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Survival can be considered a relatively ‘old’ trait in animal breeding, yet

commonly neglected in aquaculture breeding because of the simple binary

records and generally low heritability estimates. Developing routine genetic

evaluation systems for survival traits however, will be important for breeding

robust strains based on valuable field survival data. In the current study, linear

multivariate animal model (LMA) was used for the genetic analysis of survival

records from 2-year classes (BL2019 and BL2020) of pacific white shrimp

(Penaeus vannamei) breeding lines with data collection of 52, 248 individuals

from 481 fullsib families. During grow-out test period, 10 days intervals of

survival data were considered as separate traits. Two survival definitions,

binary survivability (S) and continuous survival in days (SL), were used for the

genetic analysis of survival records to investigate; 1) whether adding more

survival time information could improve estimation of genetic parameters; 2)

the trajectory of survival heritability across time, and 3) patterns of genetic

correlations of survival traits across time. Levels of heritability estimates for both

S and SL were low (0.005–0.076), while heritability for survival day number was

found to be similar with that of binary records at each observation time and

were highly genetically correlated (rg > 0.8). Heritability estimates of body

weight (BW) for BL2019 and BL2020 were 0.486 and 0.373, respectively.

Trajectories of survival heritability showed a gradual increase across the

grow-out test period but slowed or reached a plateau during the later

grow-out test period. Genetic correlations among survival traits in the grow-

out tests were moderate to high, and the closer the times were between

estimates, the higher were their genetic correlations. In contrast, genetic

correlations between both survival traits and body weight were low but

positive. Here we provide the first report on the trajectory of heritability

estimates for survival traits across grow-out stage in aquaculture. Results will

be useful for developing robust improved pacific white shrimp culture strains in

selective breeding programs based on field survival data.
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Introduction

Aquaculture is playing an increasingly important role in

world food security, development of economic sustainability,

and to provide practical solutions for addressing ecosystem

services issues (Bernatchez et al., 2017; Houston et al., 2020;

Naylor et al., 2021). Sustainability of aquaculture production in

global food systems however, has become vulnerable due to the

rapid expansion of aquaculture industry, outbreak of diseases/

pathogens, water environmental pollution, and in particular,

from the impacts of climate changes (Troell et al., 2014; Reid

et al., 2019). Consequently, there has seen an increasing demand

for better management and breeding of robust culture lines

(Friggens et al., 2017). Genetic improvement via selective

breeding is widely acknowledged as an efficient tool to

improve economically important traits including: feed

conversion ratios, biomass production, and overall survival

rates of domesticated aquatic animals (Gjedrem et al., 2012;

Hung et al., 2013; Nguyen, 2016; Gjedrem and Rye, 2018). A wide

range of projects have confirmed selective breeding to be an

efficient strategy for enhancing overall survival rate and disease

resistance performance in farmed aquatic species, and thereby

contributing to the development of aquaculture in a sustainable

way (Yáñez et al., 2014; Houston, 2017).

In general terms, two selection approaches have been

commonly used to develop robustness in aquaculture genetic

breeding programs. One approach is to improve specific disease

resistance via controlled challenge tests in target breeding lines.

For this approach, tested families are artificially infected with a

specific pathogen in a controlled environment condition via

intra-peritoneal injection, immersion or cohabitation.

Following this, additive genetic variance among families for

phenotypic resistance against the target pathogen can be

identified and used in future breeding plans (Ødegård et al.,

2011; Yáñez et al., 2014). Currently, disease resistance strains

have been developed successfully via this approach for a number

of aquatic species, including farmed salmonid species (Correa

et al., 2015; Vallejo et al., 2017; Barría et al., 2019), Pacific oyster

(Gutierrez et al., 2018), and European sea bass (Palaiokostas

et al., 2018). A second approach is to use selection based on

survival data records in the field and this can provide another

important data source for selecting robustness by improving

overall individual survival rate (Gjedrem and Rye, 2018) and for

developing specific disease resistance strains (Barría et al., 2020;

Fraslin et al., 2022). This approach allows direct collection of data

under real commercial farm conditions, and thereby avoids

potential for genotype-by-environment (G-by-E) problems as

seen in controlled challenge experiments between challenge test

environments and production conditions on farm. Survival data

records however, are often neglected in aquaculture breeding

programs because they are based on simple binary records (0 or

1) and generally show low heritability.

