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Abstract: An efficient and convenient protocol for the synthesis of 2H-chromenones has been
developed. In the presence of tBuOK in DMF, good to excellent yields of various chromenones
were obtained from the corresponding salicylaldehydes and arylacetonitriles. No protection of inert
gas atmosphere is required here.

Keywords: chromenones synthesis; metal-free; green chemistry; heterocycle synthesis; salicylaldehydes

1. Introduction

Coumarin is an important class of benzo-fused six-membered heterocycles, which was first
isolated as a natural product in 1820, and has been found to have various interesting bioactivities
(Figure 1) [1–8]. Due to its importance, many efforts have been made to develop new synthetic
procedures for coumarin’s preparation. Classical routes to coumarins based on Pechmann- [9],
Knoevenagel- [10], Perkin- [11], Reformatsky- [12] and Wittig- [13] reactions have been extensively
investigated. Recently, procedures based on transition metal catalysts, ionic liquids and microwaves
have been developed as well [14–17].Molecules 2017, 22, 1197 2 of 11 

 

 
Figure 1. Selected examples of bioactive chromenones. 

2. Results and Discussion 

Initially, we choose salicylaldehyde and 2-phenylacetonitrile as the model substrates to establish 
this reaction system (Table 1). As we expected, with two equivalents of tBuOK as the base in 2 mL of 
dimethylformamide (DMF) at 110 °C, 77% of the desired product can be isolated (Table 1, entry 1). 
No better results can be obtained with an increased amount of promotor and similar yield can be 
observed with a higher concentration (Table 1, entries 2 and 3). Then, several other inorganic bases 
were screened and none of them could give better results than tBuOK (Table 1, entries 5–10). The 
reaction temperature was also checked and yields were reduced when the reaction temperature was 
decreased or increased (Table 1, entries 11 and 12). Subsequently, various solvents were examined 
but without improved results (Table 1, entries 13–17). 

Table 1. Optimization of the reaction conditions [a]. 

 
Entry Base Solvent T (°C) Yield (%) [b] 

1 tBuOK DMF [c] 110 77 
2 tBuOK [d] DMF [c] 110 75 
3 tBuOK DMF 110 81 

4 tBuOK DMF 110 48 
80 

5 K2CO3 DMF 110 34 
6 K3PO4 DMF 110 55 
7 KOH DMF 110 27 
8 tBuOLi DMF 110 75 
9 NaOMe DMF 110 55 

10 tBuONa DMF 110 74 
11 tBuOK DMF 90 73 
12 tBuOK DMF 130 41 
13 tBuOK DMAc 110 54 
14 tBuOK DMSO 110 30 
15 tBuOK Toluene 110 9 
16 tBuOK o-xylene 110 12 
17 tBuOK 1,4-dioxane 110 15 

[a] Reaction conditions: 1 (1 mmol), 2 (1.5 mmol), base (2.0 equiv.), solvent (1 mL), 110 °C, 16 h. [b] 
Isolated yields. [c] DMF (2 mL). [d] tBuOK (3 equiv.). 

Figure 1. Selected examples of bioactive chromenones.

In the 21st century, the demands of sustainable development drive organic chemists to pay
more attention to the principles of green chemistry in designing their new procedures. Among the
various possible directions, the development of new transition metal-free methodologies will be one
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attractive choice. On one hand, transition metal catalysts are usually considered to be toxic and
non-environmentally benign. On the other hand, special attention has to be taken to avoid the problem
of transition metal contamination of the final products, especially when in heterocycles synthesis
chemistry. With these points in mind and also based on our continual interests in the development of
new procedures for the synthesis of heterocycles under transition metal-free conditions [18], we wish
to report here a convenient methodology for the construction of coumarins from salicylaldehydes and
arylacetonitriles. In the presence of tBuOK in DMF, good to excellent yields of the desired chromenones
were obtained and no protection of inert gas atmosphere is required here.

2. Results and Discussion

Initially, we choose salicylaldehyde and 2-phenylacetonitrile as the model substrates to establish
this reaction system (Table 1). As we expected, with two equivalents of tBuOK as the base in 2 mL of
dimethylformamide (DMF) at 110 ◦C, 77% of the desired product can be isolated (Table 1, entry 1). No
better results can be obtained with an increased amount of promotor and similar yield can be observed
with a higher concentration (Table 1, entries 2 and 3). Then, several other inorganic bases were screened
and none of them could give better results than tBuOK (Table 1, entries 5–10). The reaction temperature
was also checked and yields were reduced when the reaction temperature was decreased or increased
(Table 1, entries 11 and 12). Subsequently, various solvents were examined but without improved
results (Table 1, entries 13–17).

