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Abstract

Modeling Amyotrophic Lateral Sclerosis (ALS) with human induced pluripotent stem cells 

(iPSCs) aims to reenact embryogenesis, maturation, and aging of spinal motor neurons (spMNs) in 
vitro. As the maturity of spMNs grown in vitro compared to spMNs in vivo remains largely 

unaddressed, it is unclear to what extent this in vitro system captures critical aspects of spMN 

development and molecular signatures associated with ALS. Here, we compared transcriptomes 

among iPSC-derived spMNs, fetal, and adult spinal tissues. This approach produced a maturation 

scale revealing that iPSC-derived spMNs were more similar to fetal spinal tissue than to adult 

spMNs. Additionally, we resolved gene networks and pathways associated with spMN maturation 

and aging. These networks enriched for pathogenic familial ALS genetic variants and were 

disrupted in sporadic ALS spMNs. Altogether, our findings suggest that developing strategies to 

further mature and age iPSC-derived spMNs will provide more effective iPSC models of ALS 

pathology.
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Introduction

Amyotrophic Lateral Sclerosis (ALS) is a devastating neurodegenerative disorder, which 

typically presents in adulthood, has no effective treatments, and involves paralysis and death 

within 3-5 years of diagnosis [1]. While animal models of ALS have captured molecular and 

physiological aspects of disease onset and progression, genetic differences between humans 

and animals limit the interpretation and relevance of phenotypic results. A powerful, 

complementary in vitro system to animal models of ALS is patient-derived induced 

pluripotent stem cells (iPSCs) [2, 3]. iPSCs from ALS patients possess the advantage of 

harboring the patient's complex genetic makeup that contributes to their disease. In disease 

modeling with iPSCs, the goal is to recapitulate in a dish the embryonic development, 

maturation, and aging of cell types involved with ALS pathology. Spinal MNs (spMNs) are 

one of the primary cell types that die in ALS. While their embryonic development is 

understood to enable their differentiation in vitro from pluripotent cells [4, 5], the fidelity of 

in vitro to in vivo spMNs remains unresolved. Thus, further optimizing spMN differentiation 

protocols from iPSCs could enhance the monitoring of disease onset and reveal molecular 

mechanisms to therapeutically target [6].

spMN progression from the embryonic to the mature and aged state, the point at which they 

degenerate in ALS, occurs over decades. It therefore remains unclear whether iPSC-derived 

MNs (iMNs), which are produced in vitro in several weeks, can recapitulate the decades of 

complex in vivo events leading to MN degeneration [7]. Notably, a systems level comparison 

has not been conducted between iMNs and adult spMNs, the in vivo counterparts that iMNs 

attempt to model. We thus performed a direct and global transcriptional comparison of 

spMNs and iMNs to examine the expression kinetics of gene networks as cells progress 

from pluripotency to matured and aging adult states. These analyses indicated that iMNs are 

more similar to fetal rather than adult spinal tissue and revealed a sequential activation and 

repression of molecular pathways in spinal motor tissue through stages of embryonic 

development, maturation, and aging. Strikingly, these networks enriched for genetic variants 

associated with MN disease, revealing that maturation- and age-related pathways may play 

roles in disease initiation. Finally, these maturation- and aging-associated gene networks are 

dysregulated in familial and sporadic ALS. Collectively, these findings suggest that 

strategies to mature and age iPSC-derived spMNs may provide more relevant iPSC models 

of ALS.

Results

iPSC-derived MNs resemble fetal rather than adult MNs

We compared expression profiles among fibroblasts, iPSCs, fetal spinal cord, whole adult 

spinal cord and laser captured MNs from the spinal cords of control and ALS patients, 

which included those with mutations in SOD1 or CHMP2B [8, 9] (Supplementary Table 1a). 

Selecting profiles from the same microarray platform reduced the likelihood of confounding 

batch effects. An established 7 week in vitro protocol was used to generate cultures with 33 

– 45% choline acetyl transferase (ChAT)- and SMI-32-double positive differentiated iMNs 

[10] (Fig. 1a). We also obtained expression data for MN cultures from human embryonic 

stem cells containing an HB9::GFP motor neuron reporter, which were sorted into GFP-
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positive and negative fractions [11]. To represent immature in vivo spinal tissue during 

embryonic development, we generated expression data from human fetal spinal cords. ISL1 

and SMI-32 immunostaining revealed MNs in the ventral horn (Fig. 1b). After normalizing 

the expression for 10,605 genes in all samples (n = 43, Supplementary Table 2a), 

hierarchical clustering and Pearson correlation revealed that iMNs were more similar to fetal 

rather than adult spinal cord tissue or iPSCs from which they were differentiated (Fig. 1c). 

Principal component analysis (PCA) revealed that PC1 distinguished between pluripotent 

cells and adult spMNs (Supplementary Fig. 1a). PC2 distinguished non-laser captured adult 

spinal tissues from all other samples, possibly due to strong gene expression contributed by 

heterogeneous adult spinal tissue that were absent in other samples. Notably, PC3 

distinguished iMNs and fetal spinal cords from all other samples. When considering only 

PC1 and PC3 (Fig. 1d), an intuitive progression of MN development can be visualized. 

Regression analysis of linear models for sample traits against PC coordinates also revealed 

that tissue type best explained PC1 and PC3 (Supplementary Fig. 1b and Supplementary 

Table 1b).

Next, molecular pathways associated with PC1 and PC3 were examined. Gene set 

enrichment analysis (GSEA) [12] was performed on the ranked gene loadings for PC1 and 

PC3 to detect gene sets that concordantly place each sample along each component (Fig. 1e 

and Supplementary Table 2b). Pathways related to synaptic transmission were enriched 

among positive gene loadings along PC1, supporting that MN maturation is characterized in 

part by changes in electrophysiology [13]. Conversely, pathways related to cell cycle and 

DNA repair were enriched among negative gene loadings along PC1. Furthermore, pathways 

related to nervous system development were enriched among positive gene loadings along 

PC3. Interestingly, genes associated with integrin binding, which regulate neuronal 

migration during development [14], were enriched among negative gene loadings along PC3. 

Together, these data account for differences in global expression as well as specific pathways 

across all samples, further supporting that iMNs are molecularly restricted to a fetal-like 

state. By summarizing the diverse GO terms enriched along their PC gene loadings for this 

expression data set and for simplification, PC1 is best described as spMN maturation, and 

PC3 is best described as embryonic spMN development.

Network analysis resolves development, maturation, and aging

Gene co-expression network analysis is a useful method to link tightly co-expressed gene 

modules to phenotypic traits [15]. Using weighted gene co-expression network analysis 

(WGCNA), 10,605 genes across 40 samples were hierarchically clustered based on 

topological overlap (Fig. 2a). This analysis identified 55 modules ranging in size from 30 to 

511 genes with a median size of 66 genes (Supplementary Table 2c). Altogether, 4,711 

genes were assigned to modules (Fig. 2a, colored bars) and 5,894 genes were not classified 

into any modules (Fig. 2a, grey bars).

The module eigengene represents the expression of all genes classified into that module. 

When each eigengene expression was correlated against a sample trait using Pearson's 

method (Supplementary Table 1a), only the age of the spinal tissue donor significantly 

correlated positively or negatively to a subset of eigengenes (Fig. 2b, Age of adult tissue 
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donor, outlined panels). In addition to sample traits, each sample analyzed by PCA was 

assigned a coordinate along each PC. When each eigengene expression was correlated 

against PC1, the component that describes spMN maturation, or against PC3, the component 

that describes embryonic spMN development, subsets of eigengenes were significantly 

correlated to each PC in an independent manner (Fig. 2b, PC1 and PC3, outlined panels). 

This analysis thus identified gene co-expression networks that strongly associate with age, 

spMN maturation, and embryonic spMN development (Fig. 2c).

While neuron maturation and aging are physiological features likely involved in ALS and 

other late onset, neurodegenerative diseases [7, 16], their distinction has been difficult to 

define. While regression analysis highlighted tissue type as the main covariate that 

correlated with PC1, the age of tissue donor slightly, but nevertheless significantly correlated 

with PC1 as well (Supplementary Fig. 1b). Interestingly, correlation performed on the 55 

modules revealed that some modules significantly correlated with spMN maturation but not 

age and vice versa (Fig. 2b, Age of adult tissue donor and PC1, outlined panels). 

Additionally, some modules correlated with both spMN maturation and age in the same 

direction, while other modules correlated with both in opposite directions. WGCNA was 

thus able to finely resolve gene co-expression networks associated with the processes of 

neuron maturation and aging.

ALS genetic variants disrupt spMN maturation and aging genes

To test if any of the 55 modules identified by WGCNA were associated with age-related 

diseases, enrichment analyses were performed using the ClinVar database [17]. Strikingly, 

pathogenic genetic variants associated with the search terms “motor neuron” were enriched 

in the dark grey, purple, and lightgreen modules, and those associated with “Amyotrophic 

Lateral Sclerosis” were enriched in the yellow module (Fig. 2b, MN disease and ALS, 

outlined panels). Notably, these four modules were significantly correlated with spMN 

maturation, age, or both (Fig. 2b, Age of adult tissue donor and PC1, outlined panels). 

