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Abstract
The quality control of fetal sonographic (FS) images is essential for the correct biometric measurements and fetal anomaly diagnosis.
However, quality control requires professional sonographers to perform and is often labor-intensive. To solve this problem, we propose an
automatic image quality assessment scheme based onmultitask learning to assist in FS image quality control. An essential criterion for FS
image quality control is that all the essential anatomical structures in the section should appear full and remarkable with a clear boundary.
Therefore, our scheme aims to identify those essential anatomical structures to judgewhether an FS image is the standard image, which is
achieved by 3 convolutional neural networks. The Feature Extraction Network aims to extract deep level features of FS images. Based on
the extracted features, the Class Prediction Network determines whether the structuremeets the standard and Region Proposal Network
identifies its position. The schemehasbeenapplied to3 typesof fetal sections,which are the head, abdominal, andheart. The experimental
results show that ourmethod canmake a quality assessment of an FS imagewithin less a second. Also, ourmethod achieves competitive
performance in both the segmentation and diagnosis compared with state-of-the-art methods.

Abbreviations: ACC = accuracy, AP = average precision, AUC = area under the receiver of operation curve, BSI = biometry
suitability index, CNN =Convolutional Neural Network, CPN = class prediction network, F1= F1-score, FC= fully connected, FEN =
feature extraction network, FLOPs= floating point operations, FPN= feature pyramid network, FS= fetal sonographic, GAP= global
average pooling, IoU = Intersection over Union, mAP =mean average precision, MSP =mid-sagittal plane, Pre = precision, ROC =
receiver operating characteristic (ROC), ROI = region of interest, RPN = region proposal network, Sen = sensitivity, Spec =
specificity, SPP = spatial pyramid pooling.

Keywords: convolutional network, fetal sonographic examination, multitask learning, quality control
1. Introduction

1.1. Background

Fetal sonographic (FS) examinations are widely applied in clinical
settings due to its noninvasive nature, reduced cost, and real-time
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acquisition.[1] FS examinations are consisted of first, second, and
third trimester examinations, and limited examination,[2] which
covers a range of critical inspections such as evaluation of a
suspected ectopic pregnancy,[3,4] and confirmation of the
presence of an intrauterine pregnancy.[5–7] The screening and
evaluation of fetal anatomy are critical during the second and
third trimester examinations. The screening is usually assessed by
ultrasound after approximately 18 weeks’ gestational (menstru-
al) age. According to a survey,[8] neonatal mortality in the United
States in 2016 was 5.9 deaths per 1000 live births, and birth
defects are the leading cause of infant deaths, accounting for 20%
of all infant deaths. Besides, congenital disabilities occur in 1 in
every 33 babies (about 3% of all babies) born in the United States
each year. In this case, the screening and evaluation of fetal
anomaly will provide crucial information to families prior to the
anticipated birth of their child on diagnosis, underlying etiology,
and potential treatment options, which can greatly improve the
survival rate of the fetus. However, the physiological evaluation
of fetal anomaly requires well-trained and experienced sonog-
raphers to obtain standard planes. Although a detailed quality
control guideline was developed for the evaluation of standard
plan,[8] the accuracy of the measurements is highly dependent on
the operator’s training skill and experience. According to a
study,[8] intraobserver and interobserver variability exist in
routine practice, and inconsistent image quality can lead to
variances in specific anatomic structures captured by different
operators. Furthermore, in areas where medical conditions are
lagging, there is a lack of well-trained doctors, which makes FS
examinations impossible to perform. To this end, automatic
approaches for FS image quality assessment are needed to ensure
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Table 1

Essential anatomical structures for different sections.

Section name Essential anatomical structure

Head Cavum septi pellucidi
Thalamus
Third ventricle
Brain midline
Lateral sulcus
Choroid plexus

Abdominal Spine
Umbilical vein
Aorta
Stomach

Heart Umbilical vein
Umbilical vein
Right ventricle
Right atrium
Descending aorta
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that the image is captured as required by guidelines and provide
accurate and reproducible fetal biometric measurements.[9]

To obtain standard planes and assess the quality of FS
images, it is necessary that all the essential anatomical
structures in the imaging should appear full and remarkable
with clear boundary.[2] For each medical section, there are
different essential structures. In our research, we consider 3
medical sections: the heart section, the head section, and the
abdominal section. The essential structures corresponding to
these sections are given in Table 1. The list of essential
anatomical structures used to evaluate the image quality is
defined by the guideline[2] and further refined by 2 senior
radiologists with more than 10 years of experience of FS
examination at the West China Second Hospital Sichuan
Figure 1. Comparison of the standard plane (upper row) and nonstandard plane
umbilical vein. B, The lower head FS image does not show the brain midline and the
atrium, and descending aorta.
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University, Chengdu, China. A comparison of standard and
nonstandard planes can be illustrated in Figure 1.
There are various types of challenges concerning the automatic

quality control of FS images. As illustrated in Figure 2, the main
challenges can be divided into 3 types: the first type is that the
image usually suffers from the influence of noise and shadowing
effect, the second type is that similar anatomical structures could
be confused due to the low resolution of the images, and the third
type is that the fetal location during the scanning is unstable
which will cause the rotation of some anatomical structure. The
first type of challenges can only be solved by usingmore advanced
scanning machines, but we can tackle the rest 2 challenges by a
more scientific approach. Specifically, the purpose of our research
can be summarized as follows:
�

(low
ch
Propose an automatic fetal sonographic image quality control
framework for the segmentation and classification of the 2-
dimensional fetal heart standard plane, which is highly robust
against the interference of image rotation and similar
structures, and the segmentation speed is quite fast to meet
the clinical requirements fully.
�
 Improve the accuracy of the detection and classification further
compared with state-of-the-art methods by using many recent
advanced object detection technologies.
�
 Generalize the framework so that it can be well applied to other
standard planes.