Table 1. Optimization of the reaction conditions [a].
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With the optimal reaction conditions in hand, several substituted salicylaldehydes were tested and
shown in Table 2. Moderate to good yields of 2H-chromenones can be obtained from the corresponding
salicylaldehydes and 2-phenylacetonitrile.
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Table 2. Synthesis of chromenones from salicylaldehydes [a].
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[a] Reaction conditions: 1a (1 mmol), 2 (1.5 mmol), tBuOK (2.0 equiv.), DMF (1 mL), 110 °C, 16 h.  
[b] Isolated yields. 

Then, various arylacetonitriles were examined with salicylaldehyde (Table 3). Both electron-
donating and electron-withdrawing substituted phenylacetonitriles afforded the corresponding products 
in moderate to good yields. Notably, when 2-(2-fluorophenyl)acetonitrile and 2-(2-chlorophenyl) 
acetonitrile were applied as the reaction partner, good yields of dibenzo(b,f)oxepine-10-carbonitrile 
can be obtained via intermolecular condensation and intramolecular nucleophilic substitution (Table 
3, entries 6 and 9) [19]. It is also important to mention that 3-oxo-3-phenylpropanenitrile,  
3-phenylpropanenitrile and malononitrile were tested under standard conditions but no desired 
products can be detected (Table 3, entries 14–16). 
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Then, various arylacetonitriles were examined with salicylaldehyde (Table 3). Both electron-
donating and electron-withdrawing substituted phenylacetonitriles afforded the corresponding products
in moderate to good yields. Notably, when 2-(2-fluorophenyl)acetonitrile and 2-(2-chlorophenyl)
acetonitrile were applied as the reaction partner, good yields of dibenzo(b,f )oxepine-10-carbonitrile
can be obtained via intermolecular condensation and intramolecular nucleophilic substitution
(Table 3, entries 6 and 9) [19]. It is also important to mention that 3-oxo-3-phenylpropanenitrile,
3-phenylpropanenitrile and malononitrile were tested under standard conditions but no desired
products can be detected (Table 3, entries 14–16).
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well (Scheme 1). Thus, salicylaldehyde (6 mmol) was reacted with phenylacetonitrile (8 mmol) in the 
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from methyl 2-phenylacetate and dimethyl malonate, respectively (Scheme 2, equation. a and 
equation. b). Moreover, 2-hydroxybenzonitrile, 2-acetylphenol and 2-hydroxybenzophenone were 
taken into consideration as well. Unfortunately, no desired product could be detected from 2-
hydroxybenzonitrile (Scheme 2, equation. c). Interestingly, 2-acetylphenol could afford acceptable 
yield of the goal product (Scheme 2, equation. d) and moderate yield of 3,4-diphenyl-2H-chromen-2-
one was generated from 2-hydroxybenzophenone and phenylacetonitrile without any further 
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[a] Reaction conditions: 1 (1 mmol), 2b (1.5 mmol), tBuOK (2.0 equiv.), DMF (1 mL), 110 ◦C, 16 h. [b] Isolated yields.

To demonstrate the potential utility of this method, we conducted the reaction in gram scale as
well (Scheme 1). Thus, salicylaldehyde (6 mmol) was reacted with phenylacetonitrile (8 mmol) in the
presence of two equivalents; for tBuOK at 110 ◦C for 20 h, 83% yield of 3-phenyl-2H-chromen-2-one
was obtained (1.11 g).
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Scheme 1. Gram scale synthesis of 3-phenyl-2H-chromen-2-one.

In addition, analogues of the substrates have been tested as well (Scheme 2). Under the standard
conditions, 50% of 3-phenyl-2H-chromen-2-one and 21% of 2H-chromen-2-one could be obtained from
methyl 2-phenylacetate and dimethyl malonate, respectively (Scheme 2, equation. a and equation. b).
Moreover, 2-hydroxybenzonitrile, 2-acetylphenol and 2-hydroxybenzophenone were taken into
consideration as well. Unfortunately, no desired product could be detected from 2-hydroxybenzonitrile
(Scheme 2, equation. c). Interestingly, 2-acetylphenol could afford acceptable yield of the goal
product (Scheme 2, equation. d) and moderate yield of 3,4-diphenyl-2H-chromen-2-one was generated
from 2-hydroxybenzophenone and phenylacetonitrile without any further optimization (Scheme 2,
equation. e) [20].

Molecules 2017, 22, 1197 5 of 11 

 

13 
2bm 

3bm 
51 

14 
2bn 3bn 

0 

15 
2bo 3bo 

0 

16 
2bp 3bp 

0 

[a] Reaction conditions: 1 (1 mmol), 2b (1.5 mmol), tBuOK (2.0 equiv.), DMF (1 mL), 110 °C, 16 h.  
[b] Isolated yields. 