Interestingly, variants associated with dementia were enriched in the greenyellow module, 

which significantly anti-correlated with age, and variants associated with autism were 

enriched in the darkmagenta module, which significantly correlated with embryonic 

development. Enrichment for MN disease and ALS variants in these modules were specific, 

as there was no significant enrichment for genetic variants associated with other age-related 

disease like Alzheimer's disease, hypertension, or prostate cancer (Fig. 2b, lower panels). 

Modules identified using WGCNA on a data set where all ALS patient samples were 

removed yielded similar results (Supplementary Fig. 2a), suggesting that the age- and spMN 

maturation-correlated modules are indeed modifiers of ALS and MN disease presentation. 

We subsequently analyzed modules built with the expression data set that included the ALS 

samples so as to 1) increase the sample size of spMNs, thereby increasing the robustness of 

the detected modules and 2) provide some representation of co-expression networks as they 

occur in spMNs from ALS patients. We note that mutations in CHMP2B are of uncertain 

pathogenicity in ALS, given that there is insufficient evidence of segregation with disease in 

familial pedigrees and the presence of a rare, candidate polymorphism in non-ALS 

populations [18, 19].
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Network analysis resolves spMN maturation and aging pathways

To gain a biological understanding of network-to-sample trait relationships, the age- or 

spMN maturation-associated modules were tested for enrichment of genes belonging to gene 

ontology (GO) terms. Each of the 55 modules was grouped into four classes: significant 

positive (PC1pos) or negative (PC1neg) correlation with spMN maturation, and positive 

(AGEpos) or negative (AGEneg) correlation with age (Supplementary Table 2d). Performing 

a four-way intersection, this revealed numbers of overlapping and distinct GO terms 

enriched in each class (Fig. 2d, Supplementary Fig. 2b, and 2c).

Pathways involved in cell cycle and mitosis were exclusively enriched in PC1neg (Fig. 2d), 

consistent with GSEA results (Fig. 1e). Neuron projection modules positively correlated 

with both PC1 and age, suggesting that axonogenesis is a continual process throughout 

spMN maturation and aging. Translation and ribosomal pathways were enriched in both 

PC1neg and AGEneg (Fig. 2d), indicating that co-regulated gene networks associated with 

protein production decline in cells during spMN maturation and aging. Conversely, 

proteasome-associated genes increased with age, suggesting a role for protein degradation 

and catabolism in older cells. Notably, amyloid precursor processing genes were enriched in 

AGEneg, indicating a progressively declining ability to prevent glycoprotein aggregates in 

older cells. Interestingly, immune response and myelin sheath genes were enriched in 

PC1pos and AGEneg (Fig. 2d), suggesting that these gene networks increase in expression 

during spMN maturation, but decrease in expression during aging. Altogether, these analyses 

effectively resolve biological processes that are associated with spMN maturation, aging, or 

both traits. Furthermore, pathway enrichment through WGCNA recovered additional 

ontologies not detected using PCA with GSEA alone (Supplementary Table 2e), indicating 

that WGCNA is a more sensitive approach to discover pathways of interest.

Key markers assess spMN maturation and embryonic development

Having identified expression networks that significantly associated with the processes of 

spMN maturation and embryonic spMN development, we investigated if the gene properties 

within those networks could identify key markers of both processes. A reduced list of key 

markers would enable a comparison among samples that were expression profiled on 

different microarray platforms and provide a robust indicator of the embryonic 

developmental and maturation status of pluripotent cell-derived MNs. To this end, we scored 

each of the 10,605 genes along three properties with respect to PC1 and PC3 that reflect 

spMN maturation and embryonic spMN development, respectively (Fig. 1d). These 

properties were 1) preferential gene loading, 2) gene significance, and 3) intramodule gene 

membership. The preferential gene loading was the net contribution of each gene to one 

particular PC and minimal contribution to all other PCs. The gene significance is the 

Pearson's correlation between the gene expression value and a sample trait, as in this 

instance, spMN maturation or embryonic development. The intramodule membership is the 

correlation between the gene expression value and the eigengene of the module to which it is 

assigned.

After generating gene scores for each of these properties, genes were partitioned into four 

classes: PC1pos, PC1neg, PC3pos, and PC3neg, based on the signed value of their gene 
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loadings in PC1 or PC3, and ranked by a score summarizing the three properties 

(Supplementary Tables 2c and 2e – h). From each of these ranked lists, five genes were 

selected based on the best gene scores, as well as for diverse representation of module colors 

and prior knowledge of biological relevance to spMN maturation or embryonic spMN 

development. Together, this totaled 20 genes that best predicted the sample clustering along 

the axes of PC1 and PC3 (Fig. 3a), and RT-qPCR validated microarray expression patterns 

(Supplementary Fig. 3a and Supplementary Table 3a).

To test the robustness of this marker panel to assay spMN maturation and embryonic spMN 

development, expression data were downloaded from additional studies as validation data 

sets utilizing a variety of microarray platforms (Supplementary Table 1a). Expectedly, 

expression values for 6,640 overlapping genes from different platforms and studies exhibited 

varied distribution patterns (Supplementary Fig. 3b, colored curves). Quantile normalization 

conformed all values to a single distribution pattern (Supplementary Fig. 3b, black curve and 

Supplementary Table 3b).

Performing PCA on all 6,640 quantile normalized genes produced PCs that resembled the 

training data set (Figs. 1d, 3b, and Supplementary Fig. 3c). Specifically, PC1 again best 

described spMN maturation and PC7 in this instance best described embryonic spMN 

development. Notably, PC3 captures variation due to differences between Illumina and 

Affymetrix microarray platforms, despite quantile normalization minimizing these 

differences (Supplementary Figs. 3b and c). Strikingly, PCA performed using the 20 key 

genes reflected spMN maturation in PC1 and embryonic spMN development in PC2 (Fig. 3c 

and Supplementary Fig. 3d). Importantly, variations arising from different microarray 

platforms were not noticeably captured. A receiver-operating characteristic analysis on the 

validation data set demonstrated that the 20 genes outperformed 6,640 genes with either 

PCA or Pearson correlation, yielding a higher area under the curve (Fig. 3d and 

Supplementary Figs. 3e – g). These observations support the efficacy and universal 

adaptability of combining PCA and WGCNA to identify key markers of spMN maturation 

and embryonic spMN development.

mtSOD1 distinctively affects spMNs and iMNs networks

The expression of modules associated with age, spMN maturation, and embryonic spMN 

development were next investigated in spMN and iMN samples comparing a familial form 

of ALS caused by mutant SOD1 (mtSOD1) to controls (Fig. 4, Supplementary Tables 1a, 4a, 

and 4b) [9, 20]. mtSOD1 significantly affected several module classes. Notably, modules 

correlated to age were downregulated by mtSOD1 in spMNs (Fig. 4a). These age-associated 

modules in mtSOD1 spMNs were dysregulated in the opposite manner in which they are 

endogenously expressed during aging. This suggests that the aging process enacts 

homeostatic gene expression programs that may protect spMNs, which otherwise undergo 

cell death due to misexpression of these transcriptional programs in the mtSOD1 condition. 

Interestingly, all of the embryonic spMN development-associated modules were 

significantly upregulated in mtSOD1 spMNs (Fig. 4c), indicating that some embryonic 

pathways are also affected in mtSOD1-induced ALS.
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Mapping the expression of these trait-associated modules in an independent data set for 

mtSOD1 and control iMNs (Supplementary Tables 1a, 4a, and 4b) [20] revealed patterns that 

were similar to spMNs in some aspects, but distinct in others. When comparing module 

expression levels between mtSOD1 and control iMNs, the modules correlated to age, though 

not as highly expressed as in spMNs, were significantly downregulated (Figs. 4a and 4d). 

These observations suggest that age-associated gene expression networks affected by 

mtSOD1 ALS in spMNs may be recapitulated to some extent in iMNs. Yet, the expression 

of modules correlated to spMN maturation was not significantly different in iMNs (Figs. 4b 

and 4e). These observations suggest that iMNs do not faithfully recapitulate the expression 

profile of mature spMNs affected by mtSOD1. Lastly, modules that were correlated or anti-

correlated to embryonic spMN development were respectively highly or lowly expressed 

overall in iMNs (Fig. 1f). Thus, the expression pattern of these embryonic spMN 

development-associated modules in an independent expression data set supports the idea that 

iMNs are more similar to fetal spinal tissue than adult spMNs.

