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Abstract

Background: Most eukaryotic genes are interrupted by spliceosomal introns. The evolution of exon-intron structure
remains mysterious despite rapid advance in genome sequencing technique. In this work, a novel approach is
taken based on the assumptions that the evolution of exon-intron structure is a stochastic process, and that the
characteristics of this process can be understood by examining its historical outcome, the present-day size
distribution of internal translated exons (exon). Through the combination of simulation and modeling the size
distribution of exons in different species, we propose a general random fragmentation process (GRFP) to
characterize the evolution dynamics of exon-intron structure. This model accurately predicts the probability that an
exon will be split by a new intron and the distribution of novel insertions along the length of the exon.

Results: As the first observation from this model, we show that the chance for an exon to obtain an intron is
proportional to its size to the 3rd power. We also show that such size dependence is nearly constant across gene,
with the exception of the exons adjacent to the 50 UTR. As the second conclusion from the model, we show that
intron insertion loci follow a normal distribution with a mean of 0.5 (center of the exon) and a standard deviation
of 0.11. Finally, we show that intron insertions within a gene are independent of each other for vertebrates, but are
more negatively correlated for non-vertebrate. We use simulation to demonstrate that the negative correlation
might result from significant intron loss during evolution, which could be explained by selection against multi-
intron genes in these organisms.

Conclusions: The GRFP model suggests that intron gain is dynamic with a higher chance for longer exons; introns
are inserted into exons randomly with the highest probability at the center of the exon. GRFP estimates that there
are 78 introns in every 10 kb coding sequences for vertebrate genomes, agreeing with empirical observations.
GRFP also estimates that there are significant intron losses in the evolution of non-vertebrate genomes, with
extreme cases of around 57% intron loss in Drosophila melanogaster, 28% in Caenorhabditis elegans, and 24% in
Oryza sativa.
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Background
Most eukaryotic genes contain spliceosomal introns,
which are removed from mRNA after transcription by
the RNA splicing apparatus. The biological origins of
introns are uncertain. Since the discovery of introns,
there has been significant debate as to whether introns
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in modern-day organisms were inherited from a com-
mon, ancient ancestor, the intron-early hypothesis [1-3],
or whether they appeared in genes more recently in the
evolutionary process, the intron-late hypothesis [4,5], or
indeed whether they result from a mixed model [6,7].
The mixed model suggests that most introns were
gained very early in the evolution of eukaryotic genes,
followed by intron loss/gain during the course of
eukaryotic diversification. The details of such processes,
however, remain elusive.
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One way to understand the process is to examine the
size distribution of internal translated exons, referring
to exons that are fully translated and referred to as
itexon in [8]. However, to avoid introducing an unfamil-
iar term, we will simply refer to itexons as “exon” within
this communication unless specified. Although the dis-
tribution of exons is just a snapshot of the present day
world, fitting it to a model based on well characterized
mathematical functions may provide insights into the
evolution of exon-intron structure. In a previous study,
Gudlaugsdottir et al. [9] have suggested that the size
distribution of exons can be approximated with a com-
bination of Weibull [10] and exponential distributions.
The Weibull distribution is a particular case of the
generalized extreme value distribution. It is widely used
in survival analysis, describing the size of particles gen-
erated by grinding, milling and crushing operations, etc.
The exponential distribution can be used to describe the
length of intervals between uniformly distributed points.
Therefore, GJudlaugsdottir et al. hypothesized that the
exponential distribution is the outcome of random
insertion of introns (intron-late). However, they then
related the Weibull distribution to the intron-early
theory without providing a stochastic model that
explains the observed distribution.
In later work, Ryabov and Gribskov [11] showed that

a combination of two lognormal distributions gives the
best fit quality to the size distribution of exons. The
lognormal distribution could result from a random
Kolmogoroff fractioning process [12], which assumes
that the chance of fragmentation is independent of exon
size. Inserting an intron into an exon is equivalent to
fragmentation (splitting) of the exon. Therefore, they
hypothesized that the process of intron insertion is
independent of exon size.
On the other hand, Tenchov and Yanev [13] demon-

strated that the Weibull distribution could result from a
uniform random fragmentation process. Here, “uniform”
means that the chance of fragmentation is linearly propor-
tional to the size of the particle (or exon). Under certain
conditions, the resulted Weibull distribution is indistin-
guishable from lognormal distribution. Hence they
concluded that the model of random fragmentation
could not be inferred based on the basis of fit quality.
Therefore, the hypothesis that intron insertion is inde-
pendent of exon size is debatable.
One assumption made in the exon size based ap-

proaches [9,11] is that introns are inserted into exon
randomly. The notion of random insertion of intron has
also been proposed based on the analysis of intron dis-
tribution in ancient paralogs [14]. Others have argued
that there exist certain favored sites for intron insertion -
the so-called proto-splice sites [4,15,16]. Unfortu-
nately, none of the size-based approaches provide
evidence to support the assumption of random intron
insertion.
In this work, we aim to revisit these competing hy-

potheses by addressing the following open questions:
Do longer exons have an increased chance of gaining a
new intron? For intron gain events, will the intron be
inserted into exon randomly or at some proto-splice
sites? Is there an intron gain/loss bias? Are intron inser-
tion events independent of each other? Is there a common
mechanism to explain intron gain/loss in different spe-
cies? In order to answer these and other related ques-
tions, we propose a General Random Fragmentation
Process (GRFP) to characterize the evolution dynamics
of exon-intron structures. The parameters of GRFP are
determined by combining simulation and analysis of
real genomic data.