To demonstrate the potential utility of this method, we conducted the reaction in gram scale as 
well (Scheme 1). Thus, salicylaldehyde (6 mmol) was reacted with phenylacetonitrile (8 mmol) in the 
presence of two equivalents; for tBuOK at 110 °C for 20 h, 83% yield of 3-phenyl-2H-chromen-2-one 
was obtained (1.11 g). 

 
Scheme 1. Gram scale synthesis of 3-phenyl-2H-chromen-2-one. 

In addition, analogues of the substrates have been tested as well (Scheme 2). Under the standard 
conditions, 50% of 3-phenyl-2H-chromen-2-one and 21% of 2H-chromen-2-one could be obtained 
from methyl 2-phenylacetate and dimethyl malonate, respectively (Scheme 2, equation. a and 
equation. b). Moreover, 2-hydroxybenzonitrile, 2-acetylphenol and 2-hydroxybenzophenone were 
taken into consideration as well. Unfortunately, no desired product could be detected from 2-
hydroxybenzonitrile (Scheme 2, equation. c). Interestingly, 2-acetylphenol could afford acceptable 
yield of the goal product (Scheme 2, equation. d) and moderate yield of 3,4-diphenyl-2H-chromen-2-
one was generated from 2-hydroxybenzophenone and phenylacetonitrile without any further 
optimization (Scheme 2, equation. e) [20]. 

 
Scheme 2. Substrate analogues testing.(a) methyl 2-phenylacetate (b) dimethyl malonate (c) 2-
hydroxybenzonitrile (d) 2-acetylphenol (e) 2-hydroxybenzophenone. 
Scheme 2. Substrate analogues testing. (a) methyl 2-phenylacetate (b) dimethyl malonate (c)
2-hydroxybenzonitrile (d) 2-acetylphenol (e) 2-hydroxybenzophenone.



Molecules 2017, 22, 1197 6 of 11

In order to obtain more insight into the reaction pathway, control experiments were performed
(Scheme 3). Benzaldehyde, phenol and 4-hydroxybenzaldehyde were reacted with phenylacetonitrile
under the standard reaction conditions, respectively. When benzaldehyde was reacted with
phenylacetonitrile, 67% of 2,3-diphenylacrylonitrile was obtained while no product could be
detected with phenol (Scheme 3, equation. a and equation. b). Compared with salicylaldehyde,
4-hydroxybenzaldehyde is considered as a compound with the same electron properties. Under the
same reaction conditions, 93% of 3-(4-hydroxyphenyl)-2-phenylacrylonitrile was generated as the sole
product by the reaction of 4-hydroxybenzaldehyde with phenylacetonitrile (Scheme 3, equation. c),
which indicated that the first step of this transformation is the intermolecular condensation instead of
the nucleophilic addition [21].
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Based on these results, a possible reaction pathway has been proposed (Scheme 4). In the
presence of base, phenylacetonitrile transformed into cyano(phenyl)methanide, which subsequently
reacted with salicylaldehyde to give intermediate I. With the assistance of the other equivalent
base, the hydroxyl group of intermediate I was activated and then reacted with the cyano via an
intramolecular addition. The final products will be formed after in situ hydrolysis.
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3. Materials and Methods

3.1. Materials and General Procedures

3.1.1. Materials

General comments: All reactions were carried out under air. Reactions were monitored by TLC
analysis (pre-coated silica gel plates with fluorescent indicator UV254, 0.2 mm) and visualized with
254 nm UV light. Chemicals were purchased from Aldrich (Tianjin, China), Alfa-Aesar (Tianjin,
China), TCI (Shanghai, China) and unless otherwise noted were used without further purification.
All compounds were characterized by 1H-NMR and 13C-NMR spectroscopy and recorded on Bruker
(Beijing, China) AV 300 and AV 400 spectrometers. Gas-chromatography-mass-analysis was performed
using an Agilent HP-5890 with an Agilent HP-5973 Mass Selective Detector (EI) and an HP-5-capillary
column using helium as a carrier gas.
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3.1.2. General Procedures

Salicylaldehyde (1 mmol) and two equivalents of tBuOK were added in a 25 mL tube equipped
with a stirring bar. Then, 1 mL of DMF and 2-phenylacetonitrile (1.5 mmol) were injected by syringe.
After that, the tube was closed and heated up to 110 ◦C for 16 h. When the reaction was completed,
the reaction mixture was cooled to room temperature. The reaction was quenched with distilled
water and the solution was extracted with ethyl acetate. The crude product was purified by column
chromatography (ethyl acetate/pentane = 1:25–1:8).

