDC mainly rely on TLR9 for the recognition of PPVO

similarly as it was shown for myxoma virus. [21]. In contrast to

HSV-1, another DNA virus, the activation of pDC in response not

only to inactivated virus but also to replication-competent PPVO

mainly relies on TLR9 in the non-permissive murine pDC [14].

We therefore believe that the PPVO DNA is the viral component

activating pDC. Potential early gene expression by inactivated

PPVO does not seem to play a major role for the activation of

pDC. Studies reported profoundly reduced early gene transcrip-

tional activity following virus inactivation [24,36,37], however, we

observed no major differences between inactivated and replica-

tion-competent PPVO preparations in pDC activation.

PI3K inhibitor wortmannin prevents the TLR9-dependent

activation of pDC by PPVO (Figure 4A). PI3K signalling has been

shown to be a requirement for nuclear translocation of IRF7 in

response to CpG-ODN, thus facilitating type I IFN production by

human and murine pDC and also plays a role for HSV-,

influenza- and myxoma virus-induced IFN-a induction in pDC

[21,28]. However, there is only limited data on the role of PI3K

signalling in virus infections. We show that PI3K signalling is a

requirement for the immune stimulation of pDC by PPVO.

Moreover, we found a reduction of all analysed activation

parameters induced by PPVO after inhibiting JNK signalling

with SP600125 (Figure 4B). The JNK signalling cascade is known

to be involved in the induction of pro-inflammatory cytokines by

TLR [29], but the JNK inhibitor SP600125 only marginally

influences CpG-ODN-induced matrixmetalloproteinase 13 pro-

duction by odontoblasts or RANTES secretion by Langerhans

cells [38,39]. We demonstrate that SP600125 inhibits PPVO-

mediated type I IFN induction by TLR9 in pDC. However, the

data shown here leave open whether wortmannin and SP600125

inhibit type I IFN induction by TLR9 in pDC directly or

indirectly.

Besides their action on TLR signalling, both wortmannin and

SP600125 are known to interfere with autophagosome formation.

PPVO like other poxviruses replicates in the cytoplasm. Vaccinia

virions are known to deliver their core via the plasma membrane

or endosomal membrane into the cytoplasm where the genomic

DNA is liberated [40,41]. Thus, poxviral genomic DNA is unlikely

to be accessible for TLR9 after endosomal uptake of the virion.

For the interaction of TLR9 with parapoxviral DNA, its uptake

from the cytosol into autophagosomes could be a possible mode of

action. Whether poxviruses with their cytoplasmic replication

cycle share autophagic sampling of their nucleic acids for

endosomal TLR-dependent sensing with RNA viruses e.g.

respiratory syncytial virus, vesicular stomatitis virus or paramyxo-

virus, needs further investigation [38,42,43].

In summary, our data identify endosomal TLR9 as the main

receptor recognising PPVO in pDC. For characterization of the

TLR-independent activation of cDC by PPVO [6], identification

of the non-TLR pattern recognitions receptors expressed by cDC

and responsible for PPVO-mediated cDC activation merits further

investigation. This will help to comprehensively understand the

various immunomodulatory properties of PPVO making it an

efficient viral vaccine vector.
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