Methods
GRFP model
The model of GRFP is motivated by generalizing both
Kolmogoroff fractioning process and the uniform
random fragmentation process. In GRFP, the probability
for an exon to split (gaining an intron) is assumed to be
exponentially proportional to the length of the k-th
exon (Lk) as Lk

a. Under such a generalization, the
Kolmogoroff fractioning process, in which insertion
events are independent of exon length, is a particular
case of GRFP with α = 0, while the uniform random
fragmentation process, in which insertions are linearly
proportional to exon length, is another special case with
α = 1. The generalization not only allows GRFP to
model either Kolmogoroff or uniform fragmentation
process but also allows it to model the fragmentation
process of exons (intron gain) with varying α. In the re-
sults section, we will use the empirical size distribution
of exons to determine the value of α. GRFP also assumes
that introns insert into exons randomly and independ-
ently, and these assumptions are confirmed by the
analysis of real genome data.

The model of GRFP, illustrated in Figure 1, is summa-
rized below:

1. Given a set of n exons, the opportunity for k-th exon
to acquire a new intron is proportional to its size to
the α-th power:

Ps Kð Þ ¼ Lak=
Xn
k¼1

Lak ð1Þ

2. Within k-th exon, the new intron insertion loci
follow a normal distribution:

PI xð ÞeLk � N μI ; σ Ið Þ; x∈ 0; Lkð Þ ð2Þ
3. Intron gains are independent of each other.



Figure 1 Demonstration of GRFP on splitting a long exon with initial size L0. The probability of picking which exon to split is proportional
to the length of the exon, PS(k) ~ Lk

α. The probability of picking an inserting point (xє(O, Lk)) for exon k follows a normal distribution,
PI(x) ~ Lk*N(

μ
I, σI).
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Where РЅ(K) denotes the probability for k-th exon to
obtain an intron; РI(x), probability of inserting an intron
after x-th position within k-th exon; Lk, length of the
exon k; α, dependency value; μI and σI, mean and stand-
ard deviation of the distribution of insertion loci. The
model of GRFP has three unknown parameters to be
determined, α, μI and σI.

Simulation testing
We start each simulation with a long exon. The diagram in
Figure 1 shows how the splitting of a long exon during
evolution is simulated. The diagram shows intron gains in
the following order. After inserting the first intron, ΡЅ(K|
Lk=1,2) denotes the picking probability between L1 and L2;
Assuming L1 is selected and split by a new intron; the next
exon to be split will be chosen from L3, L4 and L2
with probability ΡЅ(K|Lk=2,3,4); Assuming L2 is selected,
and so on.
For simulations, sequence of pseudorandom number is

obtained using the Mersenne Twister algorithm [17]
implemented in standard MATLAB 7.12. In this study,
all of the simulations start with one single exon. This
simplifies the simulation, but it does not imply that the
evolution of eukaryotic genes always starts with one long
exon. Under such simplification, two more parameters
are the initial size of starting exon (L0) and the number
of splitting (m). For a given species, we can estimate
them from the annotated gene sets.
We evaluate the properties of GRFP using three simula-

tion experiments. In each, we simulate a set of ordered
fragments and quantify their statistical characters given
different parameters. The three sets of quantifications
listed below are used to justify the three assumptions of
GRFP respectively for both simulated fragments and real
exons.

1. Mean and standard deviation of the size distribution
by fitting it with lognormal distribution (equation
(3)) or Weibull distribution (equation (4)):

dN ¼ N= σE
ffiffiffiffiffiffi
2π

p� �
e� 1nE�μEð Þ= ffiffiffiffiffiffi

2σE
pð Þ2�d lnE

�
ð3Þ

dN ¼ Nkzk�Ie�zk
=λ

� �
d lnE ð4Þ

Where z=E/λ, E is exon length, dN the number of

exons in a bin (bin size is 0.1 unless specified), N the
amplitudes of the peak; k shape parameter, and λ
scale parameter of the Weibull distribution; μE the
mean position, and σE the standard deviation of the
lognormal distribution. These and subsequent fittings
in this study are performed using the nonlinear
Trust-Region-Reflective curve-fitting algorithm
[18,19] implemented in MATLAB 7.12. Simulation
demonstrates that σE is primarily determined by the
choice of α (in equation (1)).

2. Mean and standard deviation of the insertion ratio
defined below:

xi ¼ Li= Li þ Liþ1ð Þ ð5Þ
Where Li and Li+1 are the length of two adjacent
fragments (exons). This is an indirect estimation of
insertion loci (x in equation (2)). Both simulation and
real genome data indicate that x follows a normal
distribution (with a standard deviation σx).
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3. Correlation between xi and xj defined by equation (6):

ρ i; jð Þ ¼
σ2xiþxj � σ2

xi
� σ2xj

2σxiσxj
ð6Þ

Where σx is estimated from fitting the histograms of
ratio x with a normal distribution. In theory, xi + xj is
still normally distributed, and the mean value is the
sum of the means. However, the variances are not
additive if xi and xj are correlated. We can estimate
the relationship between xi and xj with equation (6).