1.2. Related work

In recent years, deep learning techniques have been widely
applied in many medical imaging fields due to the technique’s
stability and efficiency, such as anatomical object detection and
segmentation [10–12] and brain abnormalities segmentation.[13,14]

Accordingly, many intelligent automatic diagnostic techniques
er row) in 3 sections. A, The lower abdominal FS image does not show the
oroid plexus. C, The lower heart FS image does not show the left ventricle, left



Figure 2. Illustration of different types of challenges. A, The white arrows show the substantial interference of noise and shadowing effect. B, In the upper graph, the
blue box represents the real brain midline, and the orange box is the confusing anatomical structure with a similar shape. In the lower figure, the orange box
represents the actual gallbladder, and the blue box represents the real umbilical vein. These 2 structures have a very similar shape. C, FS images with different fetal
positions, which will cause significant variations for the appearance of the images. FS = fetal sonographic.

Zhang et al. Medicine (2021) 100:4 www.md-journal.com
for FS images have been proposed. For example, Deepika
et al[15] proposed a novel framework to diagnose the fetal
anomaly by using ultrasound images. In the framework, it
adopts U-Net architecture with Hough transformation to
segment the abdominal region, and then a multistage convolu-
tional neural network (CNN) is designed to extract the hidden
features of FS images. The experiment shows it outperforms
other CNN-based approach.[15] Lin et al[16] proposed a
multitask CNN framework to address the problem of standard
plane detection and quality assessment of fetal head ultrasound
images. Under the framework, they introduced prior clinical
and statistical knowledge to reduce the false detection rate
further. The detection speed of this method is quite fast, and the
result achieves promising performance compared with state-of-
the-art methods.[16] Xu et al[17] proposed an integrated learning
framework based on deep learning to perform view diagnosis
and landmark detection of the structures in the fetal abdominal
ultrasound image simultaneously. The automatic framework
achieved a higher diagnosis accuracy better than clinical
experts, and it also reduced landmark-based measurement
errors.[17] Wu et al proposed a computerized FS image quality
assessment scheme to assist the quality control in the clinical
obstetric examination of the fetal abdominal region. This
method utilizes the local phase features along with the original
fetal abdominal ultrasound images as input to the neural
network. The proposed scheme achieved competitive perfor-
mance in both view diagnosis and region localization.[18] Chang
et al[19] proposed an automatic mid-sagittal plane (MSP)
assessment method for categorizing the 3D fetal ultrasound
images. This scheme also analyzes corresponding relationships
between resulting MSP assessments and several factors,
3

including image qualities and fetus conditions. It achieves a
correct high rate for the results of MSP detection. Kumar and
Sriram et al proposed an automatic method for fetal abdomen
scan-plane identification based on 3 critical anatomical land-
marks: the spine, stomach, and vein. In their approach, a
Biometry Suitability Index (BSI) is proposed to judge whether
the scan plane can be used for biometry based on detected
anatomical landmarks. The results of the proposedmethod over
video sequences were closely similar to the clinical expert’s
assessment of scan-plane quality for biometry.[20] Baumgartner
et al[21] proposed a novel framework based on convolutional
neural networks to automatically detect 13 standard fetal views
in freehand 2D ultrasound data and provide localization of the
anatomical structures through a bounding box. A notable
innovation is that the network learns to localize the target
anatomy using weak supervision based on image-level labels
only.[21] Namburete et al[22] proposed a multitask, fully
convolutional neural network framework to address the
problem of 3D fetal brain localization, alignment to a
referential coordinate system, and structural segmentation.
This method optimizes the network by learning features shared
within the input data belonging to the correlated tasks, and it
achieves a high brain overlap rate and low eye localization
error.[22] However, there are no existing automatic quality
control methods for fetal heart planes, and the detection
accuracy of existing methods on other planes is relatively low
due to the use of the outdated design of neural networks.
Therefore, it is desirable to propose a more efficient framework
that can not only provide accurate clinical assessment in fetal
heart plane but can also increase the segmentation accuracy in
other planes.

http://www.md-journal.com


Figure 3. The framework of our method. We train the network end-to-end to ensure the best performance. The framework contains 3 sections: Feature Extraction
Network (FEN), Region Proposal Network (RPN), and Class Prediction Network (CPN). The will help to extract the deep-level features of the image with the help of
the relation module and Spatial Pyramid Pooling (SPP) layer, which is the input to RPN and CPN. The RPN will locate the position of essential structures based on
the anchors generated by Feature Pyramid Network (FPN), and the CPNwill help to judge and classify the structures. The final output will be a quality assessment of
each essential structure and its location.
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2. Methods

The framework of our methods can be illustrated in Figure 3.
First, the original image is smoothed by the Gaussian filter, and
input to feature extraction network (FEN). Second, FEN will
extract a deep level feature of image by convolutional neural
network and input to Region Proposal Network (RPN) and Class
Prediction Network (CPN) respectively. Then CPN will judge
whether the organs meet the standard as well as predict the class,
and RPNwill locate the position of essential organs with the help
of feature pyramid network. Lastly, the 2 networks will combine
information together and output the final result. In this section,
wewill briefly introduce the network structure and then elaborate
the feature extraction, the region of interest (ROI) localization,
and the organ diagnosis in detail. Our study is approved by Ethics
Committee of West China Second Hospital Sichuan University.