3.2. Synthesis of Adducts (Specific Spectral Reference Supplementary Materials)

3-Phenyl-2H-chromen-2-one: 7t1H-NMR (300 MHz, Chloroform-d) δ 7.74 (d, J = 0.6 Hz, 1H), 7.66–7.60
(m, 2H), 7.50–7.41 (m, 2H), 7.41–7.32 (m, 3H), 7.29 (dq, J = 7.7, 0.9 Hz, 1H), 7.25–7.19 (m, 1H). 13C-NMR
(75 MHz, Chloroform-d) δ 160.55, 153.48, 139.83, 134.67, 131.36, 128.83, 128.49, 128.44, 128.33, 127.87,
124.46, 119.64, 116.42. GC-MS (EI, 70 ev): m/z (%) = 222 (M+, 100), 195 (14), 194 (93), 166 (12), 165 (89),
164 (16), 163 (10), 82 (11).

6-Methyl-3-phenyl-2H-chromen-2-one: 7u1H-NMR (300 MHz, Chloroform-d) δ 7.70 (s, 1H), 7.67–7.58
(m, 2H), 7.48–7.33 (m, 3H), 7.31–7.24 (m, 2H), 7.23–7.14 (m, 1H), 2.36 (s, 3H). 13C-NMR (75 MHz,
Chloroform-d) δ 160.74, 151.61, 139.84, 134.81, 134.11, 132.40, 128.71, 128.48, 128.40, 128.14, 127.65,
119.36, 116.11, 20.76. GC-MS (EI, 70 ev): m/z (%) = 236 (M+, 100), 209 (10), 208 (67), 207 (62), 179 (24),
178 (40), 152 (16), 139 (10), 89 (12), 77 (13), 76 (12), 51 (11).

6-Fluoro-3-phenyl-2H-chromen-2-one: 1H-NMR (300 MHz, Chloroform-d) δ 7.75 (s, 1H), 7.73–7.67
(m, 2H), 7.50–7.41 (m, 3H), 7.35 (dddd, J = 8.8, 4.5, 1.8, 1.1 Hz, 1H), 7.29–7.19 (m, 2H). 13C-NMR
(75 MHz, Chloroform-d) δ 160.17, 149.63, 138.73, 134.28, 129.52, 129.16, 128.54, 128.53, 120.28, 118.76
(d, J = 24.6 Hz), 118.05, 117.94, 113.05 (d, J = 23.9 Hz). GC-MS (EI, 70 ev): m/z (%) = 240 (M+, 94), 213
(15), 212 (96), 184 (15), 183 (100), 182 (12), 181 (10), 163 (11), 157 (13), 91 (10). HRMS (EI): Calcd. for
[[M + H]+: C15H9FO2]+: 241.06593, found: 241.06566.

6-Chloro-3-phenyl-2H-chromen-2-one: 7t1H-NMR (300 MHz, Chloroform-d) δ 7.73 (t, J = 0.5 Hz, 1H),
7.72–7.66 (m, 2H), 7.53 (d, J = 2.4 Hz, 1H), 7.50–7.41 (m, 4H), 7.31 (dt, J = 8.8, 0.6 Hz, 1H). 13C-NMR
(75 MHz, Chloroform-d) δ 160.02, 151.88, 138.45, 134.25, 131.31, 129.75, 128.69–128.43 (m), 129.56,
129.25, 128.58, 127.10, 120.73, 117.93. GC-MS (EI, 70 ev): m/z (%) = 256 (M+, 100), 230 (30), 229 (15), 166
(10), 165 (77), 164 (20), 163 (28), 139 (18), 82 (18), 63 (15).

Methyl-2-oxo-3-phenyl-2H-chromene-6-carboxylate: 7t1H-NMR (300 MHz, Chloroform-d) δ 8.28
(d, J = 2.0 Hz, 1H), 8.19 (dd, J = 8.7, 2.0 Hz, 1H), 7.89–7.84 (m, 1H), 7.76–7.65 (m, 2H), 7.55–7.34
(m, 5H), 3.96 (s, 3H). 13C-NMR (75 MHz, Chloroform-d) δ 165.70, 159.85, 156.21, 139.23, 134.17, 132.28,
129.94, 129.19, 128.56, 128.50, 128.35, 126.59, 119.39, 116.65, 52.47. GC-MS (EI, 70 ev): m/z (%) = 280
(M+, 100), 252 (11), 249 (30), 221 (45), 193 (29), 165 (27), 164 (12), 163 (14), 139 (22), 83 (15).