In the first experiment, we examine the relationship be-
tween GRFP parameters and the size distribution of the
simulated fragments. With fixed μI, σI, initial size of starting
exon (L0), and the number of splitting (m), one long exon is
fragmented with different choices of α. μE and σE are esti-
mated through fitting a lognormal distribution to the size
distribution of the resulted fragments. The correlation be-
tween μE, σE and α is examined. Then, with fixed μI, σI, and
α, the relationship between μE, σE and initial size of starting
exon (L0), the number of splitting (m) is examined through
similar simulations.
In the second experiment, we examine the relationship

between real σI (in equation (2)) and estimated σx (from
equation (5)). By fragmenting a long exon, we construct
a binary tree to track the splitting process. We classify
the adjacent fragments pair (the order is maintained dur-
ing fragmentation) into four groups based on whether
they have the same parent nodes, or if not same parents,
comparing their depths. The size distribution of each
group and the mixture (equation (5)) is examined. With
fixed μI, L0, m, and α, the correlation between σI and σx
is examined by simulations with different choices of σI.
Then, by coupling with empirical observations, we use
Expectation-Maximization (EM) iteration to determine
the value of α and σI.
In the third experiment, we examined the effects of in-

tron loss on the statistical characters of resulted fragments.
By introducing various percentages of intron loss after in-
tron gain, we evaluate how σE, σx, and ρ(i,j) of the resulted
fragments are changed.

Empirical data analysis
In this study, we obtained the cDNA sequences of 14
species (Homo sapiens (GRCh37.p8), Mus musculus
(GRCm38), Rattus norvegicus (RGSC3.4), Danio rerio
(Zv9), Caenorhabditis elegans (WBcel215), Drosophila
melanogaster (BDGP5), Bos taurus (UMD3.1), Pan trog-
lodytes (CHIMP2.1.4), Gallus gallus (WASHUC2), Sus
scrofa (Sscrofa10.2), Arabidopsis thaliana (TAIR10),
Oryza sativa (MSU6), Sorghum bicolor (Sorbi1), Zea
mays (AGPv2)) from Ensembl and plant Ensembl data-
base [20]. To ensure the quality of the data, we only use
the cDNA sequences of protein coding genes with both
RefSeq mRNA ID and the known status of both gene
and transcript. To examine the size distribution of
exons, we extracted the genomic positions of the exons
from cDNA sequences to compute exon sizes. We also
extracted the genomic positions of the 5′ and 3′ UTRs
and used them to identify internal translated exons.
For testing the first assumption of GRFP, we fitted

both Weibull and normal distribution to the size distri-
bution of vertebrate exons (logarithm scale). We also
grouped exons by positions for testing position bias of
intron gain/loss. For the second assumption, we fitted a
normal distribution to x (equation (5)). For the third
assumption, we computed ρ(i,j) for exon pairs at i-th
and j-th position in all protein coding genes. Finally, we
examined the differences in the parameters fitted to
vertebrate and non-vertebrate species.

Results
Empirical data analysis
Statistical counts of empirical data
Statistical counts of the extracted data are shown in
Table 1. The transcript with the longest CDS (Coding
DNA Sequence) for each gene is used for counting the
number of protein coding genes, number of splitting, and
total CDS length. In these counts, a coding gene is ex-
cluded if it does not contain any internal translated exons.
The total CDS length is the summation of the length of all
exons. The number of splitting events is the total number
of exons minus one (for reversion of splitting, a long exon
can be reconstructed by connecting all exons together).
The last two columns of Table 1 are estimated through
GRFP simulations that will be discussed later.
In this study, we ignored non-internal translated

exons considering the rate of indels (a type of mutations
affecting exon size distribution) is significantly lower in
the coding region than the non-coding region [21]. It is
true that introns can be inserted anywhere, including
non-coding exons or even another intron, but their size
distribution is confounded by the appearance of more
frequent indels.

Size distribution of exons
Figure 2 shows the histograms of exons for eight verte-
brate species. Both Weibull (solid line) and normal
(dashed line) functions provide a reasonable fit to the
histograms of exons, with the fitted parameters shown
in Table 2. Notably, in Table 2, the fitted parameters are
almost identical across species (e. g., μE and σE), which
might indicate that these vertebrate genomes have
undergone a similar stochastic process on the exon-intron
structure during evolution. For the six non-vertebrate spe-
cies, a mixture of two normal functions (dashed line) fits
the histograms well (Additional file 1: Figure S1). This



Table 1 Statistical counts of coding genes, splitting (number of exons minus one) and total CDS length (b.p.)

Number of coding genes Total CDS length (107) Number of splitting (m, 105) Estimated splitting (me, 10
5) m�me

me

H. sapiens 17275 2.443 1.827 1.901 - 3.9%

M. musculus 16319 2.276 1.705 1.768 - 2.7%

R. norvegicus 17354 2.193 1.722 1.703 1.0%

D. rerio 15068 1.932 1.462 1.501 - 2.7%

G. gallus 5416 0.655 0.537 0.509 5.4%

P. troglodytes 12508 1.694 1.295 1.316 - 1.6%

B. taurus 11948 1.413 1.142 1.099 4.0%

S. scrofa 5498 0.524 0.433 0.408 6.1%

C. elegans 17684 1.833 1.024 1.425 - 28.4%

D. melangaster 8063 1.141 0.383 0.886 - 57.1%

A. thaliana 16547 1.501 1.083 1.167 - 7.2%

O. sativa 23566 2.255 1.329 1.749 - 24.0%

S. bicolor 17769 1.445 1.041 1.123 - 7.3%

Z. mays 15887 1.320 0.987 1.025 - 3.7%

Annotation data for each species is extracted from Ensembl database. Protein coding genes are counted only if they contain at least one internal translated exon.
Total CDS length is the summation of all internal translated exon length in these genes. Number of splitting is estimated by the number of internal translated
exons minus one. Estimated splitting is determined from GRFP simulation.
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might suggest that the evolution of non-vertebrate exon-
intron structure has undergone other processes.
In order to assess whether the size distribution of verte-

brate exons is position-dependent, we grouped their exons
from all protein coding genes according to their positions
relative to 5′ UTRs/3′ UTRs. For the five well annotated
vertebrates, the standard deviations (σE) of the fitted
normal functions at each position (e.g. Additional file 1:
Figure S2 for H. sapiens) are shown in the left panel of
Figure 3. The right panel shows corresponding α values
calculated using equation (9). The mean values of these
distributions are almost constant at all positions (results
not shown). Figure 3 shows that σE is almost constant for
exons across gene body, with exceptions of the first three
exons right after 5′ UTR (see solid line), where it increases
markedly. For exons next to the 3′ UTR (in dashed line),
no similar trend is observed.
These observations suggest that the size distribution of

vertebrate exons could be properly fit with either Weibull
or normal distribution. The Weibull distribution gives a
better fit to both left and right tails (e.g., Additional file 1:
Figure S2) because the distribution is skewed to the left.
For numerical simulations, we will show that similar size
distribution of fragments will be generated based on GRFP
model.