2.1. Feature extraction network

In the feature extraction network, we have made many
improvements compared with the traditional CNN-based
approaches: the convolutional neural network is used as a
thematic framework, and many state-of-the-art deep learning
techniques such as relation module, spatial pyramid pooling
(SPP) layer, are integrated into the framework to further increase
the feature extraction efficiency. The CNN has unique
advantages in speech recognition and image processing with
its special structure of local weight sharing, which can
greatly reduce the number of parameters and improve the
accuracy of recognition.[23–25] CNN typically consists of pairs of
4

convolutional layers and average pooling layers and fully
connected (FC) layers. In convolutional layer, several output
feature maps can be obtained by the convolutional calculation
between input layer and kernel. Specifically, suppose f nm denotes
the mth output feature map in layer n, f n�1

k denotes the kth
feature map in n – 1 layer,Wn

m denotes the kernel generating that
feature map, then we can get:

f nm ¼ reluð
XN
k¼1

ðWn
m�f n�1

k Þ þ bnÞ

where bn is the bias term in the nth layer, relu denotes rectified
linear unit, and is defined as: relu(x)=max(x,0). It is also worth
mentioning that we use global average pooling (GAP) instead of
local pooling for pooling layers. The aim is to use GAP to replace
FC layer, which can regularize the structure of the entire network
to prevent overfitting.[26] The setting of convolution layer is
shown in Table 2.
To fully utilize relevant features between objects and further

improve segmentation accuracy, we introduce the relation
module presented by Hu.[27] Specifically, first the geometry
weight is defined as:

wmn
G ¼ max0;WG⋅eGðf mG; f nGÞ

where f mG and f nG are geometric features, eG is a dimensional
lifting transformation by using concatenation. After that, the
appearance weight is defined as:wmn

A ¼ dotðWKf
m
A ;WQf

n
AÞffiffiffiffi

dk
p



Table 2

The setting of convolutional layer.

Layer Kernel size Channel depth Stride

C1 3 128 2
C2 3 256 2
C3 3 512 2
C4 3 1024 2
C5 3 2048 2

Table 3

The setting of FPN.

Pyramid level Stride Size

3 8 32
4 16 64
5 32 128
6 64 256
7 128 512

FPN = feature pyramid network.

Zhang et al. Medicine (2021) 100:4 www.md-journal.com
where WK and WQ are the pixel weights from the previous
network. Then the relation weight indicating the impact from
other objects is computed as:

wmn ¼ wmn
G ⋅expðwmn

A ÞP
k w

kn
G ⋅expðwkn

A Þ

Lastly, the relation feature of the whole object set with respect
to the nth object is defined as

f RðnÞ ¼
X
m

wmn⋅ðWV ⋅f mA Þ

This module achieves a great performance in the instance
recognition and duplicate removal, which increases the segmen-
tation accuracy significantly.
The SPP layer we use here denotes the SPP layer presented by

He et al.[28] Specifically, the response map after FC layer is
divided into 1�1 (pyramid base), 2�2 (lower middle of the
pyramid), 4�4 (higher middle of the pyramid), 16�16 (pyramid
top) 4 submaps and do max pooling separately. A problem with
the traditional CNNnetwork for feature extraction is that there is
a strict limit on the size of the input image, this is because there is a
need for the FC layer to complete the final classification and
regression tasks, and since the number of neurons of the FC layer
is fixed, the input image to the network must also have fixed size.
Generally, there are 2 ways of fixing input image size: cropping
and wrapping, but these 2 operations either cause the intercepted
area not to cover the entire target or bring image distortion, thus
applying SPP is necessary. The SPP network also contributes to
multisize extraction features and is highly tolerant to target
deformation.
The design of Bottle Net borrows the idea of Residual

Networks.[29] A common problem with deep networks is that
gradient depth and gradient explosions are prone to occur as
depth deepens. The main reason of this phenomenon is the over-
fitting problem caused by the loss of information. Since each
convolutional layer or pooling layer will downsample the image,
a lossy compression effect could be produced. With network
going deeper, these images will appear some strange phenomena,
which is that obviously different categories of images produce
similarly stimulating effect on the network. This reduction in the
gap will make the final classification effect less than ideal. To let
our network extract deeper features more efficiently, we add the
residual network structure to our model. The basic implementa-
tion is given in Figure 2. By introducing the data output of the
previous layers directly into the input part of the latter data layer,
it is realized that original vector data and the subsequently down
sampled data are used together as the data input of the latter
layer, which introduced a richer dimension. In this way, the
network can learn more features of the image.
5

2.2. ROI localization with RPN

The RPN is designed to localize the ROI that encloses the
essential organs given in Table 1. To achieve this goal, we first use
a feature pyramid network (FPN)[30] to generate candidate
anchors instead of traditional RPN network used in Faster-
RCNN.[23] FPN could connect the high-level features of low-
resolution and high-semantic information with the low-level
features of high-resolution and low-semantic information from
top to bottom, so that features at all scales have rich semantic
information. Specifically, the setting of FPN is shown in Table 3.
In the training process, we define the metrics of intersection

over union (IoU) to evaluate the goodness of ROI localization:

IoU ¼ ðA∩BÞ=ðA∪BÞ

where A is a computerized ROI and B is a manually labeled
ROI (Ground Truth). In the training process, we set the samples
with IoU higher than 0.5 as positive samples, and IoU lower than
0.5 as negative samples.

2.3. Judging and predicting class with CPN

For different sections, we use CPN to classify essential organs.
For thalamus section, there are cavum septi pellucidi and
thalamus to be classified. For abdominal section, there are
stomach bubble, spine, and umbilical vein to be classified. For
heart section, there are left ventricle, left atrium, right ventricle,
and right atrium to be classified. To improve classification
accuracy, we choose focal loss[31] as the loss function. In the
training process of neural network, the internal parameters can
be adjusted with the minimization of the loss function of all
training samples. The proposed focal loss enables highly accurate
dense object detection in the presence of vast number of
background examples, which is suitable in our model. The loss
function can be defined as:

FLðptÞ ¼ �ð1� ptÞg logðptÞ

where g is the focusing parameter, and g ≥ 0. pt is defined as:

pt ¼ p y ¼ 1
1� p otherwise

�

y represents the truth label of a sample, and p represents the
probability that the neural network predicts this class.