8-Methyl-3-phenyl-2H-chromen-2-one: 7t1H-NMR (300 MHz, Chloroform-d) δ 7.79 (s, 1H), 7.75–7.64 (m,
2H), 7.51–7.27 (m, 5H), 7.19 (dd, J = 8.1, 7.0 Hz, 1H), 2.49 (s, 3H). 13C-NMR (75 MHz, Chloroform-d) δ
160.59, 151.78, 140.19, 134.76, 132.61, 129.02, 128.64, 128.43, 128.35, 127.80, 125.78, 125.56, 123.97, 119.29,
15.38. GC-MS (EI, 70 ev): m/z (%) = 236 (M+, 100), 209 (12), 208 (76), 207 (45), 179 (19), 178 (36), 165
(30), 152 (12), 89 (14), 77 (10), 76 (12).

6,8-Dichloro-3-phenyl-2H-chromen-2-one: 7v1H-NMR (300 MHz, Chloroform-d) δ 7.75–7.63 (m, 3H), 7.57
(d, J = 2.3 Hz, 1H), 7.48–7.39 (m, 4H). 13C-NMR (75 MHz, Chloroform-d) δ 158.81, 147.77, 137.89, 133.72,
131.20, 130.23, 129.50, 129.48, 128.60, 128.51, 125.61, 122.27, 121.44. GC-MS (EI, 70 ev): m/z (%) = 291
(M+, 63), 290 (94), 266 (11), 265 (10), 264 (65), 263 (16), 262 (100), 201 (20), 200 (10), 199 (62), 164 (28), 163
(60), 162 (10), 139 (10), 99 (16), 87 (11), 81 (19), 63 (10).

7-Chloro-3-phenyl-2H-chromen-2-one: 1H-NMR (300 MHz, Chloroform-d) δ 7.66 (s, 1H), 7.61–7.52 (m,
2H), 7.44–7.30 (m, 4H), 7.28–7.24 (m, 1H), 7.21–7.09 (m, 1H). 13C-NMR (75 MHz, Chloroform-d) δ
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159.84, 153.66, 138.90, 137.23, 134.30, 129.03, 128.64, 128.49, 128.44, 128.26, 125.08, 124.91, 118.21, 116.73.
GC-MS (EI, 70 ev): m/z (%) = 256 (M+, 100), 230 (16), 228 (100), 166 (12), 165 (85), 164 (27), 163 (28),
139 (16), 115 (14), 114 (12), 82 (11), 63 (15). HRMS (EI): Calcd. for [[M + H]+: C15H9ClO2]+: 257.03638,
found: 257.03614.

2-Phenyl-3H-benzo[f]chromen-3-one: 7u1H-NMR (300 MHz, Chloroform-d) δ 8.36 (d, J = 1.7 Hz, 1H), 8.09
(d, J = 8.4 Hz, 1H), 7.83–7.68 (m, 2H), 7.67–7.59 (m, 2H), 7.50 (ddd, J = 8.4, 7.0, 1.4 Hz, 1H), 7.42–7.26 (m,
5H). 13C-NMR (75 MHz, Chloroform-d) δ 160.55, 153.04, 135.60, 135.00, 132.62, 130.23, 129.01, 128.80,
128.50 (d, J = 2.1 Hz), 128.12, 127.10, 125.96, 121.34, 116.58, 113.65. GC-MS (EI, 70 ev): m/z (%) = 272
(M+, 92), 245 (23), 244 (100), 243 (23), 215 (60), 213 (27), 189 (10), 122 (10), 107 (25), 94 (18).

3-(o-Tolyl)-2H-chromen-2-one: 7x1H-NMR (300 MHz, Chloroform-d) δ 7.65 (s, 1H), 7.60–7.46 (m, 2H), 7.39
(ddt, J = 8.2, 1.2, 0.6 Hz, 1H), 7.36–7.28 (m, 3H), 7.28–7.22 (m, 2H). 13C-NMR (75 MHz, Chloroform-d) δ
160.21, 153.80, 141.59, 136.82, 134.66, 131.41, 130.30, 129.73, 128.81, 127.81, 125.85, 124.43, 119.28, 116.55,
19.92. GC-MS (EI, 70 ev): m/z (%) = 236 (M+, 100), 220 (12), 219 (64), 208 (37), 207 (86), 189 (27), 179
(26), 178 (53), 177 (10), 176 (11), 165 (24), 152 (21), 117 (12), 115 (23), 89 (18), 76 (14), 63 (18), 39 (11).