Distribution of insertion ratio
For every gene of the selected species, we calculated the
insertion ratio x (equation (5)) for each adjacent exon
pairs Li and Li+1. Figure 4 shows the histograms of the ra-
tios for the 14 species. The histograms are fitted well with
a normal distribution, and the fitted parameters are shown
in Table 3. The fitted parameters are almost identical
across vertebrate species with μx= 0.5 and σx= 0.13. The
insertion ratio for non-vertebrates fits a normal distribu-
tion reasonably well but with much larger σx.
Another interesting observation in Figure 4 is the sharp

spike at 0.5, which suggests that there are excessive adja-
cent exons pairs with the same length. This is consistent
with the observation of tandem exon duplication [22]. Be-
cause the spikes are located right on the center, mathem-
atically such deviation has little effect on the fitting of the
histogram.
The normal function fitted in Figure 4 describes where

introns get inserted into an exon. To assess whether it is
consistent or against the hypothesis of proto-spliced sites,
we calculate the position distribution of four possible
proto-splice sites (tested in [23,24]) within human coding
sequences, and the results are shown in Additional file 1:
Figure S3. The position for each of the four sites (G|G,
AG|G, AG|GT and (C/A)AG(A/G)) is calculated by divid-
ing the distance between the intron starting site and start
codon by the length of the coding sequence. All coordi-
nates are extracted from Ensembl annotation of H. sapiens.
The symbol “|” stands for the intron position and “/” indi-
cates wo alternative states of one nucleotide site. Additional
file 1: Figure S3 shows that these proto-spliced sites are dis-
tributed nearly uniformly within CDS. If introns strongly
prefer to be inserted into these sites, the insertion ratio
should follow a uniform distribution instead of normal dis-
tribution as we observed. Therefore, the analysis here does
not favor the proto-splice site hypothesis.



Figure 2 Size distributions of vertebrate exons fitting with normal distribution. The histograms of exons are fitted with a Weibull function
(solid line) and normal function (dashed line).

Table 2 Fitted parameters for size distributions of
observed vertebrate exons

Weibull Normal

λ κ μE σE
H. sapiens 2.81 6.98 4.81 0.432

M. musculus 2.81 7.01 4.82 0.431

R. norvegicus 2.80 6.89 4.81 0.437

D. rerio 2.79 6.87 4.79 0.437

G. gallus 2.80 6.80 4.81 0.442

P. troglodytes 2.81 6.87 4.81 0.440

B. taurus 2.80 6.69 4.80 0.449

S. scrofa 2.82 6.44 4.81 0.472

The size distribution of exon (logarithmic scale) for each vertebrate species is
shown in Figure 2. Each distribution is fitted with equation (3) and (4)
separately. The normal function fitting is shown as dashed line. The Weibull
function fitting is shown as a solid line.
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Correlation between insertion ratios
The correlations calculated using equation (6) are shown
in Figure 5. For better visualization purpose, we set the
correlation between x and itself to zero (the diagonal
blocks). The color bar on the right indicates the correl-
ation value between insertion ratio and ratios with i or
j distance to it. Figure 5 shows that ρ(i, j) is signifi-
cantly negative if |i - j| = 1. While ρ(i, j) is close to zero
for vertebrates if |i - j| > 1. The negative correlation
between adjacent insertion ratio is not surprising since
the calculation uses the same exon length as dividend
(equation (5)) but with opposite signs. For example,
considering three exons in order with length p, L-p,
and q, the insertion ratios are x1 = p/(p+L-p) = p/L and
x2 = (L-p)/(L-p+q) ≈ 1-p/L if p ≈ q; Both x1 and x2 are
proportional to p but with different signs.



Figure 3 Fitted standard deviation (σE) and dependency (α) for internal exons with positions relative to 5′ UTRs (solid line) or 3′ UTRs
(dashed line). The dependency value α is calculated using equation (9).
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The key observation in Figure 5 is that nonadjacent in-
sertion ratios are nearly uncorrelated for vertebrate ge-
nomes. However, the correlation between intron insertion
ratios has quite different patterns for non-vertebrates.
Their insertion ratios are more negatively correlated with
each other than those for vertebrates, especially for
C. elegans, D. melanogaster, and O. sativa.
In summary, analysis of empirical data reveals three

significant differences between vertebrate and non-
vertebrate genomes. First, a mixture of two normal
functions gives a better fit to the size distribution of
non-vertebrate exons, instead of one normal function
for that of vertebrate exons; Second, the insertion ra-
tio of non-vertebrates also follows a normal distribu-
tion but with larger standard deviation than that
of vertebrates; Third, the insertion ratios of non-
vertebrates are more negatively correlated than that
of vertebrates.