Sporadic ALS dysregulates spMN maturation and age modules

WGCNA with the composite data set analyzed thus far (hereinafter referred to as iMN 

expression data set) (Supplementary Table 2a) did not identify modules significantly 

correlated to ALS conditions (data not shown). This was likely due to an insufficiently large 

representation of samples associated with ALS in the data set, perhaps also compounded by 

distinct expression changes induced by the two genotypes of ALS represented: mtSOD1 and 

mtCHMP2B. Thus, a separate analysis was performed to identify gene networks that 

significantly associate with the ALS condition in spMNs. An independent transcriptomic 

data set of 15,614 genes that specifically focused on comparing expression between sporadic 

ALS (sALS) and control spMNs [21] was analyzed (n = 22, age range = 47 – 81 years, 

median = 73 years) (Supplementary Tables 1a and 5a). This data set, also used in the gene 

reduction validation analysis (Fig. 3b), similarly compared the transcriptional profiles of 

laser captured spMNs between 12 sALS patients and 10 control subjects. However, this data 

set was profiled on a different microarray platform than was used for the composite iMN 

expression data set. Therefore, PCA and WGCNA were separately performed on this 

expression data set (hereinafter referred to as the sALS expression data set) in order to 

independently validate co-expression networks and observe if their expression is affected 

between sALS and control conditions. PCA and linear regression analysis revealed that PC1 

was best distinguished by sALS and control spMNs (Supplementary Figs. 4a, 4b, and 

Supplementary Table 1c), therefore this PC was best described as the sALS component.

GSEA was performed on the ranked gene loadings for this component to explore pathways 

and gene ontologies enriched among genes that were dysregulated in sALS spMNs (Fig. 5a 

and Supplementary Table 5b). Interestingly, pathways related to extracellular matrix were 

enriched among genes that were upregulated in sALS, consistent with previously described 

gene expression changes [21]. Conversely, pathways related to mitochondrial ion and 

electron transport were enriched among genes that were downregulated in sALS. These 

observations were not previously described for this data set [21], highlighting the sensitivity 

of GSEA using PCA gene loadings to detect enriched pathways without thresholding on an 

arbitrarily assigned, fold change cut-off.
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Next, gene co-expression networks were built using only expression data from the sALS 

expression data set. WGCNA on this data set identified 52 modules ranging in size from 31 

to 401 genes with a median size of 51 genes (Supplementary Table 5c). Altogether 4,444 

genes were assigned to modules (Supplementary Fig. 4c, colored bars) and 11,170 genes 

were not classified into any modules (Supplementary Fig. 4c, grey bars). Each eigengene 

was then correlated using Pearson's method against sex, sALS disease status, site of ALS 

onset, age of tissue donor, disease course, and post mortem interval (Supplementary Table 

1a). Additionally, each eigengene was correlated against the sALS component. Among these 

sample traits, only sALS disease status and the sALS component significantly correlated or 

anti-correlated to a subset of modules (Supplementary Fig. 4d, outlined panels).

Given this observation, the possibility that these gene modules were also involved with 

spMN maturation and age was hypothesized. Therefore, the extents of overlap were 

examined between modules defined in the iMN and sALS expression data sets, hereinafter 

referred to as iMN and sALS modules, respectively. To this end, each sALS module was 

systematically tested for enrichment of each iMN module (Fig. 5b and Supplementary Table 

5g). This analysis demonstrated that some iMN modules significantly overlapped with one 

or more sALS modules, and vice versa.

In addition to cross-tabulating module assignments between the two data sets, the stability of 

networks defined in each data set was examined using module preservation Z-statistics [22]. 

These measures indicated the likelihood that the network structures of iMN modules also 

occurred in the sALS data set by random chance. Consistent with the overlap analysis, the 

most significantly overlapping modules were also those whose network structures were most 

significantly preserved across data sets (Fig. 5b, Supplementary Fig. 5, and Supplementary 

Table 5d).

Despite an imperfect one-to-one module correspondence, overlapping iMN and sALS 

modules tended to significantly correlate or anti-correlate to sample traits in a consistent 

way. For instance, iMN modules that significantly correlated with age and spMN maturation 

tended to have strong overlap with sALS modules that significantly anti-correlated to the 

sALS component. Conversely, iMN modules that significantly anti-correlated with age and 

spMN maturation tended to have strong overlap with sALS modules that significantly 

correlated to the sALS component. Additionally, three of the four modules that enriched for 

genetic variants associated with MN disease or ALS significantly overlapped with at least 

one sALS module that in turn significantly associated with the sALS component or sALS 

disease status. These observations thus support that networks involved in spMN maturation 

and age are also affected in sALS.

To gain a biological understanding of these module-to-trait relationships, enrichment 

analysis was performed on each significantly associated module for GO terms. Modules 

were then classified into two groups: those that significantly correlated with the sALS 

component positively (sALSpos) or negatively (sALSneg) (Supplementary Table 5e). 

Similar to the comparisons in the iMN data set, pathway enrichment using WGCNA in the 

sALS data set recovered additional ontologies not detected using PCA with GSEA alone 

(Supplementary Table 5f). Performing a four-way intersection analysis with either AGEpos 
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and AGEneg, PC1pos and PC1neg, or PC3pos and PC3neg (Fig. 2d, Supplementary Figs. 

2b, and c), these analyses revealed numbers of overlapping and distinct GO terms enriched 

in each of the different groups (Supplementary Fig. 6). Interestingly, pathways such as RNA 

processing and translational elongation, which are enriched within AGEneg and PC1neg, are 

also enriched within sALSpos (Supplementary Figs. 6a and 6b). Notably, the immune 

response pathway, which is enriched within PC1pos and AGEneg, is also enriched in 

sALSpos. Conversely, pathways such as neuron differentiation and cell projection, which are 

enriched within AGEpos and PC1pos, are also enriched within sALSneg. To a lesser extent, 

some transcriptional pathways, which are enriched within PC3pos, are also enriched within 

sALSpos (Supplementary Fig. 6c).

spMN maturation, aging, and sALS converge on hub genes

An alternative approach was taken to explore the network properties of genes affected by 

maturation, aging, and ALS. Four module classes were defined: modules that 1) increased or 

2) decreased expression with aging and maturation (AGEpos and PC1pos or AGEneg and 

PC1neg, respectively), modules that 3) increase or 4) decrease with sALS (sALSpos or 

sALSneg, respectively). Consistent with overlap comparisons performed on a module-by-

module basis (Fig. 5b), this comparison of combined modules demonstrates that age and 

spMN maturation modules had extensive overlap with sALS modules in opposite directions 

(Fig. 6a). Having identified which genes within the module classes are commonly affected 

(hereinafter referred to as overlaps), the gene expression networks in both the iMN and 

sALS expression data sets were observed for any properties that distinguished overlaps from 

genes that were uniquely found in either of the module classes (hereinafter referred to as 

non-overlaps).

When comparing the network property of gene significance, overlaps had more biologically 

significant roles than non-overlaps. This is particularly the case for genes classified as Age 

and PC1 positive and sALS negative (Fig. 6b and Supplementary Table 6) but not the case 

for genes classified as Age and PC1 negative and sALS positive (Fig. 6c and Supplementary 

Table 6). Additionally, overlaps tended to have higher intramodule membership within Age 

and PC1 positive modules as well as within sALS negative modules (Fig. 6d and 

Supplementary Table 6). Furthermore, pathogenic genetic variants associated with ALS tend 

to have higher intramodule membership than genes not affected by ALS variants 

(Supplementary Fig. 5e). Together, these observations further underscore vulnerability of 

cellular systems to disruptions targeting network hub genes in both the familial and sporadic 

ALS conditions. Lastly, intermodule membership for each gene measures its expression 

correlation to the eigengenes of other modules that significantly correlate or anti-correlate to 

the same sample trait [15]. This metric can be used to identify hub genes that connect 

multiple modules that act on distinct but coordinated pathways. This comparison showed 

that overlaps tended to have higher intermodule membership within Age and PC1 positive 

modules as well as within sALS negative modules (Fig. 6e and Supplementary Table 6), 

suggesting that they are functionally conserved as intermodule hub genes.

These gene network properties can be simultaneously visualized as network maps (Figs. 6f – 

i). Within Age and PC1 positive modules, a network map filtered for the strongest 1% of 
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gene-to-gene connections comprised of multiple interconnected modules (Fig. 6f). This 

network contained far more overlaps (circular nodes) than non-overlaps (triangular nodes), 

and overlaps tended to have greater gene significance with respect to age (relative node size) 

and also tended to have greater intramodule membership (central positions within like-

colored clusters). Non-overlaps demonstrated a lower degree of intramodule membership 

compared to overlaps, as they occupied more peripheral positions within like-colored 

clusters (Fig. 6f). The same trends were observed in sALS negative modules (Fig. 6g), Age 

and PC1 negative modules (Fig. 6h), and sALS positive modules (Fig. 6i). Altogether, these 

data highlight the importance of hub genes within networks associated with MN maturation 

and aging, evidenced by the preservation of their network structures within the strongest 

connections detected in the sALS data set. Furthermore, the high gene significance measures 

of these hub genes suggest they are the most responsive genes to perturbations caused by 

sALS.

Discussion

Many iPSC differentiated tissues represent an immature or fetal stage of development [23, 

24]. This is presumably due to resetting the epigenetic state to that of an embryo during 

iPSC production, which can occur with samples even over 90-years old [25]. Our study 

wholly demonstrates that iPSC-derived MNs are more similar to their fetal in vivo 
counterparts than adult MNs based on their transcriptome.