3. Results

In this section, wewill start with a brief explanation of the process
of obtaining and making data sets for training and testing. Then a
systematic evaluation scheme will be proposed to test the efficacy
of our method in FS examinations. The evaluation is carried out

http://www.md-journal.com
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in 4 parts. First, we investigate the performance of ROI
localization; we will use Mean Average Precision (mAP) and
box-plot to evaluate it. Second, we quantitatively analyze the
performance of classification with common indicators: accuracy
(ACC), specificity (Spec), sensitivity (Sen), precision (Pre), F1-
score (F1), and area under the receiver of operation curve (AUC).
Third, we demonstrate the accuracy of our scheme when
compared with experienced sonographers. Fourth, we do the
running time analysis and sensitivity analysis of our method.
3.1. Data preparation

All the FS images used for training and testing our model were
acquired from the West China Second Hospital Sichuan
University from April 2018 to January 2019. The FS images
were recorded with a conventional hand-held 2-D FS probe on
pregnant women in the supine position, by following the
standard obstetric examination procedure. The fetal gestational
ages of all subjects ranged from 20 to 34weeks. All FS images
were acquired with a GE Voluson E8 and Philips EPIQ 7 scanner.
There are, in total, 1325 FS images of the head section, 1321 FS

images of the abdominal section, and 1455 FS images of the heart
section involved for the training and testing of our model. The
training set, validation set, and test set of each section are all
divided by a ratio of 3:1:1. The ROI labeling of essential
structures in each section is achieved by 2 senior radiologists with
more than 10 years of experience in the FS examination by
marking the smallest circumscribed rectangle of the positive
sample. The negative ROI samples are randomly collected from
the background of the images.
3.2. Evaluation metrics

For testing the performance of ROI localization, first, we define
the metrics of IoU between prediction and ground truth and use
box-plots to evaluate ROI localization intuitively. As illustrated
before, IoU is defined as:

IoU ¼ ðA∩BÞ=ðA∪BÞ

where A is computerized ROI, and B is ground truth (manually
labeled) ROI. Second, we use average precision (AP) to
quantitatively evaluate the segmentation results of each essential
anatomical structure and mAP to illustrate the overall quality of
ROI localization.
To test the performance of classification results, we use several

popular evaluation metrics. Suppose TP represents the number of
true positives of a certain class, FP is the number of false positives,
FN is the number of false negatives, and TN is the number of true
negatives, then the definitions of ACC, specificity (Spec),
sensitivity (Sen), precision (Pre), and F1-score (F1) are as follows:

ACC ¼ TPþTN
TPþ FPþ FN þ TN

Sen ¼ TP
TPþ FN

Spec ¼ TN
FPþTN

Pre ¼ TP
TPþFP

F1 ¼ 2TP
2TPþFN þ FP
6

The area under the AUC is defined as the area under the
receiver operating characteristic (ROC) curve, which is equiva-
lent to the probability that a randomly chosen positive example is
ranked higher than a randomly chosen negative example.[32] The
confusion matrix is also a common indicator to visualize the
performance of diagnosis in supervised machine learning, we use
it to illustrate the performance of our method in each anatomical
structure.[33] To show the effectiveness of advanced techniques
we add to the framework, and 2 different structures are also
tested, where NRM means the removal of the relation module,
and NSPP means the removal of the SPP layer in the feature
extraction network. By comparing the difference in classification
and segmentation results, it is clear to see their impact on overall
network performance.
To analyze the time complexity of our method, we use floating

point operations (FLOPs),[34] which is a common method in
describing the complexity of CNN. Specifically, in the convolu-
tional layer, FLOPs is defined as:

FLOPs ¼ 2∗Kw∗Kh
∗Cin∗Mh

∗Mw∗Cout

where Cin is the input channel size, Cout is the output channel
size, the convolutional kernel size is Cin∗Kh

∗Kw, and the output
feature map size is: Cout∗Mh

∗Mw. In the fully connected layer,
FLOPs is defined as:

FLOPs ¼ ð2∗Cin�1Þ�Cout

In the global average pooling layer, FLOPs is defined as:

FLOPs ¼ Cin∗Ih�Iw
where Ih denotes the input feature map height, and Iw denotes

the input feature map width.
3.3. Results of ROI localization

To demonstrate the efficacy of our method in localizing the
position of essential anatomical structures in FS images, we carry
out the experimental evaluation in 2 parts. First, we use box-
plots to evaluate ROI localization intuitively. Second, we use
AP and mAP to illustrate the quality of ROI localization
quantitatively.
For the head standard plane, there is already a state-of-the-art

method proposed for the quality assessment[16] (denoted as Lin),
so we have compared its results with our method. Also, to show
the effectiveness of advanced object segmentation techniques we
add to the network, our methods have also been compared with
other popular object detection frameworks, including SSD,[35]

YOLO,[36,37] Faster R-CNN.[23] The test of the effectiveness of
the relation module we add to the network is also carried out,
with Non-NM denoting the framework without the relation
module.
As shown in Figure 4, ourmethod has achieved a high IoU in all

3 sections. Specifically, for the head section, the median of IoU
values in all the anatomical structures is above 0.955. Also, for
the heart section and the abdominal section, the median is above
0.945 and 0.938, respectively. Also, the minimum of IoU values
for all 3 sections is above 0.93. As a comparison, the state-of-the-
art framework for the quality assessment of the fetal abdominal
images proposed by Wu et al[18] has only achieved a median of
below 0.9. It proves the effectiveness of our method in localizing