Genetic analyses of survival phenotypic data in aquaculture

breeding programs are commonly treated as a binary trait with

‘alive vs. dead’ reported for individuals at a specific observation

time point scored as 1 and 0, respectively. Under this scenario,

individuals that died early or later during the grow-out period

would be given the same score, which means that useful

information about relative survival time and/or lifespan is lost

and therefore has not been used in the genetic analysis (Ødegård

et al., 2006). Moreover, binary record variables of survival are

commonly non-normally distributed, an issue that may

compromise estimations of genetic components using a linear

mixed animal model. To address this problem, survival records

scored as continuous traits of survival time have been

implemented successfully for genetic evaluation of survival

data in animal breeding programs (Ducrocq and Casella,

1996; Van Pelt et al., 2015; Heise et al., 2016). In this way,

survival phenotype can be recorded as normally distributed

continuous traits and information about individuals with

different survival time/lifespans can be captured effectively in

the analysis. To date, genetic analyses of survival data scored as

continuous traits have only been reported on farmed aquatic

species for controlled challenge tests (Suebsong et al., 2019; Joshi

et al., 2021a) while survival data from commercial breeding lines

has rarely been investigated.

Different genetic evaluation models are available for genetic

analyses of survival traits in animal breeding (Forabosco et al.,

2009). A proportional hazard model (PHM) is a common model

used for genetic evaluation of survival traits, and can be applied

with a free open access software package in Survival Kit (Ducrocq

and Sölkner, 1994; Ducrocq et al., 2010). PHM can handle large

survival data sets rapidly and easily, manage survival data sets

with skewed distributions, and is considered to provide accurate

estimates (Sewalem et al., 2010; Zavadilová et al., 2011). In

genetic evaluations however, it is difficult to process genetic

correlations with other continuous traits at the same time

(Tarrés et al., 2006). Alternatively, linear models and

threshold models have been widely used for genetic analyses

of survival data in aquaculture genetics. Compared with linear

models, threshold models applying a logit link function are

feasible for dealing with non-normally distributed binary

survival data. However, they generally require more

computational time and cannot estimate genetic correlations

with other continuous traits simultaneously. In practice,

analyses using either threshold models or PHM take almost

five to ten times more computational time than do applying

linear models to address almost the same tasks (Boettcher et al.,
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1999). Moreover, estimations of true breeding values (EBVs)

have shown very similar correlations between linear models and

threshold models (Veerkamp et al., 2002). While different linear

models including random regression models (RRMs) have been

used successfully for national genetic evaluations of survival data

in dairy cattle (Sasaki et al., 2015; Van Pelt et al., 2015, 2016;

Heise et al., 2016, 2018), there are currently no standardized

model choices for routine genetic evaluation of survival data in

aquaculture breeding programs.

Another important consideration for genetic analysis of

survival traits in aquaculture species is changes of time.

Survival traits are dynamic quantitative traits, which can

change spatially and temporally due to multiple interactions

between animal and environmental constraints. Therefore,

understanding the trajectory of time for survival traits can be

very useful for making critical decisions in a breeding plan

(Schaeffer, 2004). Studies on trajectory of time for important

economic traits in aquaculture genetics are still rare (Vehviläinen

et al., 2010), and the few reported cases have mostly focused on

growth traits (Turra et al., 2012; He et al., 2017; Schlicht et al.,

2018), while to date, there has been no reports on trajectory of

survival traits across grow-out testing stage.

Pacific white shrimp (Penaeus vannamei) has become the

most widely farmed prawn species across the world. Annual

global production reached ~4.4 million tons with a commercial

value of 26.7 billion USD in 2020, which ranked as the most

important traded food commodity across the aquaculture sector

(Kumar and Engle, 2016; FAO, 2020). Sustainability of prawn

farming has been affected however, by emergence of several

diseases that show high mortality rates (Robinson et al., 2022).