Through an unbiased, genome-wide approach, we identified network hub genes described as 

markers or functional drivers of neuronal development or maturation. For example, DCX, 

NEFH, and SNAP25 have been shown as histological markers of early, intermediate, and 

late neuronal maturation, respectively [26]. Additionally, loss of function mutations in 

SCN1A are implicated in a failure of interneurons to develop mature action potentials in 

Dravet syndrome [27], and ASCL1 is the key pioneering transcription factor driving direct 

fibroblast conversion to neurons [28], which subsequently demonstrate slower maturation 

kinetics [29]. Using only 20 markers, we reduced the number of genes tested and thereby 

circumvented microarray platform-specific biases that confound accurate comparison of 

maturation states across samples. This technique will be extremely helpful to develop 

methods to efficiently mature spMNs in culture, and can be applied to other iPSC-derived 

cell types such as upper MN models of ALS [30], given the transcriptomic data available for 

in vivo brain tissues at different developmental stages [31, 32].

Using MNs to model neurological disease may require their aging in the dish. Attempts to 

simulate aspects of aging in iPSC-derived neurons include prolonging time in culture or 

introducing agents of cellular stress by chemical or genetic means [33-37]. Notably, these 

strategies can concomitantly bring about age-related molecular features along with 

phenotypes associated with neurodegeneration. However, our data indicate that molecular 

processes of neuronal aging and neuronal maturation are distinct, substantiating a 

perspective held by others [38]. Therefore, it is unclear whether these techniques accelerated 

iPSC progression from the embryonic to a mature neuronal state, or simply induced isolated 

aging pathways in immature cells. Since cellular age is collectively a multi-faceted, 

syndromic condition [7], it is most effectively assayed in a systems-wide manner. Thus, the 
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global gene expression and network analysis we have employed is well-suited to assay 

cellular maturity and age and can provide a comprehensive method to assess iPSC-derived 

tissue models under stress-induced conditions. A caveat to acknowledge is that the adult 

spinal cord samples used in our composite data set are younger than the adult laser captured 

MNs. We therefore recognize that some genes in the age-associated modules may actually 

be more associated with different sample types. Because a large number of in vivo spinal 

cords profiled on the same microarray platform along with detailed clinical data were 

difficult to obtain, we combined all available expression profiles in order to achieve more 

robust statistical power. Therefore, our data set provides a resource to generate hypotheses; 

however, the burden will be on follow-up investigations to eliminate such confounding 

factors.

Studies using direct neuronal reprogramming from aged adult fibroblasts have shown that 

the matured epigenetic state may be maintained [39]. While MNs have been directly 

converted from embryonic and fetal fibroblasts [40, 41], it would be interesting to see if 

similar techniques performed on aged fibroblasts maintain a more mature state through the 

transition process. Nevertheless, we provide data and methods that future studies can apply 

in addressing these questions.

There are increasing genetic variants reported to be associated with several human diseases 

in the ClinVar database [17]. Strikingly, some modules correlated with maturation or age (or 

both) enriched for variants pathogenically linked to ALS or MN disease. This lends strong 

evidence for maturation- and age-associated networks and pathways acting as causative 

effectors of late onset diseases. Future characterization of novel genetic variants classified as 

risk factors may explain how they act collectively to modify the penetrance or onset time of 

disease in individual patients [42].

The mitochondrial free radical theory of aging posits that as cells age, their electron 

transport chain stability declines, and accumulating reactive oxygen species oxidatively 

damage nuclear and mitochondrial DNA [43]. Our analysis revealed that respiratory chain 

components decreased expression during spMN maturation, consistent with observations in 

ALS patient blood [44]. Additionally, DNA repair pathways decreased expression as spMNs 

mature, suggesting a reduced ability to mitigate oxidative DNA damage. Our analysis also 

revealed that sALS further downregulated mitochondrial respiratory chain genes. Thus, the 

combination of spMN maturation and sALS can exacerbate a condition in which spMNs are 

vulnerable to oxidative damage. Notably, these mitochondrial components were reported to 

be downregulated in mtSOD1 iMNs [20], indicating that despite being in a fetal context, 

some key pathways can already be affected.

Interestingly, a dynamic expression pattern of gene networks associated with antigen 

presentation and immune response was highlighted. Whereas these processes increased 

expression as spMNs mature, they decreased expression as spMNs age. This model is 

consistent with the role of microglia in pruning synaptic connections during neuronal 

maturation and their hyperactivity in late-onset diseases [45]. The immune response and 

complement activation pathways were also upregulated in sALS, similar to observations in 

spinal cords of C9orf72-deficient ALS mouse models [46]. In summary, sALS antagonizes 

Ho et al. Page 11

Nat Neurosci. Author manuscript; available in PMC 2017 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the endogenous expression pattern of these immune activation pathways and that of protein 

translation and degradation. These observations therefore support that the expression 

kinetics for these pathways serve a homeostatic, protective role in aging spMNs that can be 

derailed by ALS, resulting in neurodegeneration.

Our analysis also provided another dimension to the role of genes within maturation and 

aging expression networks. The scale-free architectures of natural systems are robustly 

tolerant against perturbations to the majority of its nodes, but at the cost of being vulnerable 

to disruptions targeting hub nodes [47, 48]. Our observation that ALS preferentially disrupts 

hub genes within maturation and aging expression networks underscores its devastation to 

critical cellular systems. Understanding which central genes are the most vulnerable to ALS 

will guide effective therapies aimed at rescuing the function of these hub genes.

The stem cell modeling and ALS communities can apply the data presented here towards 

their own research in several ways. This resource includes a variety of transcriptomic data 

tables composed from and normalized across multiple studies; an atlas of gene networks that 

can be examined for common or distinct roles in maturation, aging, or ALS in other tissues; 

enriched gene sets and pathways among those gene networks; and a panel of marker genes 

that can accurately indicate spMN maturity, either by RT-qPCR or microarrays. Importantly, 

this study describes an analytical framework for cross-study transcriptomic comparisons, 

and this methodology can be broadly applied to other models of disease.

Altogether, our findings support a strong interaction between gene networks and pathways 

associated with spMN maturation, aging, and affected in ALS. This suggests that reenacting 

the endogenous spMN maturation and aging pathways in iMNs can sensitize them to ALS-

induced dysfunction. Nevertheless, it is possible that achieving a mature and aged state in 

iMNs is superfluous to effective ALS modeling. Disease-relevant phenotypes have been 

gleaned from immature iMNs, including RNA foci, protein inclusion bodies, altered 

electrophysiology, nuclear pore deficits, and cell death [10, 13, 20, 34, 49, 50]. While some 

of these phenotypes have spurred attempts at therapeutic strategies in ALS patients, it 

remains to be seen whether they are indeed relevant to disease etiology in adults. For 

instance, if ALS patients treated with retigabine, an antiepileptic drug that reduces 

hyperexcitability in mtSOD1 iMNs, demonstrate a positive response to the treatment, this 

would validate the efficacy of current iMN models in predicting events in adult spMNs. 

Otherwise, maturation and aging pathways should be considered as modifiers of disease 

presentation, and our present findings lay the groundwork for future efforts to achieve a 

higher fidelity model of the molecular and pathological events of ALS as they occur in vivo.

Online Methods

Tissue culture and processing

iMN differentiation was performed as previously described [10]. Briefly, mTeSR1 medium 

was removed from confluent iPSC cultures and replaced with Iscove's modified Dulbecco's 

medium supplemented with 2% B27-vitamin A and 1% N2 (neural induction medium) for 

six days. The cells were then Accutase-treated to single cell suspension, and centrifuged in 

384-well PCR plates in the presence of Matrigel and the neural induction medium (now 
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using Neurobasal medium) that was further supplemented with 0.1μM all-trans retinoic acid. 

After suspension culture for nine days, 1μM purmorphamine was added to the medium and 

aggregates were cultured for another eight days. Thereafter, dissociated aggregates were 

plated onto poly-ornithine/laminin-coated coverslips and cultured in Dulbecco's modified 

Eagle's medium (DMEM)/F12 supplemented with 2% B27, 0.1μM all-trans retinoic acid, 

1μM purmorphamine, 1μM dibutyryl cyclic adenosine monophosphate, 200 ng/ml ascorbic 

acid, 10 ng/ml brain-derived neurotrophic factor, and 10 ng/ml glial cell line-derived 

neurotrophic factor for 7 weeks. HB9::GFP positive MNs and HB9::GFP negative cell 

samples were processed directly from their published study [11]. Specifically, the samples 

analyzed in this study were differentiated using 200 ng/ml SHH as a ventralizing factor.