Figure 4. Box-plots of IoU values for 3 sections. The 3 lines on each box represent the 4 quartiles of the IoU values. IoU = intersection over union.
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ROI. As shown in Table 4, we observe that our method has the
highest mAP compared with the method proposed by Lin et al
and other popular object detection frameworks. Also, we have
improved the segmentation accuracy significantly in TV and CSP
and overcome the limitation in Lin’s method. This is because our
method could detect flat and smaller anatomical structures more
precisely. It is worth mentioning that after adding the relation
module to our network, the segmentation accuracy has been
significantly improved in all the anatomical structures, which
proves the effectiveness of this module. As shown in Table 5, since
it is our first attempt to evaluate the image quality in the heart
section, so we have only compared our method with state-of-the-
art object segmentation frameworks. We observe that our
approach has the highest average precision in all the anatomical
structures. Also, as shown in Table 6, we have achieved quite
promising segmentation accuracy. It proves that our framework
is generalized and can be well applied to the quality assessment of
other standard planes.
7

3.4. Results of diagnosis accuracy
To illustrate the performance of our model in classifying the
essential anatomical structures, we first use area of ROC and
confusion matrix to characterize the performance of the classifier
visually, then we use several authoritative indicators to measure it
quantitatively: ACC, Spec, Sen, Pre, and F1. Also, to show the
effectiveness of our proposed network in diagnosis, we have
compared our method with other popular classification networks,
includingAlexNet,[38]VGG16,VGG19,[39] andResNet50.[40] The
comparison with Lin’s method is also carried out.
As shown in Figure 5, it is observed that the classifier achieves

quite promising performance in all the 3 sections with the true
positive rate reaching 100% while the false positive rate is less
than 10%. Also, the ROC achieves at 0.96, 0.95, and 0.98 for the
head section, abdominal section, and heart section, respectively.
From Figure 6, it is clear that our method achieves a quite

superior performance in every anatomical structure of different
sections with the true positive rate reaching nearly 100%.

http://www.md-journal.com


Figure 4. (Continued)
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From Table 7, we can observe that the classification results of
our method are superior to other state-of-the-art methods.
Specially, we achieve the best results with a precision of 94.63%,
a specificity of 96.39%, and an AUC of 98.26%, which are better
than Lin’s method. The relative inferior results in sensitivity,
accuracy, and F1-score can be further improved if we add prior
clinical knowledge into our framework.[16]Tables 8 and 9
illustrate the classification results in abdominal and heart section.
We can observe that our method has achieved quite promising
results in most indicators compared with existing methods. It
demonstrates the effectiveness of our proposed method in
classifying anatomical structures of all the sections.

3.5. Running time analysis and sensitivity analysis

We test the running time of detecting a single FS image for
different single-task and multitask networks in a workstation
equipped with 3.60GHz Intel Xeon E5-1620 CPU and a GP106-
100 GPU. The results are given in Table 10. It is observed that
detecting a single frame could only cost 0.871s, which is fast
8

enough to meet clinical needs. Also, it is observed that although
the network parameters of our method and FLOPs are much
more than Faster R-CNN + VGG16, there is not much difference
in segmentation time, this is because our network shared many
low-level features, which could achieve a more efficient
segmentation with using only a few parameters.
In the CNN model, we usually need to try a series of

parameters to get the best performance for the model. There are
many parameters that could affect the results of a CNN model
such as learning rate, epoch, regularization loss, etc, but
generally, the learning rate and weight decay have a great
impact on it. Therefore, we change the learning rate and weight
decay to illustrate the sensitivity of our method. As shown in
Table 11, by altering the learning rate, the change of mAP does
not exceed 1.7%; by changing the weight decay, the change of
mAP does not exceed 2.2%, demonstrating the robustness of our
method.
Figures 7–9 depict the comparison of our results with the

manually labeled images by experts in the head section,



Figure 4. (Continued).
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abdominal section, and heart section, respectively. Our method
displays the classification and segmentation results simultaneous-
ly to assist in sonographers’ observation. More comparison
between our results and ground truth is given in Figure 10. It can
be seen that our method is perfectly aligned with professional
sonographers.
Table 4

Comparisons about detection results between our method and othe

Method TV BM T

SSD 40.56 82.75 72.61
YOLOv2 35.43 79.31 38.56
Faster R-CNN VGG16 73.56 94.65 93.41
Faster R-CNN Resnet50 72.48 95.40 92.78
Lin 82.50 98.95 93.89
Non-NM 71.42 94.38 89.92
Our method 86.12 98.87 94.21

BM=brain midline, CP= choroid plexus, CSP= cavum septi pellucidi, LS= lateral sulcus, mAP=mean

9

4. Discussion
In this paper, an autonomous image quality assessment approach
for FS images was investigated. The experimental results show
that our proposed scheme achieves a highly precise ROI
localization and a considerable degree of accuracy for all the
essential anatomical structures in the 3 standard planes. Also, the
r methods in head section.

CP CSP LS mAP

54.21 63.43 75.41 64.66
62.70 83.67 83.31 63.83
80.59 87.35 94.78 87.39
85.47 84.71 95.31 87.69
95.82 89.92 98.46 93.26
82.45 86.78 92.45 86.23
93.76 95.57 97.92 94.41

average precision, T= thalamus, TV= third ventricle.
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Table 5

Comparisons about detection results between our method and other methods in heart section.