Developing robust culture strains of pacific shrimp via selective

breeding will play a crucial role for improving the economic

profitability and animal welfare of this major aquatic farmed

species. The main objective here was therefore to develop routine

genetic evaluation of survival records in a genetic improvement

program for pacific shrimp in China. Specifically, we evaluated:

1) genetic parameters from two different survival definitions for

the binary traits of survivability and the continuous trait of

survival time; 2) the trajectory of heritability for survival traits

across the grow-out test period; and 3) genetic correlation

patterns for survival traits across grow-out stage and their

correlation with growth. Results from the current program

will provide insight into selection breeding of robust culture

strains based on field survival records in aquaculture species.

Materials and methods

Study population

The study population constituted the breeding nucleus from

a pacific white shrimp stock improvement program in Hainan

Island (China), with the selection target being for local farm

environments in China based on a family selection approach.

Foundation populations were produced in 2015 sourced from

12 hatchery lines in China representing four genetic populations

as evidenced from a population structure analysis (Ren et al.,

2018). In 2015, 98 full families were produced (Ren et al., 2020a).

Following this, for each breeding cycle, 209–250 families were

produced over a 1-week period. Family pedigree management

used physical visible implant elastomer (VIE) tags, while in

parallel a parentage assignment panel (Ren et al., 2022) was

developed in 2019 to meet the demands of more large family

numbers in the selective breeding program. The mating system

for this program used a nested mating design via one single male

with two females. The ratio of dam/sire was maintained at ~

1.7 with the aim to generate better genetic tier for EBVs

estimation. Grow-out management conditions of the breeding

line have been reported in earlier studies (Ren et al., 2020b, Ren

et al., 2020c).

Data records

In the current study, genetic analysis data were sourced from

two different year classes 2019 (BL 2019) and 2020 (BL 2020) in

the breeding nucleus line. The BL2019 line, consisted of 243 full-

sibs families generated from 157 sires and 243 dams over a 1-

week period, while the BL2020 line consisted of 238 full-sibs

families produced by 143 sires and 238 dams (Table 1). The mean

number of shrimp per family for the grow-out test was 102.8 for

BL2019 and 114.7 for BL2020, with a total number of 52,

248 individuals recorded for data collection (Table 1).

Dead individuals from the breeding lines were collected three

times per day across the grow-out period and pedigree

information of mortalities was recorded from visible implant

elastomer (VIE) tags. At the end of the grow-out test stage, all

remaining harvested individuals in the test system were scored

for body weight, pedigree of family ID, and gender.

Trait definition

Data collected on survival from each 10 days interval were

considered as separate traits over the grow-out period. Survival

phenotype was recorded using two definitions in the genetic

analysis. First, survival phenotype at the end of each 10 day

period was coded as a binary trait of survivability, with 0 for dead

individuals and 1 for live individuals. Secondly, survival data for

each 10 day period was considered to be a continuous trait of

survival time indicating howmany days individuals survived over

the test period. For example, live individuals in each breeding line

at surviving to 100 days were coded as 100d and dead individuals

at 86 days or 56 days were coded as 86d or 56d, respectively.

Therefore, survival data records from BL2019 breeding line

across the 117 days grow-out period were coded as
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12 survivability binary traits (S1, S2, . . ., S11, S12) and

12 continuous traits of survival (SL1, SL2, . . ., SL11, SL12) for

each observed time window of 10 days. Similarly, the 98 days

records of survival data from BL2020 considered 10 survival

binary traits (S1, S2, . . ., S9, S10) and 10 continuous traits of

survival days (SL1, SL2, . . ., SL9, SL10), respectively. At the

conclusion of the grow-out tests, phenotype of body weight for

each shrimp was collected as a continuous trait (BW), while data

from the final population census of live shrimps were recorded as

a binary survival trait (SUR).

Statistical analysis

Survival probability estimates and daily mortality
Changes in survival probability of shrimp in breeding lines

across the experimental grow-out period were analysed using the

Kaplan-Meier estimator (Kaplan and Meier, 1958). Shrimp that

survived at each observed time (days) were treated as censored.

The “Survminer” function (Kassambara et al., 2017) in the R

package (R Core Team, 2019) was used to estimate Kaplan-Meier

survival curves by;

Ŝ (t) � Π̂
ti ≤ t

( 1 − di

ni
)

where, ni is the number of alive shrimp at risk at observed time ti,

and di is the number of deaths at the observed time. In addition,

daily mortality in the breeding lines was also plotted for the

general husbandry management assessment purposes.