Figure 4 Genome wide distribution of Li/(Li + Li+1). The histograms are drawn with bin size of 0.01, and fitted with a Normal function.
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Table 3 Fitted parameters for distribution of insertion
ratios from empirical data

μx σx
H. sapiens 0.501 0.132

M. musculus 0.501 0.132

R. norvegicus 0.501 0.135

D. rerio 0.501 0.132

G. gallus 0.501 0.132

P. troglodytes 0.502 0.134

B. taurus 0.502 0.136

S. scrofa 0.502 0.142

C. elegans 0.499 0.185

D. melangaster 0.502 0.215

A. thaliana 0.501 0.152

O. sativa 0.502 0.226

S. bicolor 0.501 0.157

Z. mays 0.501 0.152

The distribution of insertion ratios (equation (5)) for each species is shown in
Figure 4. Each distribution is fitted with a normal distribution (equation (3)).
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Simulation testing
Default values for L0, m, σI, and μI
As mentioned before, we start each simulation with a long
exon. Using the counts for H. sapiens (Table 1), we set the
initial exon size and number of splitting to following
values for all simulations unless specified:

L0 ¼ 2:4� 107;m ¼ 1:8� 105 ð7Þ
For the remaining unknown parameters of GRFP, α, σI,

and μI, we chose to examine α first with following values
for σI and μI:

σ I ¼ 0:11; μI ¼ 0:5 ð8Þ
These values are determined through an EM iteration

process that will be discussed in the simulation testing
section. The EM iteration uses observed values of σx and
μx for vertebrates (Table 3). The simulation described
below shows that σx overestimates but is linearly propor-
tional to σI, while μx approximates μI extremely well.

Relationship between α, L0, m and σE, μE
Using the values of L0, m, σI and μI in equations (7)
and (8), we performed three GRFP simulations with α
values of 0.3, 1 and 3. The size distributions of the
GRFP fragments are shown in Additional file 1: Figure S4.
Both the Weibull and normal functions were used for
fitting to the logarithm size distribution. Fitted pa-
rameters are shown in Table 4. Numerically the
Weibull function is unstable for fitting the histogram
when α is close to zero. Therefore, we picked α = 0.3
to mimic a random Kolmogoroff fractioning process.
α = 1 would correspond to a uniform random frag-
mentation process, and α = 3 will generate size distri-
bution similar to that of real exons for the vertebrate
genomes (in both shape and standard deviation). We
found that although the Weibull function fits the tails
of the distributions better, the fitted parameters for
Weibull are extremely sensitive to the minimum size
of the GRFP fragments. Therefore, in this study we
use σE of the fitted normal function to characterize
the peak width of the size distribution. It is worth-
while reemphasizing that both empirical and simu-
lated distributions are skewed to the left; thus both
tails of the peak are better fitted by the Weibull
distribution.
These simulations show that σE (or width of the peak)

decreases as α increases. To quantify how σE is
dependent on α, we performed three GRFP simulations
for each α value range from 0 to 4. The size distribution
of GRFP was fitted to a normal function, and the fitted
σE and μE values (mean ± 3 standard deviations) were
plotted against α in Figure 6A. For α values ranging be-
tween 2 and 4, we found that the relationship between
σE and α can be fitted with the following equation:

σE ¼ 0:54=a0:56 þ 0:14 ð9Þ

From equation (9), we estimate that α ≈ 3 gives the
observed σE ≈ 0.43 (Table 2). This suggests the chance
of intron gain is proportional to the exon length to the 3rd

power, which disagrees with the independency hypothesis
of earlier work [11].
Similarly, we performed a series of GRFP simula-

tions with different choices of L0 and m, and the re-
sults are shown in Figure 6C-F. Figure 6C and 6E
show that the estimated σE is independent of both L0
and m, while Figure 6D and 6F demonstrates that the
mean value (μE) of the resulting size distribution is
dependent on both L0 and m. From Figure 6F, we can
estimate m via the GRFP simulation given σE and L0,
using the intersection between the dashed line (μE of
H. sapiens) and the solid curve. Given that μE is ap-
proximately 4.81 across vertebrate genomes, we used
GRFP simulation to estimate the number of splitting
(me) for each species (Table 1). The percentage of in-
tron loss is estimated by comparing me with m. For
other species, the corresponding L0 in Table 1 is used
to estimate me. me and the percentages of intron loss
are calculated in the same way. Note that here we
use the same μE value of 4.8 for invertebrates al-
though the size distributions of their exons (Additional
file 1: Figure S1) are quite different (we hypothesize that
they are resulting from intron loss). These estimations
show that there are approximately 24% intron loss in O.
sativa, 28% intron loss in C. elegans, and 57% intron



Figure 5 Correlation of insertion ratios for different species. The correlation between x and itself is set to zero (the diagonal blocks). The
color bar on the right indicates the correlation value between insertion ratio and ratios with i or j distance to it.

Wang and Stein BMC Evolutionary Biology 2013, 13:57 Page 10 of 15
http://www.biomedcentral.com/1471-2148/13/57
loss in D. melanogaster, relative to what is predicted by
GRFP model based on CDS length.

m ¼ 0:0078L0 þ 84 ð10Þ

In Figure 7, we plot me (estimated number of splitting,
open circle) against CDS length and fit it with a linear
function (equation (10)). The observed number of splitting
(closed circle) events is also plotted for comparison. The
first observation from Figure 7 is that, under the GRFP
model, number of splitting is linearly proportional to CDS
length. On average, 78 splitting events will occur in an
exon with length of 10000 bps (or around 8 events per
1000 bps). The second observation is that the observed
number of splitting agrees well with the estimation from
GRFP model, with the exception of non-vertebrates,
especially O. sativa, C. elegans, and D. melanogaster.