Method RV RA LV LA DAO mAP

SSD 60.27 62.43 67.61 54.21 74.67 63.84
YOLOv2 71.31 69.39 71.56 62.70 90.74 73.14
Faster R-CNN VGG16 85.52 81.15 87.11 80.59 95.57 85.99
Faster R-CNN Resnet50 89.44 83.59 90.78 85.47 94.01 88.66
Non-NM 84.35 85.43 91.23 82.45 95.86 87.86
Our method 93.03 95.71 95.65 93.76 97.34 95.10

DAO=descending aorta, LA= left atrium, LV= left ventricle, mAP=mean average precision, RA= right atrium, RV= right ventricle.
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conformance test shows that our results are highly consistent
with those of professional sonographers, and running time tests
show that the image segmentation speed per frame is much higher
than sonographers, which means this scheme can effectively
Figure 5. ROC curves of classification results in 3 s
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replace the work of sonographers. In our proposed network, to
further improve segmentation and classification accuracy, we
also modify the recently published advanced object segmentation
technologies and adapt them to our model. The experiment
ections. ROC = receiver operating characteristic.



Table 6

Comparisons about detection results between our method and other methods in abdominal section.

Method ST UV SP AO mAP

SSD 80.74 83.43 76.23 62.13 75.63
YOLOv2 88.21 85.47 78.61 67.71 80.00
Faster R-CNN VGG16 90.25 92.15 88.72 82.54 88.42
Faster R-CNN Resnet50 91.29 93.59 90.85 81.34 89.27
Non-NM 93.41 91.76 94.38 90.34 92.47
Our method 97.33 97.77 96.25 94.16 96.38

AO= aorta, mAP=mean average precision, SP= spine, ST= stomach, UV=umbilical vein.
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shows these modules are highly useful, and the overall
performance is better than the state-of-the-art methods such as
the FS image assessment framework proposed by Lin et al.[16]

After the Feature ExtractionNetwork, we also divide the network
into Region Proposal Network and Class Prediction Network.
Accordingly, the features in the segmentation network can avoid
interfering with the features in the classification network, so the
segmentation accuracy is further increased. Also, the segmenta-
tion speed can be significantly improved, as the classification and
localization are performed simultaneously.
Figure 6. Confusion matrix of diagnosis methods. (A) represents abdomina
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Although our method achieves quite promising results, there
are still some limitations. First, for the training sets, we regard the
manually labeled FS images by 2 professional sonographers as the
ground truth, but the results of manual labeling will have some
accidental deviation even though they all havemore than 10 years
of experience. In future studies, we will invite more professional
clinical expects to label the FS images and collect more
representative datasets. Second, there still remain some segmen-
tation and classification errors in our results. This is because our
evaluation criteria are rigorous, and the midsection of a single
l section; (B) represents heart section; and (C) represents heart section.
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Table 7

Comparisons about classification results between our method and other methods in head section.

Indicator Prec Sen ACC F1 Spec AUC

AlexNet 90.21 91.28 92.22 91.77 92.46 95.29
VGG16 92.34 92.48 91.79 90.68 93.71 96.37
VGG19 94.31 93.72 92.91 91.01 94.33 97.14
Resnet50 94.36 93.01 93.96 94.21 92.91 97.59
Lin 93.57 93.57 94.37 93.57 95.00 98.18
Our method 94.63 92.41 94.31 93.17 96.39 98.26

ACC= accuracy, AUC= the area under the receiver of operation curve, F1= F1 score, Prec=precision, Sen= sensitivity, Spec= specificity.

Table 8

Comparisons about classification results between our method and other methods in abdominal section.

Indicator Prec Sen ACC F1 Spec AUC

AlexNet 91.34 91.24 92.11 90.43 91.53 93.12
VGG16 93.21 93.59 91.33 90.91 92.23 92.76
VGG19 93.42 94.27 92.12 93.91 92.91 93.21
Resnet50 94.52 94.10 93.66 93.76 95.92 96.32
Our method 95.67 93.56 96.31 93.17 97.92 98.54

ACC= accuracy, AUC= the area under the receiver of operation curve, F1= F1 score, Prec=precision, Sen= sensitivity, Spec= specificity.

Table 9

Comparisons about classification results between our method and other methods in heart section.

Indicator Prec Sen ACC F1 Spec AUC

AlexNet 90.34 91.44 92.32 90.78 91.28 93.87
VGG16 92.76 93.71 92.13 93.12 92.33 93.43
VGG19 93.68 94.31 93.37 92.88 93.54 94.41
Resnet50 95.91 94.31 93.52 93.45 94.42 93.56
Our method 96.71 94.73 93.32 95.91 94.49 95.67

ACC= accuracy, AUC= the area under the receiver of operation curve, F1= F1 score, Prec=precision, Sen= sensitivity, Spec= specificity.
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anatomical structure could lead to a negative score on the image.
Third, all the FS images are collected from GE Voluson E8 and
Philips EPIQ 7 scanner; however, different types of ultrasonic
instruments will produce different ultrasound images, which may
cause our method not to be applied well to the FS images
produced by other machines.
Our proposed method further boosts the accuracy in the

assessment of two-dimensional FS standard plane. Although t3-
dimensional and 4-dimensional ultrasound testing are popular
recently, they are mainly utilized to meet the needs of pregnant
women and their families to view baby pictures instead of serving
the diagnosing purpose visually. Two-dimensional ultrasound
Table 10

The detection speed and parameters of different single-task and
multitask methods.

Method FLOPs(B) Speed(s) Parameters(M)

Single-task
AlexNet 0.71 0.012 61.10
VGG16 15.65 0.023 138.37
VGG19 19.82 0.025 143.68
ResNet50 4.12 0.052 22.56
YoLo v2 59.28 0.561 231.26

Multitask
Faster R-CNN VGG16 169.23 0.721 432.31
Our method 186.4 0.871 502.92

B=billion, FLOPs = floating point operations, M=million.
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images are still the most authoritative basis for judging fetal
development.[2] As illustrated before, there are still many
challenges for the automatic assessment of 2D ultrasound
images, such as shadowing effects, similar anatomical structures,
different fetal positions, etc. To overcome these challenges and
further promote the accuracy and robustness of segmentation
and classification, it may be useful to add some prior clinical
knowledge[16] and more advanced attention modules to the
network. In the future, we will also investigate the automatic
selection technology for finding the standard scanning plane,
which will find a standard plane containing all the essential
anatomical structures without sonographers’intervention.
Table 11

Comparisons about classification results between ourmethod and
other methods in abdominal section.