Fetal tissue was obtained from the Birth Defects Research Laboratory at the University of 

Washington under their approved IRB, consent, and privacy guidelines. All protocols were 

performed in accordance with the Institutional Review Board's guidelines at the Cedars-

Sinai Medical Center under the auspice IRB-SCRO Protocol Pro00021505. Upon receipt, 

tissue samples were renamed D52, D53, D63, or D97 to reflect their estimated gestational 

stage. Samples arrived as fully or partially intact spinal columns, and spinal columns were 

opened prior to shipment. Vertebrae were removed and were partitioned into cervical, 

thoracic, and lumbar sections. Since only spinal columns were received, the exact 

anatomical reference for each somite could not be accurately determined, therefore the 

labeling of cervical, thoracic, and lumbar sections were estimated.

RNA extraction and processing

Total RNA was isolated from all frozen spinal sections using the RNeasy kit (QIAGEN) 

with on column DNase digestion. For each fetal spinal cord, equal amounts of total RNA 

from each section were pooled for expression profiling. RNA from iMNs and ESC-derived 

MNs were respectively obtained directly from samples previously reported [10, 11]. Prior to 

expression profiling, all RNA samples were run through RNeasy kit columns with on 

column DNase digestion to produce similarly sized products as the fetal spinal cord samples. 

RT-qPCR was performed using the Reverse Transcription System (Promega A3500), SYBR 

Select Master Mix (Life Technologies 4472908), and the BIO-RAD CFX384 Real-Time 

System. Primer sequences are listed in Supplementary Table 3a. Triplicate Ct values for each 

gene primer were normalized against averaged triplicate GAPDH Ct values and referenced 

against one transcript of that gene set at 40 Ct. RNA expression profiling was performed on 

the Affymetrix GeneChip Human Genome U133 Plus 2.0 Arrays at the UCLA microarray 

core facility. A list of all expression data sets used (either generated by or downloaded) in 

this study is given in Supplementary Table 1a.

Immunofluorescence

For D63, spinal cord was isolated as before and fixed in 4% paraformaldehyde for 48 hours. 

25μm sections were taken using cryostat (Leica) at -20°C and directly mounted on glass 

slides (Fisher Scientific). Lumbar tissue section was blocked in PBS containing 5% normal 

donkey serum (Sigma) and 0.25% Triton-X for 1.5 hours. Primary antibody solution 

containing mouse anti-SMI32 (Covance SMI-32P-100) and goat anti-Islet-1 (R&D AF1387) 

were incubated overnight at 4°C. Donkey anti-mouse Alexa-flour 488 and donkey anti-goat 
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594 secondary antibodies (Life Technologies A21202 and A21289) were incubate for one 

hour at room temperature. Samples were mounted in Fluoromount-G (SouthernBiotech) and 

acquired at 10x using automated stitching on a Leica DM 6000 microscope. iMNs were 

fixed in 4% paraformaldehyde, rinsed with PBS, and blocked in 5% donkey serum and 0.2% 

Triton-X. Primary antibody solution containing goat anti-ChAT (Millipore AB144P) and 

mouse anti-SMI32 (Covance SMI-32P-100) were incubated, rinsed in PBS, and incubated in 

species-specific Alexa-fluor secondary antibodies. The immunostaining shown in Fig. 1a 

was observed in all iMN lines 00i, 14i, and 83i, which were derived from three individual 

patients. The immunostaining shown in Fig. 1b was observed in at least 20 sections of the 

days 52, 53, 63, and 97 fetal spinal cords.

Expression data pre-processing

Previously published mRNA microarray expression data from human fibroblasts (n = 2), 

embryonic stem cells (ESCs) (n = 2), and iPSCs (n = 3) were chosen to represent cell types 

relevant to human somatic cell reprogramming [51, 52]. To represent mature in vivo whole 

spinal cord, we obtained previously published mRNA microarray expression data from adult 

spinal cords (n = 8, age range = 23 – 53 years, median = 36.5 years) [53] and for mature in 
vivo spMNs data from laser capture micro-dissected spMNs from familial ALS and control 

patients [8, 9]. Additionally, expression data for spMN and oculomotor neurons from non-

ALS patients [54] were included. These 17 in vivo laser-captured MN specimens came from 

individuals with an age range from 40 to 80 years (median age, 63 years).

All CEL files considered for use in this study were submitted to ArrayAnalysis.org to 

inspect RNA and microarray hybridization quality, and samples that failed to meet the 

recommended standards were removed from further analysis. Affymetrix GeneChip Human 

Genome U133 Plus 2.0 Array CEL files downloaded from GEO as well as produced in this 

study were normalized together with Robust Multichip Analysis (rma) using the affy 

package in Bioconductor R. The accession number for the microarray data produced in this 

study is GEO: GSE75701. Non-informative probesets were then filtered out using the pvac 

package in R [55]. This is an unbiased, intuitive method of filtering that is more objective 

than setting an arbitrary probeset fluorescence intensity cut-off that penalizes lowly 

expressed transcripts that are nonetheless important. A probeset can be considered non-

informative due to being lowly expressed. In addition, a highly expressed probeset can also 

be considered non-informative if the probes constituting the probeset are highly discordant. 

“As all probes in a probeset are designed to target the same transcript or a transcript cluster, 

these probes should largely perform concordantly when gene expression is measured.” [55]. 

Probeset discordance may arise due to the post mortem collection of RNA from human 

tissue, where heat or exonuclease activity can degrade RNA at either the 5′ or 3′ ends of 

the transcript. Inclusion of these probes would adversely affect the interpretation of PCA, 

thereby justifying a method to remove these probesets. pvac is the proportion of variation 

accounted for by the first principal component. It measures consistency among probes 

belonging to the same probeset. The higher the pvac score, the more concordance is 

observed among probes within a probeset. The pvac package in R generates an empirical 

distribution of pvac score for all probesets in an Affymetrix expression set. It also generates 

an empirical distribution of pvac scores for all probesets called absent by the MAS5 
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command on the affy package. These probesets are postulated to have low concordance 

among their probes, therefore their distribution of pvac scores serves as the threshold for 

filtering concordant and informative probesets. The application of pvac filtering on our data 

set serves two purposes. It can remove probesets that are highly expressed but discordant, 

ruling out inaccurately quantified transcripts that have possibly been degraded in post 

mortem samples. It can also remove lowly expressed probesets that have a comparable 

degree of discordance as those probesets deemed to be absent by the MAS5 algorithm. 

Conversely, lowly expressed probesets can also be retained if their probes have a sufficiently 

high pvac score. These probesets may have otherwise been discarded if an arbitrary intensity 

threshold was applied to the expression set.

Filtered probesets were then annotated to their HGNC symbol using the Affymetrix 

annotation file for the GeneChip Human Genome U133 Plus 2.0 Array Release 35, 

summarized to the gene level by taking the probeset with the maximum expression value to 

represent the maximal transcriptional activity associated with that gene, and the resulting 

10,605 gene expression values were quantile normalized on the linear scale using the 

normalize.quantiles function in the preprocessCore package. The processed Affymetrix 

Human Genome U133 Plus 2.0 Array expression values for 10,605 genes are listed in 

Supplementary Table 2a. For RNAseq data from mtSOD1 and control iMNs [20], 

normalized counts for each sample as they were provided through GEO accession series 

GSE54409 were compiled into an expression table for 14,422 Ensembl identifiers, re-

annotated to HGNC symbols based on gene symbols selected through Ensembl BioMart, 

and summarized to the gene level by taking the transcripts with the maximum expression 

value to represent the maximal transcriptional activity associated with each gene. This list of 

genes was intersected with the list of 10,605 genes used for the mtSOD1 and control spMN 

samples [9] to produce the expression table for 8,830 genes listed in Supplementary Table 4.

For the sALS data set [21], CEL files downloaded from GEO accession series GSE18920 

and normalized with Robust Multichip Analysis (rma) using the oligo package in 

Bioconductor R with the pd.huex.1.0.st.v2 array library. Expression values for transcript 

clusters were re-annotated to Affymetrix Human Genome U133 Plus 2.0 Array probesets, 

summarized to the gene level by taking the probeset with the maximum expression value to 

represent the maximal transcriptional activity associated with that gene, and the resulting 

gene expression values were quantile normalized on the linear scale using the 

preprocessCore package. This produced the expression table for 15,614 genes listed in 

Supplementary Table 5a. Power analysis was not calculated prior to determine a justified 

sample size. Composite data sets were created to compare as many fetal and adult spinal 

tissues as possible, limited by available data generated on a common microarray platform to 

minimize batch effects. For network modeling using WGCNA, data sets with similar ratios 

of sample types, such as pluripotent, fetal, and adult cells or control to sporadic ALS tissue 

were composed in order to provide equal representation of the relevant cellular states. There 

was no randomization of the data assigned to classes, and there was no blinding when 

performing data collection and analysis of the experiments. For analysis comparing mtSOD1 
to control spMNs in Fig. 4a – c, three of the five control spMNs were selected for analysis 

based on the highest Pearson correlation among all five samples to match the sample size of 

mtSOD1 spMNs (n = 3).
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Gene expression analysis

Pearson correlations, statistical tests, and multiple testing corrections were performed in R. 