Parameterizing GRFP via EM iteration
In the previous simulation studies, with the assumption
of known σI, we have shown that σE is dependent on α
but not on L0 and m, which suggests that the value of α
can be estimated from σE. However, simulations show
that σE is also dependent on σI. To derive the values of α
and σI simultaneously without assuming knowing any
one of them, here we determine their values through



Table 4 Fitted parameters for size distribution of
simulated exons

Weibull Normal

λ κ μE σE
α = 0.3 4.58 3.95 4.24 1.216

α = 1 2.88 4.42 4.72 0.688

α = 3 2.93 7.25 4.85 0.430

The size distribution of simulated exon (logarithmic scale) for each choice of
dependency value (α) is shown in Additional file 1: Figure S4. Each distribution
is fitted with equation (3) and (4) separately. The normal function fitting is
shown as dashed line. The Weibull function fitting is shown as a solid line.
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EM iterations, by combining simulations with empiric-
ally observed σI (Table 2), μx, and σx (Table 3) for verte-
brate genomes.
Before performing EM iteration, we need to quantify how

σI is related to σx.We performed a series of GRFP simulations
with σI ranging from 0.06 to 0.18 and α = 3. For each simula-
tion, we calculate the insertion ratio (equation (5)) from the
resulted fragments, and estimated σx from fitting a normal
function to the histogram of insertion ratios. σx is plotted
against given σI in Additional file 1: Figure S5A. The plot
shows that there is a linear relationship between the two.
Figure 6 Relationship between GRFP parameters and σE, μE. (A) Plot o
of L0); (E) Plot of σE and (F) μE as a function of m. 3 simulations are perform
in vertical bars. The dashed lines show where σE and μE of H. sapiens are (T
From this relationship, we estimate that real σI is closer to
0.11 than the 0.13 estimated from Figure 4. To see the over
estimation of σI, we show the simulation process and results
in Additional file 1: Figure S6 and Additional file 1: Figure S7.
By classifying adjacent exon pairs into four different groups,
we show that the mixture of these four groups still follows a
normal distribution but with larger σx.
For EM iteration, we use σI to estimate α, then use

estimated α to re-estimate σI. The iteration start with
σI = σx = 0.13 (Table 3).

1. Given σI, determine the relationship between α and σ
using simulation (Figure 6A)

2. With observed σE (Table 2) and the estimated
relationship (equation (9)), estimate α

3. With α, determine the relationship between σx and σI
(Additional file 1: Figure S5A)

4. With the relationship and σx = 0.13, estimate σI
5. Return to step (1), iterate until convergence

The results of the EM iteration are shown in Additional
file 1: Figure S5B and Additional file 1: Figure S5C. At the
end, σI converges to 0.11; α converges to approximately 3.
Again, α ≈ 3 suggests that, during evolution, longer exon
f σE and (B) μE as a function of α; (C) Plot of σE and (D) μE as a function
ed for each test and plus/minus three standard deviations are shown
able 2).



Figure 7 Plot of the number of splittings as a function of total
CDS length. Estimated splitting (open circle) is from GRFP
simulation with different CDS lengths (Table 1) and fits with a linear
function (solid line) shown in equation (10). The observed splitting
(closed circle) is also plot. Species are Arabidopsis thaliana (A), Bos
taurus (B), Sus scrofa (C), Drosophila melanogaster (D), Danio rerio (F),
Gallus gallus (G) Homo sapiens (H), Mus musculus (M), Oryza sativa
(O), Pan troglodytes (P), Rattus norvegicus (R), Sorghum bicolor (S),
Caenorhabditis elegans (W), and Zea mays (Z).
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has much higher chance to gain an intron than the shorter
one, with a probability proportional to its size to the 3rd
power.

Intron losses accounting for increasing σI, σE and more
negative ρ(i, j)
In Table 3 and Figure 4, we show that σx of non-
vertebrates is significantly larger than those of verte-
brate genomes. In Figure 5, we also observed more
negative correlation between insertion ratios for non-
vertebrates. Additional file 1: Figure S1 also shows that
the size distributions of non-vertebrate exons are differ-
ent from those vertebrates (Figure 2). In Table 1, we
have estimated that there is a significant amount of in-
tron losses in non-vertebrate genomes. Next, numerical
simulations indicate that these three differences could
result from excessive intron loss during the evolution of
non-vertebrate genomes.
With simulated GRFP fragments, we gradually intro-

duce 5-50% of “intron loss” by randomly reconnecting
adjacent fragment pairs. The size distributions of the
resulted fragments are fitted with a normal function,
(Additional file 1: Figure S8) and the fitted σE is plotted
against percentage of intron loss in Additional file 1:
Figure S9A. The insertion ratio between each adjacent
fragment pairs is calculated using equation (5). Their
histograms are fitted with a normal function (Additional
file 1: Figure S10) with the fitted σx plot against intron
loss in Additional file 1: Figure S9B. In Additional file 1:
Figure S9C, we calculate the correlation of insertion
ratios between i and i+4 sites using equation (6) for
each of the intron loss simulations and plot them
against intron loss. Results in Additional file 1: Figure
S9 suggest that intron loss might account for increasing
σx (Figure 4 and Table 3), and more negative correlation
between non-adjacent insertion ratios (Figure 5).
Additional file 1: Figure S8 also shows that the size

distribution of exons no longer can be fit properly to a
normal function. As the percentage of intron loss in-
creases, a second peak is appearing, as the size distribu-
tion of exons for non-vertebrates in Additional file 1:
Figure S1.