Learning rate Epoch Regularization loss Weight decay mAP

0.0000001 100 5 0.0001 95.1
0.000001 100 5 0.0001 93.4
0.00001 100 5 0.0001 94.8
0.0000001 100 5 0.0002 96.1
0.000001 100 5 0.0002 95.3
0.00001 100 5 0.0002 96.3
0.0000001 100 5 0.0003 94.7
0.000001 100 5 0.0003 93.3
0.00001 100 5 0.0003 94.1

mAP = mean average precision.



Figure 7. Demonstration that our results perfectly match with the annotations of ground truth in the heart section. The classification results in the left white box are
the ground truth labeled by professional radiologists, and the results in the right white box are the detection results of our method. “1” means the anatomical
structure meets the quality requirement, and “0” means the structure does not meet the requirement.

Figure 8. Demonstration that our results perfectly match with the annotations of ground truth in the abdominal section. The classification results in the left white box
are the ground truth labeled by professional radiologists, and the results in the right white box are the detection results of our method. “1” means the anatomical
structure meets the quality requirement, and “0” means the structure does not meet the requirement.

Figure 9. Demonstration that our results perfectly match with the annotations of ground truth in the head section. The classification results in the left white box are
the ground truth labeled by professional radiologists, and the results in the right white box are the detection results of our method. “1” means the anatomical
structure meets the quality requirement, and “0” means the structure does not meet the requirement.

Zhang et al. Medicine (2021) 100:4 www.md-journal.com
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Figure 10. More comparisons between our results with ground truth. The first 2 rows show the results in the abdominal section, the middle 2 rows show the results
in the heart section, and the last 2 rows show the results in the head section. For every section, the upper row represents the ground truth, and the lower row
represents our results.

Zhang et al. Medicine (2021) 100:4 Medicine
Acknowledgments

The authors acknowledge Sichuan UniversityWest China Second
Hospital for providing the fetal ultrasound image datasets.

Author contributions

Conceptualization: Bo Zhang, Hong Luo.
Data curation: Bo Zhang, Hong Luo.
14
Formal analysis: Bo Zhang, Hong Luo.
Funding acquisition: Hong Luo.
Investigation: Bo Zhang, Kejun Li.
Methodology: Bo Zhang, Han Liu, Kejun Li.
Project administration: Hong Luo.
Resources: Hong Luo.
Software: Bo Zhang, Han Liu.
Supervision: Hong Luo.



Zhang et al. Medicine (2021) 100:4 www.md-journal.com
Validation: Han Liu.
Visualization: Han Liu.
Writing – original draft: Han Liu.
Writing – review & editing: Bo Zhang, Han Liu, Kejun Li.

References

[1] Rueda S,FathimaS,KnightCL, et al. Evaluationand comparisonof current
fetal ultrasound image segmentationmethods for biometric measurements:
a grand challenge. IEEE Trans Med Imaging 2014;33:797–813.

[2] American Institute of Ultrasound in MedicineAIUM practice guideline
for the performance of obstetric ultrasound examinations. J Ultrasound
Med 2013;32:1083–101.

[3] Chambers SE, Muir BB, Haddad NG. Ultrasound evaluation of ectopic
pregnancy including correlation with human chorionic gonadotrophin
levels. Br J Radiol 1990;63:246–50.

[4] Hill LM, Kislak S, Martin JG. Transvaginal sonographic detection of the
pseudogestational sac associated with ectopic pregnancy. Obstet
Gynecol 1990;75:986–8.

[5] Barnhart K, Van Mello NM, Bourne T, et al. Pregnancy of unknown
location: a consensus statement of nomenclature, definitions, and
outcome. Fertil Steril 2011;95:857–66.

[6] Jeve Y, Rana R, Bhide A, et al. Accuracy of first-trimester ultrasound in
the diagnosis of early embryonic demise: a systematic review. Ultrasound
Obstet Gynecol 2011;38:489–96.

[7] Thilaganathan B. Opinion: The evidence base for miscarriage diagnosis:
better late than never. Ultrasound Obstet Gynecol 2011;38:487–8.

[8] Murphy SL, Xu J, Kochanek KD, et al. Mortality in the United States,
2017: key findings data from the national vital statistics system 2018;1–8.

[9] Zhang L, Dudley NJ, Lambrou T, et al. Automatic image quality
assessment and measurement of fetal head in two-dimensional ultra-
sound image. J Med Imaging 2017;4:024001.

[10] Ghesu FC, Krubasik E, Georgescu B, et al. Marginal space deep learning:
efficient architecture for volumetric image parsing. IEEE Trans Med
Imaging 2016;35:1217–28.

[11] Zhang J, Liu M, Shen D. Detecting anatomical landmarks from limited
medical imaging data using two-stage task-oriented deep neural
networks. IEEE Trans Image Process 2017;26:4753–64.

[12] Ghesu FC, Georgescu B, Zheng Y, et al. Multi-scale deep reinforcement
learning for real-time 3D-landmark detection in CT scans. IEEE Trans
Pattern Anal Mach Intell 2019;41:176–89.

[13] Kebir ST, Mekaoui S. An Efficient Methodology of Brain Abnormalities
Detection using CNN Deep Learning Network. In: Proceedings of the
2018 International Conference on Applied Smart Systems, ICASS 2018.

[14] Sujit SJ, Gabr RE, Coronado I, et al. Automated ImageQuality Evaluation
of Structural BrainMagneticResonance Images usingDeepConvolutional
Neural Networks. In: 2018 9th Cairo International Biomedical Engineer-
ing Conference, CIBEC 2018 - Proceedings 2019;33–6.