3-(m-Tolyl)-2H-chromen-2-one: 7t1H-NMR (300 MHz, Chloroform-d) δ 7.76 (s, 1H), 7.55–7.43 (m, 4H),
7.37–7.22 (m, 3H), 7.22–7.16 (m, 1H), 2.39 (s, 3H). 13C-NMR (75 MHz, Chloroform-d) δ 160.55, 153.42,
139.70, 138.03, 134.59, 131.24, 129.59, 129.09, 128.44, 128.32, 127.81, 125.60, 124.40, 119.65, 116.36, 21.45.
GC-MS (EI, 70 ev): m/z (%) = 236 (M+, 100), 209 (14), 208 (81), 207 (18), 179 (14), 178 (30), 165 (38), 152
(13), 117 (11), 89 (13), 63 (10).

3-(p-Tolyl)-2H-chromen-2-one: 7t1H-NMR (300 MHz, Chloroform-d) δ 7.67 (s, 1H), 7.55–7.47 (m, 2H),
7.45–7.35 (m, 2H), 7.25 (dt, J = 7.8, 0.9 Hz, 1H), 7.21–7.09 (m, 3H), 2.29 (s, 3H). 13C-NMR (75 MHz,
Chloroform-d) δ 160.60, 153.32, 139.12, 138.82, 131.71, 131.10, 129.09, 128.31, 128.17, 127.74, 124.36,
119.68, 116.30, 21.23. GC-MS (EI, 70 ev): m/z (%) = 236 (M+, 100), 209 (10), 208 (62), 207 (37), 179 (13),
178 (28), 165 (26), 152 (12), 89 (11), 63 (10), 114 (12), 82 (11), 63 (15).

3-(Naphthalen-1-yl)-2H-chromen-2-one: 7t1H-NMR (300 MHz, Chloroform-d) δ 7.97–7.87 (m, 2H),
7.84–7.76 (m, 2H), 7.64–7.41 (m, 7H), 7.38–7.30 (m, 1H). 13C-NMR (75 MHz, Chloroform-d) δ 160.77,
153.97, 142.77, 133.66, 132.64, 131.65, 131.53, 129.36, 128.53, 128.37, 127.93, 127.63, 126.48, 126.07, 125.23,
124.54, 119.32, 116.68. GC-MS (EI, 70 ev): m/z (%) = 272 (M+, 100), 273 (19), 271 (79), 255 (11), 244 (24),
243 (50), 216 (11), 215 (58), 214 (10), 213 (28), 189 (17), 107 (18), 95 (17), 63 (11).

3-(4-Methoxyphenyl)-2H-chromen-2-one: 7t1H-NMR (300 MHz, Chloroform-d) δ 7.75 (s, 1H), 7.71–7.63
(m, 2H), 7.56–7.44 (m, 2H), 7.34 (ddd, J = 8.0, 1.3, 0.7 Hz, 1H), 7.31–7.23 (m, 1H), 7.02–6.90 (m, 2H), 3.85
(s, 3H). 13C-NMR (75 MHz, Chloroform-d) δ 160.74, 160.10, 153.24, 138.43, 130.95, 129.78, 127.81, 127.65,
127.02, 124.38, 119.79, 116.32, 113.87, 55.32. GC-MS (EI, 70 ev): m/z (%) = 252 (M+, 100), 224 (10), 210
(10), 209 (65), 181 (41), 152 (35).

3-(3-Methoxyphenyl)-2H-chromen-2-one: 7t1H-NMR (300 MHz, Chloroform-d) δ 7.81 (s, 1H), 7.53 (td,
J = 7.4, 1.6 Hz, 2H), 7.40–7.32 (m, 2H), 7.32–7.25 (m, 3H), 6.95 (ddd, J = 8.1, 2.6, 1.2 Hz, 1H), 3.85 (s, 3H).
13C-NMR (75 MHz, Chloroform-d) δ 160.41, 159.48, 153.45, 139.94, 135.96, 131.40, 129.43, 128.09, 127.89,
124.44, 120.86, 119.55, 116.38, 114.47, 114.16, 55.32. GC-MS (EI, 70 ev): m/z (%) = 252 (M+, 100), 224
(46), 194 (10), 182 (10), 181 (68), 167 (10), 165 (21), 153 (13), 152 (62), 151 (16), 127 (10), 126 (14), 63 (16),
39 (10).