Unsupervised hierarchical clustering was performed in Cluster 3.0 and heat maps were 

visualized using Java Treeview. Principal component analysis (PCA) was performed in 

Cluster 3.0 or R. The signed values for principal component coordinates of samples and 

gene loadings were reversed as necessary to maintain consistency across analyses. PCA 

plots, as well a scatter, density, and box plots were visualized in R with the basic R plotting 

tools. To generate univariate linear models, the lm function was used in R. Principal 

component coordinates, or log2 transformed principal component coordinates were used as 

the dependent variable in order to satisfy the assumption of normally distributed 

standardized residuals. Sample traits were used as independent variables. P-values 

determined from the F-statistic were Bonferroni-corrected based on the number of principal 

components tested against the number of sample traits. Venn and Chow-Ruskey diagrams 

were generated using the Vennerable package in R. Gene Set Enrichment Analysis (GSEA) 

[12] was performed on pre-ranked lists generated using PCA gene loadings with 1,000 

permutations of the gene sets to generate a null distribution. Gene ontology (GO) enrichment 

was performed using DAVID, and genes represented on the Affymetrix GeneChip Human 

Genome U133 Plus 2.0 Array (Supplementary Table 2d) or Affymetrix Human Exon 1.0 ST 

Array (Supplementary Table 5e) were used as background. Adjusted P-value or FDR q-value 

thresholds for enriched gene sets and GO terms are indicated for each figure in their 

respective legends.

WGCNA was performed using its package in R [15]. The two fibroblast samples as well as 

the HB9::GFP negative sample were removed before network building. To create networks 

and modules from gene expression data sets, a similarity matrix is calculated for all pairwise 

genes xi and xj using Pearson's correlation and then transformed into an adjacency matrix 

using a signed network power function, aij = (0.5 +0.5cor(xixj))^β. The resulting 

relationships between each pairwise set of genes are known as their connection strength. 

This connection strength can be increased if two genes have a similar profile of connection 

strengths with all other genes, or it can be decreased if the two genes have a very dissimilar 

profile of connection strengths with all other genes. This is regarded as their topological 

overlap measure (TOM). Genes are then hierarchically clustered using average linkage with 

their TOM distances, and the resulting dendrogram is used to classify genes into modules 

(low hanging branches on the dendrogram) by specifying the branch height to cut as well as 

the minimal number of genes to include into a module. Key parameters used for both the 

Affymetrix GeneChip Human Genome U133 Plus 2.0 Array (iMN) and Human Exon 1.0 ST 

Array (sALS) expression data sets were as follows: 30 and 21, respectively, were chosen as 

the soft threshold powers (β) to transform each of the similarity matrices into adjacency 

matrices, yielding networks with scale-free topology model fits that were greater than 0.8, a 

value satisfying the proposed scale-free topology criterion [56]. The one step network 

construction and module detection command blockwiseModules was used, with power = 30 

or 21, maxBlockSize = 10,606 (iMN data set) or 15,615 (sALS data set), deepSplit = 3, 

pamStage = FALSE, TOMType = “signed”, networkType = “signed”, minModuleSize = 30 

(this sets the minimum number of genes needed to form a module to 30 genes), 

reassignThreshold = 0, mergeCutHeight = 0, numericLabels = TRUE, pamRespectsDendro 
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= FALSE, saveTOMs = TRUE, saveTOMFileBase = “mnTOM”, and verbose = 3. In the 

data set excluding the familial ALS spMNs, 10,605 genes were used for WGCNA, the soft 

threshold power was set to 30, and the mergeCutHeight was set to 2.5. This produced the 

results shown in Supplementary Fig. 2a. The eigengene expression of the resulting modules, 

which is the first principal component of all expression values of genes assigned to that 

module, were then correlated to the samples traits or principal component coordinates using 

Pearson's method, the P-values of each correlation were determined based on the degrees of 

freedom for each test, (sample size minus 2), and P-values were Bonferroni-corrected based 

on the number of modules tested (55 for the iMN data set, 52 for the sALS data set, and 15 

for the iMN data set lacking familial ALS spMNs). The gene module assignments and 

correlations to sample traits are listed in Supplementary Tables 2c (iMN) and 5c (sALS). 

Module-trait correlations with Bonferroni-corrected P-values < 0.01 were called significant 

and kept for GO term enrichment analysis through DAVID shown in Supplementary Tables 

2d (iMN) and 5e (sALS). Non-linear associations between a) module eigengenes and sample 

traits or b) principal component coordinates and sample traits were tested using 1) 

Spearman's method for age and post mortem interval, 2) the Kruskal-Wallis test for the 

categorical variables tissue type, sex, study, disease status, site of ALS onset, and sample 

processing, and 3) Cox-regression for ALS disease duration. These tests (subjected to 

multiple testing corrections) revealed no significant associations that were not shown to be 

significant using linear models. One exception was that by Spearman's but not Pearson's 

correlation, the paleturquoise module anti-correlates with age. This observation did not 

impact the main interpretations, therefore we based our discussions on results from the 

linear correlations.

We note that the gene sets and pathways enriched by using principal component gene 

loadings and GSEA serve as confirmatory indicators of sensible pathways describing the 

differences between samples, while the pathways enriched by using DAVID on modules 

serve as more discovery and hypothesis generators. WGCNA is more sensitive than PCA, 

because WGCNA accounts for subtler, but consistent gene-to-gene co-expression 

relationships that need not have larger gene loadings per principal component to be detected. 

These larger gene loadings are rather rewarded in GSEA at the cost of detecting significantly 

correlated gene networks with lower gene loadings in embryonic spMN development or 

maturation that nonetheless may also be physiologically important.

To identify the 20 key marker genes, fibroblasts were removed from the iMN data set, and 

PCA was applied to the resulting “training data set” of 10,605 genes in 41 samples to 

produce 41 principal components. We considered three properties of each gene to select for 

the most effective markers of spMN maturation and embryonic development. These 

properties were 1) gene significance, 2) intramodule membership, and 3) preferential gene 

loading. As an example, HOXB8 has a gene significance value of 0.78 along embryonic 

spMN development (PC3). However, the gene with the highest gene significance along 

embryonic spMN development is CXXC4 (0.92). Among all the genes classified into the 

category PC3pos, CXXC4 has the highest gene significance score (0.92/0.92 = 1.00), and 

HOXB8 has a gene significance score of 0.78/0.92 = 0.85. A gene with high intramodule 

membership best represents the expression of all genes within the module to which it is 

assigned. HOXB8 belongs to the paleturquoise module and has an intramodule membership 
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of 0.94. However, CAMK2N1, which belongs to the darkolivegreen module, has an 

intramodule membership of 0.97, which is the highest intramodule membership value 

among all the genes classified into the category PC3pos. Therefore, HOXB8 has an 

intramodule membership score of 0.94/0.97 = 0.97. Among all 10,605 genes in the iMN data 

set, HOXB8 has the highest gene loading along PC3 (0.06). However, HOXB8 can just as 

well have high gene loadings in the other 40 principal components. Therefore to quantify to 

what extent HOXB8 preferentially contributes to PC3, the average gene loading for HOXB8 
in the other 40 principal components is subtracted from its gene loading in PC3. Before 

performing this operation, the gene loadings of HOXB8 in all principal components were 

squared to convert them into positive values. These values needed to be scaled by the 

percentage contribution of each principal component to the total variance. Dividing each 

eigenvalue by the sum of all 41 eigenvalues and multiplying by 100 produced the percentage 

contribution of each eigenvalue to the total variance, and the squared gene loading for each 

component was multiplied by this percentage contribution. Because principal components 

35, 36, etc. have lower eigenvalues, a large gene loading for HOXB8 in these components 

are less detrimental to the preferential gene loading score. As observed in Supplementary 

Table 2i, HOXB8 has the highest preferential PC3pos gene loading score, because it has 1) 

the highest gene loading in PC3, and 2) it has relatively low gene loadings in all other 

principal components. Normalizing the scores by the maximum value in each category for 

each of the gene properties evenly weights their contribution in determining the best marker 

genes for each of the four categories PC1pos, PC1neg, PC3pos, and PC3neg. The total gene 

scores were summed from all three properties and ranked from largest to smallest. These 

values are listed in Supplementary Tables 2f – i. The ROCR package was used to calculate 

and plot the Receiver Operator Characteristics and Area Under the Curve analyses. 

Predictions were based on correct classification of pluripotent stem cells, fetal-like cells, and 

adult spinal cord cells. Tests were performed using either 1) the Pearson correlation between 

the expression values in the test data set and the median expression values among those cell 

types in the training data set, or 2) the negative threshold below PC1 coordinate for 

pluripotent stem cells, positive threshold above PC1 coordinate for adult spinal cord cells, 

and positive threshold above PC7 coordinate (6,640 genes) or PC2 coordinate (20 genes) for 

fetal-like cells. PC coordinates were generated by performing PCA with 6,640 or 20 genes 

on all samples from both the training and test data sets, but the prediction table used to 

generate the ROC curve and AUC values are without the training data set.