[15] Deepika P, Suresh RM, Pabitha P. Defending against child death: deep
learning-based diagnosis method for abnormal identification of fetus
ultrasound Images. Comput Intell 2020;1:1–27.

[16] Lin Z, Li S, Ni D, et al. Multi-task learning for quality assessment of fetal
head ultrasound images. Med Image Anal 2019;58:101548.

[17] Xu Z, Huo Y, Park JH, et al. Less is more: Simultaneous view
classification and landmark detection for abdominal ultrasound images.
In: Lecture Notes in Computer Science (Including Subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Vol
11071 LNCS. Springer Verlag; 2018:711–719.

[18] Wu L, Cheng JZ, Li S, et al. FUIQA: fetal ultrasound image quality
assessment with deep convolutional networks. IEEE Trans Cybern
2017;47:1336–49.

[19] Chang CW, Huang ST, Huang YH, et al. Categorizating 3d fetal
ultrasound image database in first trimester pregnancy based on
15
mid-sagittal plane assessments. In: Proceedings Applied Imagery Pattern
Recognition Workshop. Vol 2017. 2018;Institute of Electrical and
Electronics Engineers Inc.,

[20] Kumar AMC, Shriram KS. Automated scoring of fetal abdomen
ultrasound scan-planes for biometry. In: Proceedings International
Symposium on Biomedical Imaging Vol 2015 2015;862–5.

[21] Baumgartner CF, Kamnitsas K, Matthew J, et al. SonoNet: real-time
detection and localisation of fetal standard scan planes in freehand
ultrasound. IEEE Trans Med Imaging 2017;36:2204–15.

[22] Namburete AIL, Xie W, Yaqub M, et al. Fully-automated alignment of
3D fetal brain ultrasound to a canonical reference space using multi-task
learning. Med Image Anal 2018;46:1–4.

[23] Ren S, He K, Girshick R, et al. Faster R-CNN: towards real-time object
detection with region proposal networks. IEEE Trans Pattern Anal Mach
Intell 2017;39:1137–49.

[24] Zhao Z, Liu H, Fingscheidt T. Convolutional neural networks to
enhance coded speech. IEEE/ACM Trans Audio Speech Lang Process
2019;27:663–78.

[25] Dai J, Li Y, He K, Sun J. R-FCN: Object detection via region-based fully
convolutional networks. In: Advances in Neural Information Processing
Systems; 2016:379–387. Available at: https://github.com/daijifeng001/r-
fcn. Accessed October 26, 2019.

[26] Lin M, Chen Q, Yan S. Network in network. In: 2nd International
Conference on Learning Representations, ICLR 2014 - Conference Track
Proceedings 2014.

[27] Hu H, Gu J, Zhang Z, et al. Relation Networks for Object Detection. In:
Proceedings of the IEEE Computer Society Conference on Computer
Vision and Pattern Recognition 2018;3588–97.

[28] He K, Zhang X, Ren S, et al. Spatial pyramid pooling in deep
convolutional networks for visual recognition. IEEE Trans Pattern Anal
Mach Intell 2015;37:1904–16.

[29] He K, Zhang X, Ren S, et al. Identity mappings in deep residual
networks. In: Lecture Notes in Computer Science (Including Subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinfor-
matics) 2016.

[30] Lin TY, Dollár P, Girshick R, et al. Feature pyramid networks for object
detection. In: Proceedings 30th IEEE Conference on Computer Vision
and Pattern Recognition, CVPR 2017.

[31] Lin TY, Goyal P, Girshick R, et al. Focal loss for dense object detection.
IEEE Trans Pattern Anal Mach Intell 2020;42:318–27.

[32] Fawcett T. An introduction to ROC analysis. Pattern Recognit Lett
2006;27:861–74.

[33] Sokolova M, Lapalme G. A systematic analysis of performance measures
for classification tasks. Inf Process Manag 2009;45:427–37.

[34] Hunger R. Floating point operations in matrix-vector calculus. Tech
Univ München 2007.

[35] Liu W, Anguelov D, Erhan D, et al. SSD: single shot multibox detector.
In: Lecture Notes in Computer Science (Including Subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
2016.

[36] Redmon J, Divvala S, Girshick R, et al. You only look once: unified, real-
time object detection. In: Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition 2016.

[37] Redmon J, Farhadi A. YOLO9000: Better, Faster, Stronger. Available at:
http://pjreddie.com/yolo9000/. Accessed October 27, 2019.

[38] Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep
convolutional neural networks. In: Advances in Neural Information
Processing Systems 2012.

[39] Simonyan K, Zisserman A. Very deep convolutional networks for large-
scale image recognition. 2014:1–14. Available at: http://arxiv.org/abs/
1409.1556. Accessed April 10, 2015.

[40] He K, Zhang X, Ren S, Sun J. Deep residual learning for image
recognition. In: Proceedings of the IEEE Computer Society Conference
on Computer Vision and Pattern Recognition; 2016.

https://github.com/daijifeng001/r-fcn
https://github.com/daijifeng001/r-fcn
http://pjreddie.com/yolo9000/
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.1556
http://www.md-journal.com

	Automatic quality assessment for 2D fetal sonographic standard plane based on multitask learning
	1 Introduction
	1.1 Background
	1.2 Related work

	2 Methods
	2.1 Feature extraction network
	2.2 ROI localization with RPN
	2.3 Judging and predicting class with CPN

	3 Results
	3.1 Data preparation
	3.2 Evaluation metrics
	3.3 Results of ROI localization
	3.4 Results of diagnosis accuracy
	3.5 Running time analysis and sensitivity analysis

	4 Discussion
	Acknowledgments
	Author contributions
	References