3-(4-Fluorophenyl)-2H-chromen-2-one: 7u1H-NMR (300 MHz, Chloroform-d) δ 7.79 (s, 1H), 7.75–7.64 (m,
2H), 7.54 (ddt, J = 7.6, 6.0, 1.8 Hz, 2H), 7.37 (dt, J = 8.8, 0.8 Hz, 1H), 7.34–7.27 (m, 1H), 7.19–7.06 (m, 2H).
13C-NMR (75 MHz, Chloroform-d) δ 164.70, 160.51, 153.47, 139.65, 131.48, 130.70, 130.39 (d, J = 8.3 Hz),
127.87, 127.30, 124.56, 119.54, 116.47, 115.46 (d, J = 21.6 Hz). GC-MS (EI, 70 ev): m/z (%) = 240 (M+, 93),
212 (100), 184 (14), 183 (81), 181 (14), 157 (19), 107 (12), 106 (21), 92 (12), 91 (13).
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3-(3-Fluorophenyl)-2H-chromen-2-one: 7y1H-NMR (300 MHz, Chloroform-d) δ 7.79 (s, 1H), 7.56–7.47
(m, 2H), 7.47–7.38 (m, 2H), 7.38–7.28 (m, 2H), 7.27–7.19 (m, 1H), 7.05 (tdd, J = 8.3, 2.6, 1.1 Hz, 1H).
13C-NMR (75 MHz, Chloroform-d) δ 164.24, 160.57 (d, J = 61.2 Hz), 153.54, 140.38, 136.63 (d, J = 8.1 Hz),
131.78, 129.95 (d, J = 8.4 Hz), 128.04, 126.99 (d, J = 2.4 Hz), 124.61, 124.13 (d, J = 3.1 Hz), 119.36, 116.49,
115.84 (d, J = 7.0 Hz), 115.55 (d, J = 8.9 Hz). GC-MS (EI, 70 ev): m/z (%) = 240 (M+, 80), 212 (90), 183
(100), 157 (10), 63 (10).

Dibenzo[b,f]oxepine-10-carbonitrile: 91H-NMR (300 MHz, Chloroform-d) δ 7.62 (dd, J = 8.1, 1.7 Hz, 1H),
7.54–7.41 (m, 3H), 7.35–7.18 (m, 5H). 13C-NMR (75 MHz, Chloroform-d) δ 158.30, 157.43, 142.37, 132.86,
131.91, 130.42, 128.29, 128.03, 126.17, 125.60, 125.41, 121.91, 121.67, 118.46, 113.99.GC-MS (EI, 70 ev):
m/z (%) = 219 (M+, 100), 191 (25), 190 (93), 165 (12), 164 (30), 163 (25), 82 (10), 63 (12).

3-(3-Chlorophenyl)-2H-chromen-2-one: 1H-NMR (300 MHz, Chloroform-d) δ 7.83 (s, 1H), 7.70 (td, J = 1.7,
1.0 Hz, 1H), 7.64–7.59 (m, 1H), 7.59–7.51 (m, 2H), 7.42–7.37 (m, 2H), 7.37–7.28 (m, 2H). 13C-NMR
(75 MHz, Chloroform-d) δ 160.15, 153.59, 140.43, 136.35, 134.38, 131.82, 129.68, 128.89, 128.54, 128.05,
126.96, 126.74, 124.63, 119.37, 116.53. GC-MS (EI, 70 ev): m/z (%) = 256 (M+, 100), 230 (27), 229 (17), 228
(95), 166 (10), 165 (80), 164 (22), 163 (27), 139 (12), 110 (10), 82 (13), 75 (12), 63 (12). HRMS (EI): Calcd.
for [[M + H]+: C15H9ClO2]+: 257.03638, found: 257.03614.

3-(4-Chlorophenyl)-2H-chromen-2-one: 7t1H-NMR (300 MHz, Chloroform-d) δ 7.82 (d, J = 0.6 Hz, 1H),
7.71–7.62 (m, 2H), 7.59–7.50 (m, 2H), 7.46–7.40 (m, 2H), 7.37 (dt, J = 8.9, 0.8 Hz, 1H), 7.34–7.28 (m, 1H).
13C-NMR (75 MHz, Chloroform-d) δ 160.32, 153.52, 139.91, 134.92, 133.05, 131.66, 129.82, 128.67, 127.95,
127.15, 124.60, 119.46, 116.50. GC-MS (EI, 70 ev): m/z (%) = 256 (M+, 100), 230 (24), 229 (10), 228 (73),
165 (60), 164 (18), 163 (20).

3-(Pyridin-3-yl)-2H-chromen-2-one: 7z1H-NMR (300 MHz, Chloroform-d) δ 8.80 (d, J = 2.4 Hz, 1H), 8.61
(dd, J = 4.9, 1.7 Hz, 1H), 8.05 (d, J = 8.5 Hz, 1H), 7.28–7.22 (m, 1H), 7.44–7.31 (m, 3H), 7.25 (s, 1H),
7.14 (td, J = 7.6, 1.0 Hz, 2H). 13C-NMR (75 MHz, Chloroform-d) δ 153.33, 149.55, 149.14, 136.43, 134.27,
132.25, 130.90, 127.68, 123.61, 122.92, 119.62, 115.38. GC-MS (EI, 70 ev): m/z (%) = 221 (M+, 100), 222
(26), 139 (12).