Hypergeometric tests for module enrichment were performed using custom scripts applying 

the dhyper function in R, and the resulting hypergeometric P-values were corrected with the 

Benjamini-Hochberg method. For ClinVar enrichment in the iMN modules, 22,608 genes 

represented on the Affymetrix GeneChip Human Genome U133 Plus 2.0 Array were used as 

the background number of genes. For iMN module enrichment in the sALS modules, 21,279 

genes represented on both the Affymetrix GeneChip Human Genome U133 Plus 2.0 and 

Human Exon 1.0 ST Arrays were used as the background number of genes.

Module preservation was performed using the WGCNA package in R [22]. 8,715 

overlapping genes were represented in both the iMN and sALS expression data sets and 

were thus used in the preservation analysis. The expression values for these 8,715 genes 

were loaded as two data tables into one multiExpr object: one data table of expression values 
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from the iMN data set, and the other data table of expression values from the sALS data set. 

Two lists of module color assignments were also loaded into a multiColor object: one listing 

the module color assignments for the 8,715 genes when WGCNA was performed using 

10,605 genes in the iMN data set, and the other listing the module color assignment for the 

8,715 genes when WGCNA was performed using 15,614 genes in the sALS data set. The 

command modulePreservation was called on the multiExpr and multiColor objects, first by 

using the iMN data set as the reference and the sALS data set as the test, and then vice versa. 

200 permutations were used to randomly assign genes to module colors in the test data. This 

generates a distribution of preservation statistics under the null hypothesis that no modules 

are preserved across the reference and test data sets. Z-statistics are defined for preservation 

statistic such as module density and module connectivity. The Z-summary summarizes all 

individual Z-statistics. Since Z-summary is heavily influenced by module size, the median 

rank measure for each module is more appropriate when comparing the relative preservation 

among differently sized modules.

Cytoscape 3.0 was used to visualize network topology for each of the four classes of human 

networks depicted in Figs. 6f – 6i. For each class, the 99th percentile of edge weights were 

filtered followed by filtering for source nodes with at least 30 edges with target nodes. Edge 

and node attributes, as well as graphical layout constraints are described in the figure 

legends.

Data availability

The data that support the findings of this study are available in the Supplementary Figures, 

Supplementary Tables, and Statistics Reporting Checklist. The microarray data generated in 

this study are available at the Gene Expression Omnibus under the accession code 

GSE75701. The programming scripts written for the analysis performed in this study are 

compiled into a text document and available https://github.com/ritchieho/NN-

RS55118B_R_scripts.git.

A Supplementary Methods Checklist is available.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
iPSC-derived MNs resemble fetal rather than adult MNs. (a) Immunostaining of iMNs used 

in expression profiling. ChAT (red) and SMI-32 (green) positive cells indicate the presence 

of MNs differentiated from iPSCs. Nuclear DAPI stains are shown in blue. n = 3 

independent experiments and differentiation efficiency is quantified by ChAT- and SMI-32-

double positive motor neurons. Scale bar = 4.75 μm. (b) Immunofluorescence staining of a 

63-day-old fetal spinal cord. Inset depicts ISL1 (red) and SMI-32 (green) positive cells in 

the motor horn with ventrally projecting processes, indicating the presence of MNs at this 

developmental stage. Nuclear DAPI stains are shown in blue. Scale bars = 200 μm. (c) 

Unsupervised hierarchical clustering of 10,605 mRNA transcripts in n = 43 samples. 

Heatmap indicates Pearson's correlation between pairwise sample comparisons and 

dendrogram indicates average linkage distance between samples. The color legend for tissue 
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types is indicated to the left and refers to d as well. (d) Principal component analysis of 

10,605 mRNA transcripts in n = 43 samples. Sample coordinates along Principal 

components (PC) 1 and 3 are shown. The percentages of total variance are 14.61% and 

7.01% for PC1 and PC3, respectively. Sample colors refer to c. Arrows depict the 

progression of fibroblasts (magenta) reprogrammed to iPSCs (red), the subsequent 

differentiation of iPSCs into either HB9::GFP negative cells (yellow) or HB9::GFP positive 

MNs (green), which project towards fetal spinal cords (cyan). Arrows also depict the 

progression of fetal spinal cords towards adult spinal tissues (blue and black). The days post 

conception of fetal spinal cord donors are indicated next to the cyan data points. (e) Gene set 

enrichment analysis of ranked gene loadings from PC1 and PC3 for gene ontology (GO) 

terms. “Positive” and “Negative” categories indicate GO terms enriched among genes whose 

loadings contribute most to the respective positive or negative direction of each principal 

component. Enriched GO terms for each category are listed along with family-wise error 

rate (FWER) corrected P-values. Enrichment plots are shown for bolded GO terms. For 

additional information, see Supplementary Fig. 1 (for all PCs and linear model statistics), 

Supplementary Tables 1a (for sample meta data), 2a (for linear expression values), and 2b 
(for full list of significantly enriched gene sets and P-values).
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Figure 2. 
Network analysis resolves co-expression modules. (a) WGCNA clustered 10,605 genes 

across pluripotent cells, iMNs, fetal spinal tissues, and adult spinal tissues based on similar 

network topology (n = 40 samples). Height metric on dendrogram indicates topological 

overlap (TO) distance between genes. A dynamic tree-cutting algorithm grouped tightly 

networked genes, illustrated as low hanging branches, into 55 modules represented by 

arbitrary colors directly below the branches. Genes falling onto the predominant light grey 

color are not classified into any module. (b) Upper and middle panel: Heatmap indicates 

Ho et al. Page 25

Nat Neurosci. Author manuscript; available in PMC 2017 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Pearson's correlation of module eigengenes with 5 sample traits. n = number of samples for 

which there is data for the indicated sample trait, and thus used in the correlation. Outlined 

panels indicate correlations with a Bonferroni-corrected P-value < 0.01, and these modules 

were kept for subsequent GO analysis. Lower panel: Gene variants associated with diseases 

in the ClinVar database were tested against each of the 55 modules for enrichment. n = 

number of genes with variants associated with the indicated disease, represented on the 

human microarray platform, and thus used in the enrichment analysis. Green heatmap 

indicates the Benjamini-Hochberg corrected negative log10 P-value from each 

hypergeometric test. Corrected P-values < 0.05 are called significant and outlined in black. 

This data is also shown in Fig. 5b. (c) For each module eigengene that significantly 

correlates (Positive) or anti-correlates (Negative) with age, PC1, or PC3 (Bonferroni-

corrected P-value < 0.01), the module eigengene expression values are graphed in a scatter 

plot against either sample age or PC coordinate. Locally weighted scatterplot smoothing 

lines are graphed for each module. (d) Chow-Ruskey diagram illustrating the number of 

overlapping and distinct GO terms (Bonferroni-corrected P-value < 0.05) enriched in 

modules identified as significantly correlated or anti-correlated to age (AGEpos or AGEneg, 

respectively) or spMN maturation (PC1pos or PC1neg, respectively). Representative 

pathways are listed in grey boxes extending from diagram, along with the lowest Bonferroni-

corrected P-values across all modules. For additional information, see Supplementary Fig. 2 

(for additional WGCNA and Chow-Ruskey diagrams), Supplementary Tables 2a (for linear 

expression values), 2c (for module assignments and properties), 2d, 2e (for gene set 

enrichments and P-values), and 2j (for module-trait correlations, P-values, and Clinvar 

enrichment P-values).
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Figure 3. 
Principal component and network analyses reveal key spMN maturation and embryonic 

development markers. (a) Gene loadings for 20 genes selected to best represent spMN 

maturation and embryonic spMN development. Colored arrows and gene labels depict gene 

loadings and module assignments for the 20 genes along PC1 and PC3. Open grey circles 

represent gene loadings for 10,585 genes not selected for the panel. PCA was performed on 

n = 43 samples depicted in Fig. 1d. (b) Principal component analysis performed on 6,640 

quantile normalized gene expression values across 120 samples. Samples are plotted by their 
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coordinates along PC1 and PC7. Sample legend is shown on the right. Colors of data points 

indicate similar sample types, and shapes of data points indicate the study from which the 

data were obtained. Microarray platforms are also indicated. (c) As in b, except PCA was 

performed using 20 genes depicted in a. Samples are plotted by their coordinates along PC1 

and PC2. Sample legend is the same as for b. (d) Receiver-operator characteristic analysis 

performed on four methods classifying n = 77 samples in the validation data set as 

pluripotent stem cells, fetal-like cells, or adult spinal cord cells. Classifications were based 

on sample correlation to the median expression values of target cell types in the training data 

set using 6,640 genes (red) or 20 genes (green) or based on sample coordinates along the 

spMN maturation or embryonic development principal components using 6,640 genes 

(black) or 20 genes (blue). The area under the curve is shown next to each like-colored 

curve, and summarizes the overall performance of each classification method. For additional 

information, see Supplementary Fig. 3 (validation data), Supplementary Tables 1a (for 

sample meta data), 2c (for module assignments and properties), 2f – i (for gene scoring 

properties), 3a (for qPCR primer sequences), and 3b (for normalized linear expression 

values used in validation analyses).
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Figure 4. 
Gene expression networks are distinctively affected by familial ALS in spMNs and iMNs. 