Genetic analyses

Genetic parameters
WOMBAT software (Meyer, 2007) was used to fit the

following linear multivariate animal model (LMA) for the

genetic analysis:

y � Xβ + Zα + e (1)

where, y is a vector of phenotype for the traits defined here (S1-

S12, SL1-SL12, SUR, and BW); β is the vector of fixed effects

including sex, tanks and family batches; α is the vector of random

additive genetic effects; e is the vector of random residual errors;

and, X and Z are known incidence matrices relating observations

to the fixed and random effects mentioned above. Both vector of

α and e are assumed to be multivariate normal distribution with

mean zero and variances as:

Var[ α
e
] � [Aσ2α 0

0 Iσ2α
],

here, σα
2 and σe

2 are the random additive variances and error

variances, respectively. A is the numerator relationship

matrix based on pedigree information, and I represents an

identity matrix. Total variance (σp
2) was calculated as the sum

of random additive genetic variance (σα
2) and random

residual components (σe
2). Heritability (h2) was calculated

as the ratio of the random genetic variance to the total

phenotype variance, h2 � σ2α/σ
2
p. Phenotypic correlation (rp)

between two traits was calculated as: γp � σα1,2+σe1,2�������������
( σ2α1+σ2e1)+( σ2α2+σ2e2)

√ ;

and genetic correlation (rg) between two traits was calculated

as:γg � σα1,2����
σ2a1 σ

2
a2

√ . The values of data matrix for rp and rg were

displayed as heat maps in R package (R Core Team, 2019).

From the output of LMA genetic analyses, rp and rg between

phenotype traits were aligned using R package in the ‘Matrix’

package and after, function of ‘pheatmap’ in R was used to

plot the graphic representations of the correlation

matrix data.

Correlations of binary traits and survival
days

Bivariate analyses were performed, in which the two

definition types of survival phenotype were modeled

simultaneously. Equations used in the bivariate animal model

can be defined as follows:

[y1

y2
] � [X 0

0 X
][ β1

β2
] + [Z 0

0 Z
][ α1

α2
] + [ e1

e2
] (2)

where, the symbols represent the same vectors as described in the

multivariate analysis of Model 1; the subscripts 1 and 2 are two

different records for survival data of binary traits (S1-S12) and

survival days (SL1-SL12) at each observed time window,

respectively.

TABLE 1 Data structure of pacific white shrimp breeding nucleus lines.

Year No. Shrimp Shrimp/family No. Family Sires Dams

2019 24, 980 102.8 243 157 243

2020 27, 304 114.7 238 143 238

Total/mean 52, 284 108.7 481 300 481
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Common environmental effect

Two linear univariate animal models were developed for the

significance test of the full-sib family effect (c2) in the genetic analyses.

Equations of univariate animal models can be written as follows:

y � Xβ + Zα +Wf + e (3)
y � Xβ + Zα + e (4)

where, f is the vector of random full-sib family effects and W is

the corresponding design matrices; other symbols represent the

same vectors as described in Model 1. Compared with Model 3,

there was no random full-sib family effect in Model 4. Likely

statistical significance for the random full-sib family effects were

analysed using a likelihood ratio approach. After running the two

above univariate Models, significance for the random full-sib

family effects were compared to the final log-likelihood

(Maximum log L) using a Chi-square (χ2) test.

Results

Patterns of survival

Kaplan–Meier survival curves showed changes in survival

probability across the grow-out test periods for each year

breeding line over the 2 year test period (Figure 1). At the end

of the grow-out test period, survival probability for BL2019 was

89.4%, while for BL2020 it was 84.4%. These survival estimators

however, presented some bias to the final population census

(80.4% and 64.2%) at the end of grow-out test. Differences

between the bias estimates indicate a proportion of shrimp

mortality events apparently were not detected over the test

periods. There were also significant differences (p < 0.01) in

mortality among families for the two breeding lines investigated

here. Means of daily mortality records for BL2019 and

BL2020 were 0.1% and 0.17%, respectively (Figure 1). Overall,

daily mortalities fluctuated at 0.1%–0.25% for breeding lines

FIGURE 1
Kaplan-Meier survival curves and daily mortality changes for the shrimp breeding lines: (A) 2019 (BL 2019) of 243 fullsib families and (B) 2020 (BL
2020) of 238 fullsib families.
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across the 2 years. Small peaks in mortality were first observed at

the beginning of each test in the first week, which in part, can be

explained as due to handling stress during VIE tagging. Most

daily mortality peaks were evident at later stages of the grow-out

test periods, where the highest daily mortality at 0.38% peaked at

~ 90 days for BL 2019, while the highest daily mortality for

BL2020 peaked for 0.78% at 70 days. The time period of the

highest daily mortality events coincided with the coldest winter

season period at the hatchery location in Hainan.