4-Methyl-3-phenyl-2H-chromen-2-one: 7t1H-NMR (300 MHz, Chloroform-d) δ 7.69 (dd, J = 8.0, 1.5 Hz,
1H), 7.55 (ddd, J = 8.6, 7.2, 1.5 Hz, 1H), 7.50–7.36 (m, 4H), 7.36–7.28 (m, 3H), 2.32 (s, 3H). 13C-NMR
(75 MHz, Chloroform-d) δ 160.93, 152.66, 147.59, 134.42, 131.29, 129.99, 128.40, 128.18, 127.33, 125.08,
124.22, 120.54, 116.85, 16.56. GC-MS (EI, 70 ev): m/z (%) = 236 (M+, 96), 235 (82), 208 (60), 207 (100), 179
(24), 178 (62), 177 (11), 176 (13), 165 (22), 152 (22), 151 (10), 139 (15), 131 (28), 115 (20), 102 (12), 89 (23),
77 (21), 75 (10), 63 (21), 51 (17), 50 (10), 39 (15).

3,4-Diphenyl-2H-chromen-2-one: 101H-NMR (300 MHz, Chloroform-d) δ 7.54 (ddd, J = 8.6, 6.6, 2.2 Hz,
1H), 7.44 (ddd, J = 8.3, 1.2, 0.6 Hz, 1H), 7.34–7.28 (m, 3H), 7.23–7.10 (m, 9H). 13C-NMR (75 MHz,
Chloroform-d) δ 161.26, 153.22, 151.57, 134.46, 133.84, 131.43, 130.51, 129.35, 128.33, 128.25, 127.78,
127.73, 127.63, 126.99, 124.11, 120.51, 116.76. GC-MS (EI, 70 ev): m/z (%) = 298 (M+, 100), 297 (90), 281
(11), 270 (28), 269 (28), 268 (16), 255 (13), 253 (17), 252 (11), 241 (32), 240 (10), 239 (47), 165 (12), 119 (19).

2H-Chromen-2-one: 7m1H-NMR (300 MHz, Chloroform-d) δ 7.62 (d, J = 9.6 Hz, 1H), 7.50–7.35 (m, 2H),
7.30–7.13 (m, 2H), 6.34 (d, J = 9.5 Hz, 1H). 13C-NMR (75 MHz, Chloroform-d) δ 160.74, 154.03, 143.39,
131.80, 127.83, 124.39, 118.81, 116.88, 116.69. GC-MS (EI, 70 ev): m/z (%) = 146 (M+, 56), 118 (100), 90
(44), 89 (41), 64 (10), 63 (28), 62 (12).

(Z)-2,3-Diphenylacrylonitrile: 111H-NMR (300 MHz, Chloroform-d) δ 7.98–7.85 (m, 2H), 7.73–7.64 (m,
2H), 7.55 (s, 1H), 7.52–7.39 (m, 6H). 13C-NMR (75 MHz, Chloroform-d) δ 142.20, 134.41, 133.66, 130.49,
129.22, 129.16, 129.02, 128.91, 125.95, 117.95, 111.64. GC-MS (EI, 70 ev): m/z (%) = 205 (M+, 100), 204
(92), 203 (26), 190 (52), 178 (23), 177 (27), 176 (24), 165 (13), 151 (13), 102 (12), 89 (14), 88 (11), 77 (11), 76
(16), 75 (11), 63 (13), 51 (22), 50 (14), 39 (11).
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(Z)-3-(4-Hydroxyphenyl)-2-phenylacrylonitrile: 111H-NMR (300 MHz, DMSO-d6) δ 10.29 (s, 1H), 7.93–7.76
(m, 3H), 7.75–7.64 (m, 2H), 7.54–7.43 (m, 2H), 7.42–7.31 (m, 1H), 6.92 (d, J = 8.7 Hz, 2H). 13C-NMR
(75 MHz, DMSO-d6) δ 160.02, 142.91, 134.37, 131.44, 129.14, 128.61, 125.41, 124.79, 118.64, 115.89, 105.85.
GC-MS (EI, 70 ev): m/z (%) = 221 (M+, 100), 206 (18), 204 (10), 203 (11), 202 (24), 192 (11), 191 (14) 190
(19), 177 (11), 165 (40), 164 (13), 63 (12), 51 (16), 39 (10).

4. Conclusions

In summary, a practical procedure for the synthesis of 3-aryl-2H-chromen-2-ones from
salicylaldehydes and arylacetonitriles has been established. With tBuOK as the promotor and DMF as
the solvent, good to excellent yields of chromenones were obtained. Additionally, no protection of
inert gas atmosphere is required here.

Supplementary Materials: Supplementary materials are available online.
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