Scatter and density plots depicting expression levels and mtSOD1-induced fold changes of 

age-, spMN maturation-, or embryonic spMN development-associated module genes as they 

were defined by WGCNA performed on the expression data set lacking ALS spMNs 

(Supplementary Fig. 2a). This was done to prevent modules from being defined by mtSOD1-

induced gene expression changes in spMNs. Grey data points indicate no membership in 

module categories, red data points indicate membership in correlated modules, and blue data 

points indicate membership in anti-correlated modules. Grey data points are plotted behind 

red and blue data points in all panels. Red data points are plotted in front of blue data points 

in a and b. Blue data points are plotted in front of red data points in c – f. 8,830 overlapping 

genes represented in both spMN and iMN data sets are shown in each plot. X-axis indicates 

the log2 average RNA expression values among all mtSOD1 and control (CTRL) samples. 

Y-axis indicates the log10 fold change in average RNA expression when comparing mtSOD1 
to control samples, and the scale has cut off some outlier data points in order to visualize 

distribution shifts. The density plots account for all data points in the expression set, and the 
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straight lines mark the median value of each distribution. Asterisks indicate the 

Kolmogorov-Smirnov two-sided P-value for like-colored categories tested against the grey 

distribution, and its location indicates the direction of the shifted distributions. (a – c) 

mtSOD1 (n = 3) versus control (n = 3) spMNs [9]. (d – f) mtSOD1 (n = 2) versus control 

(n= 3) iMNs [20]. For additional information, see Supplementary Tables 2c (for module 

assignments and properties), 4a (for linear expression values and module assignments), and 

4b (for Kolmogorov-Smirnov test statistics and P-values).
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Figure 5. 
spMN maturation and age modules are dysregulated in sporadic ALS. (a) Gene set 

enrichment analysis of 15,614 ranked gene loadings from PC1 for pathways and GO terms. 

“Positive” and “Negative” categories indicate gene sets enriched among genes whose 

loadings contribute most to the respective positive or negative direction of the sALS 

component (PC1 in a PCA performed on n = 22 samples). Enriched gene sets for each 

category are listed along with family-wise error rate (FWER) corrected P-values. 

Enrichment plots are shown for bolded gene sets. (b) For each of the 52 sALS modules, a 
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hypergeometric test was performed to detect enrichment for genes from each of the 55 iMN 

modules. Upper panel: iMN modules are displayed along with the sample traits with which 

they are significantly associated, as identified and also shown in Fig. 2b. Enrichment for 

ClinVar pathogenic variants in motor neuron disease or ALS is also shown. The Z-summary 

value for each iMN module measures the extent of module preservation in the sALS data 

set. For the likelihood of module preservation, Z-summary > 10 indicates strong evidence; 

10 > Z-summary > 2 indicates moderate to weak evidence, and 2 > Z-summary indicates no 

evidence. Bar graphs above indicate the number of genes assigned to each iMN module that 

were also represented by probe sets on the Affymetrix Human Exon 1.0 ST Array. Left 

panel: sALS modules are displayed along with the sample traits with which they are 

significantly correlated or anti-correlated, as identified in Supplementary Fig. 4d. The Z-

summary value for each sALS module measures the extent of module preservation in the 

iMN data set. Bar graphs to the left indicate the number of genes assigned to each sALS 

module that were also represented by probe sets on the Affymetrix GeneChip Human 

Genome U133 Plus 2.0 Array. A matrix of P-values from hypergeometric tests performed 

for each iMN and sALS module overlap were corrected by the Benjamini-Hochberg method, 

and subsequent P-values < 0.05 are marked as a black square panels and illustrated in the 

matrix diagram. For additional information, see Supplementary Figs. 4 (for all PCs and 

linear model statistics, WGCNA), 5 (for module preservation statistics and intramodule 

membership of genetic variants), 6 (for Chow-Ruskey diagrams), Supplementary Tables 2c 

(for iMN module assignments and properties), 5a (for linear expression values of sALS data 

set), 5c (for sALS module assignments and properties), 5d (for module preservation 

statistics), 5b, 5e, 5f (for full lists of significantly enriched gene sets and P-values), and 5g 
(for hypergeometric test P-values).
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Figure 6. 
Genes associated with spMN maturation, aging, and sALS tend to be hub genes. (a) Overlap 

analysis of genes that are represented in WGCNA modules independently built in either the 

iMN expression data set or in the sALS expression data set. Modules built from the iMN 

data set are classified as Age positive or negative based on whether their module eigengene 

significantly correlates or anti-correlates, respectively, with the age of tissue donor from the 

iMN data set. Modules built from the iMN data set are classified as PC1 positive or negative 

based on whether their module eigengene significantly correlates or anti-correlates, 
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respectively, with PC1 in the PCA performed on the iMN data set. To be included into the 

Age and PC1 positive group, genes must be classified as either Age positive, PC1 positive, 

or both. Additionally, their modules must have significant overlap, based on Fig. 5b, with at 

least one sALS module that correlates with the sALS component. These criteria are likewise 

for the Age and PC1 negative group which overlaps with sALS positive modules. Modules 

built from the sALS data set are similarly classified based on their relationship to the PCA 

performed on the sALS data set. Venn diagrams indicate the number of genes assigned to 

each class. (b) Boxplots of gene significance for the overlapping and non-overlapping genes 

from the comparison depicted in a, left. Asterisks indicate P-values determined by the 

Wilcoxon rank-sum test. For the “Age pos only” and “Age pos overlap” genes, the y-axis 

indicates gene significance values against age in the iMN expression data set. For the “PC1 

pos only” and “PC1 pos overlap” genes, the y-axis indicates gene significance values against 

PC1 in the iMN expression data set. For the “sALS neg only” and “sALS neg overlap” 

genes, the y-axis indicates gene significance values against PC1 in the sALS expression data 

set. In each boxplot, the center line is the median, the lower and upper limits of the box are 

respectively the first and third quartile, and the lower and upper whiskers extend to either the 

respective minimum or maximum values of the distribution, or up to 1.5 times the 

interquartile range. Outliers are plotted as open circles. (c) Similar presentation as in b, 

except applied to genes in a, right. For the “Age neg only” and “Age neg overlap” genes, the 

y-axis indicates gene significance values against age in the iMN expression data set. For the 

“PC1 neg only” and “PC1 neg overlap” genes, the y-axis indicates gene significance values 

against PC1 in the iMN expression data set. For the “sALS pos only” and “sALS pos 

overlap” genes, the y-axis indicates gene significance values against PC1 in the sALS 

expression data set. (d) Boxplots of intramodule membership for the genes in a. (e) Boxplots 

of intermodule membership for the genes in a. (f) Cytoscape network maps for iMN gene 

modules significantly correlated to age and spMN maturation (PC1) in the iMN expression 

data set. The top 1% of gene-to-gene connections is shown (627 nodes and 3,197 edges). 

Node colors indicate module assignments. Circular nodes represent genes correlated with 

age and spMN maturation in the iMN expression data set, and also anti-correlated with the 

sALS component in the sALS expression data set. Triangular nodes represent genes detected 

in the iMN modules that correlate with age and spMN maturation, but are not detected in 

sALS modules that anti-correlate with the sALS component. The relative sizes of all nodes 

reflect their gene significance towards age in the iMN expression data set. The 99th 

percentile of edge weights were filtered for display and plotted using the prefuse force 

layout method. (g) As in f, except for sALS gene modules significantly anti-correlated to the 

sALS component in the sALS expression data set (323 nodes and 2,886 edges). Larger 

nodes in this instance have gene significance values closer to -1 and are therefore more anti-

correlated to the sALS component. (h) As in f, except for iMN gene modules significantly 

anti-correlated to age and spMN maturation (PC1) in the iMN expression data set (669 

nodes and 6,175 edges). Larger nodes have gene significance values closer to -1 and are 

therefore more anti-correlated to age. Since there are three distinct, contiguous network 

clusters with no edges connecting them, they were rotated and repositioned relative to each 

other so that node shapes are more visible. Therefore, node-to-node spatial relationships 

within, but not across, contiguous network clusters are accurate. Edges that intersect with 

dashed lines were shortened and repositioned in order to scale the diagram for visibility. No 
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other modifications to the layout were made. (i) As in g, except for sALS gene modules 

significantly correlated to the sALS component in the sALS expression data set (312 nodes 

and 878 edges). Larger nodes have greater gene significance towards the sALS component. 

For additional information, see Supplementary Tables 2c (for iMN module assignments and 

properties), 2d (for full lists of significantly enriched GO terms and P-values), 2e (for 

comparison of gene set enrichments), 5c (for sALS module assignments and properties), 5e 
(for full lists of significantly enriched GO terms and P-values), 5f (for comparison of gene 

set enrichments), and 6 (for Wilcoxon rank-sum test statistics).
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