Descriptive statistics of genetic analyses

For both year breeding lines, all families had records for

survival data. Basic descriptive statistics for each trait are

presented in Table 2. The coefficient of variation (CV) for

survival traits gradually increased for survival data record (SL)

in both year lines. CV for survival days ranged from 3.32% to

12.49% for BL 2019, while similar patterns for CV of SL were also

observed for the BL 2020 line. Means of survival trait (S) at the

end of the grow-out test period were higher than that of SUR,

indicating some mortality events had not been observed.

Genetic parameters

Estimates of variance components and heritability of

survivability records for binary traits (S), survival days (SL),

final population census of survival (SUR), and body weight (BW)

are presented in Table 3. Levels of heritability estimates for S and

SL were both low and ranged from 0.005 to 0.076. Heritability for

survival days (SL) was found to be closer with that of binary

records (S) at each time of observation. While slightly higher

heritability estimates were found for S than for SL at early stages

of the grow-out testing period in the BL2019 line, they were very

closer in the middle to later test periods. The trajectories of S and

TABLE 2 Descriptive statistics of phenotype traits for the breeding lines of BL2019 and BL 2020.

Trait BL2019 BL2020

N Min Max Mean N Min Max Mean

S1 24,980 0.000 1.000 0.998 27,304 0.000 1.000 0.984

S2 24,980 0.000 1.000 0.996 27,304 0.000 1.000 0.981

S3 24,980 0.000 1.000 0.994 27,304 0.000 1.000 0.972

S4 24,980 0.000 1.000 0.990 27,304 0.000 1.000 0.959

S5 24,980 0.000 1.000 0.984 27,304 0.000 1.000 0.947

S6 24,980 0.000 1.000 0.979 27,304 0.000 1.000 0.932

S7 24,980 0.000 1.000 0.973 27,304 0.000 1.000 0.899

S8 24,980 0.000 1.000 0.963 27,304 0.000 1.000 0.876

S9 24,980 0.000 1.000 0.942 27,304 0.000 1.000 0.865

S10 24,980 0.000 1.000 0.922 27,304 0.000 1.000 0.859

S11 24,980 0.000 1.000 0.910 NA NA NA NA

S12 24,980 0.000 1.000 0.903 NA NA NA NA

SL1 24,980 1.000 10.000 9.986 27,304 1.000 10.000 9.904

SL2 24,980 1.000 20.000 19.957 27,304 1.000 20.000 19.730

SL3 24,980 1.000 30.000 29.909 27,304 1.000 30.000 29.493

SL4 24,980 1.000 40.000 39.833 27,304 1.000 40.000 39.134

SL5 24,980 1.000 50.000 49.704 27,304 1.000 50.000 48.657

SL6 24,980 1.000 60.000 59.521 27,304 1.000 60.000 58.045

SL7 24,980 1.000 70.000 69.288 27,304 1.000 70.000 67.215

SL8 24,980 1.000 80.000 78.978 27,304 1.000 80.000 76.058

SL9 24,980 1.000 90.000 88.535 27,304 1.000 90.000 84.753

SL10 24,980 1.000 100.000 97.862 27,304 1.000 98.000 93.352

SL11 24,980 1.000 110.000 107.024 NA NA NA NA

SL12 24,980 1.000 118.000 116.089 NA NA NA NA

SUR 24,980 0.000 1.000 0.755 27,304 0.000 1.000 0.585

BW 20,078 2.300 57.000 21.394 17,529 1.900 41.900 17.946

N, the number of shrimp; S1-S12, survivability of binary traits for each observed time window of 10 days period; SL1-SL12, continuous traits of survival days for each observed time window

of 10 days period; SUR, binary trait of survival for the final population census; BW, body weight of shrimp.
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SL during grow-out test period are illustrated in Figure 2. The

slightly higher heritability estimates for survival in BL2020 than

in BL2019 were expected since we recorded a higher daily

mortality in BL 2020. It was interesting that, for both 2-year

data groups, heritability of S showed a steady increase over time.