Discussion and conclusion
In this study, we analyze the size distribution of exons for
14 species, including eight vertebrates and six non-
vertebrates. Our approach overcomes the limits of using
orthologous genes, thus allowing us to infer evolutionary
processes affecting the exon-intron structure across
widely divergent species. The use of size distributions is
more reliable than alignment based approaches if con-
sidering the accumulation of repeating intron gain/loss.
Based on the size distribution of exons, we propose
GRFP to characterize the evolution of eukaryotic genes.
The solid agreements between GRFP simulations and
observations on genomic data provide several key find-
ings on the evolution of exon-intron gene structures.

Chance of intron gain is proportional to exon size to the
3rd power
GRFP reveals that longer exons have a higher chance to
gain an intron during evolution, and reveals the novel
finding that the chance of intron gain is proportional to
the exon length to the third power. This finding was de-
rived after investigating real genome data, comparing with
numerical simulations, and excluding various effects on
GRFP through EM iterations. This finding might explain
why long exons are rare in modern organisms. E.g., statis-
tical study has shown that only 3.5% of the primate exons
are longer than 300 nt [8,9,25].
The “third power” is derived from σE (or width) of the

exon size distributions. The model of GRFP indicates that
σE will remain constant given the same dependency value
α. Thus, the nearly identical σE (0.43) in Table 2 suggests
the existence of a common dependency value (α ≈ 3)
across vertebrate species. However, the 5′ deviations of α
value might indicate that intron is less preferred there. For
non-vertebrate species, α cannot be directly estimated
since their exons follow a mixture of two lognormal distri-
butions (instead of one) possibly due to excessive intron
loss. For estimation of intron loss in Table 1, we simply
assume that α ≈ 3 holds for non-vertebrates.
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Why is the probability of intron gain proportional to
the exon length to the third power? Given that the third
power is usually related to volume, it might be possible
that exon occupies a volume proportional to its length
to the third power due to dynamic movement, and the
chance of an intron attacking it is proportional to this
volume. Further investigation will be needed to support
this hypothesis.

No evidence for site-specific bias of intron insertion
We derive this finding from indirectly estimating the
position distribution of intron insertion loci. We demon-
strate that the insertion loci follow a normal distribution,
peaking around the center of the exon with a standard de-
viation (σI) of 0.11. This observation does not support the
proto-splice site hypothesis. If there were proto-splice sites
in the exon, the insertion loci would follow the position
distribution of these sites, which will most likely be a
uniform distribution (Additional file 1: Figure S3).
In Figure 5, we also demonstrate that, for vertebrate

genomes, intron gains are independent of each other.
This observation is also one of the core assumptions of
GRFP simulation. It holds on vertebrate genomes and
non-vertebrate genomes if the effect of intron losses is
considered. Another simplification of GRFP is that the
effect of exon duplications is ignored. As mentioned
earlier, the sharp spikes in Figure 4 are related to tan-
dem exon duplication [22]. Such effect is not considered
since overall their contribution is not significant in esti-
mating either insertion loci or the chance of intron gain.
This is illustrated in Additional file 1: Figure S7 and
Additional file 1: Figure S10, where no such spikes are
observed.
The assumption behind the estimation of insertion ratio

(equation (5)) is that the order of the exons within each
gene is maintained during evolution. In the cases of tan-
dem exon duplication, exon shuffling, or intron loss, the
order is just locally disrupted. Simulation also shows that
the estimated insertion ratio is a mixture of four different
groups of adjacent fragment pairs (Additional file 1: Figure
S7, Additional file 1: Figure S8), but σx is linearly related
to σI (Additional file 1: Figure S5A).

Suggesting 5′ intron gain/loss bias
By grouping exons by positions within a gene, we demon-
strate that exons next to the 5′ UTR have bigger standard
deviation (σE) than other exons. One may argue that the
deviation near the 5′ UTR is caused by the fact that on
average exons are longer for genes contain fewer exons. If
this is the case, similar trend near the 3′ UTR should have
been observed. From equation (9), bigger σE indicates
smaller GRFP dependency value (α). The dropping of α
values for exons adjacent to the 5′ UTR implies that in-
trons are not favored there; In the GRFP model (Equation
(1)), a smaller dependency value indicates a lower chance
in acquiring introns during evolution. Alternatively, it
might be explained as intron loss bias, that is, introns right
after 5′ UTR has a tendency to lose than other introns.
Certainly such comparison is limited to introns in the
coding region and debatable due to the unclear stochastic
process of intron loss.

Excessive intron losses accounting for deviations from GRFP
In this study, we show that exons of non-vertebrates are
different from those of vertebrates in three aspects. First,
the size distribution of their exons fit a mixture of two
normal distributions (Additional file 1: Figure S1) instead
of one for vertebrates (Figure 2). Second, their insertion
ratios have much larger standard deviations (σx) as shown
in Table 3. Third, their non-adjacent insertion ratios are
more negatively correlated as shown in Figure 5.
The estimations in Table 1 (also Figure 7) suggest that

there are excessive intron losses in non-vertebrate
genomes. Based on this, we performed simulations of
intron loss after GRFP fragmentation. Additional file 1:
Figure S9 demonstrates that, with increasing intron
losses, σE increases, σI increases, and ρ(i, j) decreases
from zero, consistent with the observation on empirical
data analysis here. Therefore, GRFP model holds on
non-vertebrate genomes when the effect of intron loss is
considered. Comparative approaches also show that fre-
quent intron loss has been inferred during the evolution
of Nematode [26,27] and Drosophila genomes [28],
though they cannot provide a genome wide estimation
of percentage of intron losses.
Here, the excessive intron loss hypothesis in non-

vertebrate genomes is interpreted as breaking the equi-
librium between intron gain and intron loss. Although
GRFP model is built on modeling intron gain events, it
does not assume that introns in vertebrate genomes are
never lost. Instead, we interpret the straight line in
Figure 7 as a “dynamic equilibrium line for vertebrates”,
where the genome reaches a state of stability for its in-
tron count. In Additional file 1: Figure S11, we observed
the similar linear relationship between intron counts
and CDS length by grouping genes by chromosomes for
H. sapiens. This further proves that the “equilibrium” is
reached in each chromosome and the linear relationship
is independent of lineage (since human chromosomes
are not related by a simple lineage relationship). If there
are many intron losses during evolution, subsequent
gains must have also occurred to bring the genome back
to the equilibrium line. Therefore, the statistical mea-
surements of the exons can remain the same across
examined vertebrate genomes. For the non-vertebrate
genomes that fall below the line, equilibrium is shifted
to intron loss relative to vertebrates. The shifting
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(variation of intron density) might be related to the
differences in the generation time of each species [29].
The size distribution of exons (Additional file 1: Figure

S1), the insertion ratios (Table 3) and the correlation
map (Figure 5) suggest that A. thaliana, S. bicolor, and
Z. mays underwent intron loss during evolution
though not as significant as O. sativa. The estimated
intron losses are around 7% for A. thaliana and S. bicolor,
and 4% for Z. mays (Table 1). However, such percent-
age of intron loss is not significant enough to justify
the size distribution of exons for these three plant
species, a mixture of two Gaussians instead of one as
shown in Additional file 1: Figure S1. Another possible
explanation is that plants have undergone significant
genome duplications and the rate of indels is higher
for the duplicate genes [30]. The reason is that one
copy of the duplicate genes is freed from the selection
pressure.

Weakness and strength of GRFP
In this work, we propose the GRFP model to capture the
dynamic processes describing the evolution of exon-intron
structures. For vertebrate genomes, the model fits well
with the well annotated genome data, including exon size
distribution, distribution of insertion loci, total CDS
length, number of introns, independency among intron
gains, and 5′ intron gain bias. For non-vertebrate
genomes, simulations show that the deviations from the
vertebrate genome can be explained by excessive intron
loss. The GRFP model implies that the evolution of gene
structure is purely random, from picking which exon to
split (gains intron) to picking intron insertion loci on
the selected exon. The solid agreements between GRFP
simulations and real genome data confirm that GRFP
model provides one possible explanation on the exon-
intron structure evolution.
It is well known that a modern genome is a collection of

introns that have accreted (and been deleted) over at least
a billion years. Here, by considering the whole process as
a black box, we reproduce the output of this box (the
current day genomes) with numerical simulations. The
size distribution of exons serves as the key component in
building GRFP model because of two reasons. First, the
dominant factor that can shape such distribution is intron
gain/loss (fragmentation). Second, the most prominent
cofounding factor on exon sizes - the rate of indels in
them during evolution is low. Certainly, the mechanism of
intron gain is complicated considering differences across
lineage, differences in rates of insertion across sites, the
age of introns, the possibility of indels to maximize fit to
epigenomic structures that can occur following intron
gain, alternative splicing, the different models of intron
gain, and so on. The process of exon fragmentation (or
intron gain) might be as straightforward as the model of
GRFP describes. By focusing on internal translated exons
only, we have demonstrated outstanding agreements
between empirical observations and GRFP simulations.
It is crucial to note that GRFP does not make any as-

sumptions on the rate of intron gain/loss. Recent studies
[6,7,31-36] have suggested that the early eukaryotes expe-
rienced a rapid burst of intron gain. In later evolution,
intron loss dominates the landscape, with occasional
bursts of intron gains. This does not contradict the results
presented here since GRFP makes no assumptions about
the rate of intron gain or loss during evolution, but instead
estimates the chance for an exon to gain an intron some-
where along its length and predicts the distribution of
those insertion events.
One may argue that the agreement between the GRFP

model andwell annotated genome structure could be fortuit-
ous. While we cannot rule out that other models might
reproduce the exons of modern genomes, the predictive
power of GRFP is striking, and we believe that it is a promis-
ing approach to understanding the evolution of exon-intron
structures, and an excellent starting point for newmodels for
revealing the hidden stochastic processes of evolution.

Unanswered questions and future studies
GRFP model provides explicit rules on the exon-intron
structure evolution. However, it does not address the
origin of introns, the mechanism of intron insertion,
and the rate of intron gain/loss. In other words, GRFP
addresses where introns are inserted (which exon and
where in the exon), but not when and how introns are
inserted. Future research will focus on extending GRFP
to model the evolution of noncoding exon, and developing
GRFP-based methods for comparative genomics studies.

Additional files

Additional file 1: Figure S1. has the size distribution of non-vertebrate
exons. Figure S2 has the size distributions of H. sapiens exons grouped
by position, supporting the plot in Figure 3. Figure S3 shows that the
distribution of proto-splice sites within H. sapiens coding sequences is
uniform. Figure S4 shows the size distribution of simulated exons with
different dependency values. Figure S5 shows the linear relationship
between expected and observed standard deviation of insertion ratios.
Figure S6 illustrates four different groups of insertion ratios. Figure S7
shows the distribution of insertion ratio for each of the four groups and
their mixture. Figure S8 shows the distribution of fragment size after a
certain percentage of intron losses, supporting Figure S9A. Figure S10
shows the distribution of insertion ratios after a certain percentage of
intron loss, supporting Figure S9B. Figure S11 shows the linear
relationship between the number of splitting and total CDS length for
each H. sapiens chromosome.
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