While SL estimates increased during the first 60 days, levels of

heritability for SL fluctuated at ~0.06 and maintained a plateau

after this initial period.

Heritability estimates for final population census survival

(SUR) were very similar for S and SL at the final testing stage,

while for body weight (BW) in BL2019 and BL 2020, they were

0.486 ± 0.036 and 0.373 ± 0.031, respectively.

Phenotype and genetic correlations

Summaries of phenotype (rp) and genetic (rg) correlations

with SE for S, SL, SUR, and BW are provided in

Supplementary Tables S1–S4. In general rg for S, estimates

between different times were moderate to high and ranged

from 0.475 (S1 vs S12) to 0.999 (S11 vs S12) in the

BL2019 breeding line, and 0.277 (S1 vs S10) to 0.999 (S9 vs

S10) for BL 2020, respectively. Estimates of rg for SL between

different times were much closer compared with that of S in

both 2-year breeding lines. As expected, estimates of rg
between SUR and S, or SUR and SL were much lower, and

in most cases were only moderate correlations likely due to the

issues referred to unobserved mortality events when

estimating SUR vs. S/SL. In contrast, estimates of rg for

BW and all survival related traits (S/SL/SUR) were low but

all positive. We consider that this result implies that selection

directed on survival related traits would not experience

potentially negative tradeoff effects on growth traits.

Patterns of phenotype correlations (rp) among S, SL, SUR,

and BW were similar to those for rg but were always slightly

lower than for rg (Figure 3).

TABLE 3 Estimates of variance components and heritabilities (h2 ± se) for the genetic analyse of survival data and body weight.

Trait BL2019 BL2020

σα
2 σp

2 σe
2 h2 ± se σα

2 σp
2 σe

2 h2 ± se

S1 1.09 E-5 2.31 E-3 2.30 E-3 0.005 ± 0.002 3.02 E-4 1.53 E-2 1.50 E-2 0.020 ± 0.004

S2 6.64 E-5 3.83 E-3 3.76 E-3 0.017 ± 0.003 5.88 E-4 1.86 E-2 1.80 E-2 0.017 ± 0.003

S3 2.11 E-4 6.21 E-3 6.00 E-3 0.034 ± 0.005 1.16 E-3 2.70 E-2 2.58 E-2 0.043 ± 0.006

S4 4.59 E-4 9.99 E-3 9.53 E-3 0.046 ± 0.005 2.20 E-3 3.96 E-2 3.74 E-2 0.056 ± 0.007

S5 9.57 E-4 1.58 E-2 1.49 E-2 0.060 ± 0.007 3.11 E-3 5.08 E-2 4.77 E-2 0.061 ± 0.007

S6 1.27 E-3 2.03 E-2 1.90 E-2 0.063 ± 0.008 4.38 E-3 6.32 E-2 5.89 E-2 0.069 ± 0.008

S7 1.45 E-3 2.62 E-2 2.48 E-2 0.055 ± 0.007 6.31 E-3 9.06 E-2 8.43 E-2 0.070 ± 0.008

S8 2.08 E-3 3.49 E-2 3.29 E-2 0.060 ± 0.007 8.21 E-3 1.09 E-1 1.00 E-1 0.076 ± 0.009

S9 3.16 E-3 5.38 E-2 5.07 E-2 0.059 ± 0.007 8.88 E-3 1.17 E-1 1.08 E-1 0.076 ± 0.009

S10 4.85 E-3 7.11 E-2 6.62 E-2 0.068 ± 0.008 9.15 E-3 1.21 E-1 1.12 E-1 0.075 ± 0.009

S11 5.32 E-3 8.08 E-2 7.55 E-2 0.066 ± 0.008 NA NA NA NA

S12 5.86 E-3 8.70 E-2 8.12 E-2 0.067 ± 0.008 NA NA NA NA

SL1 1.14 E-4 1.10 E-1 1.10 E-1 0.001 ± 0.002 1.09 E-2 6.34 E-1 6.23 E-1 0.017 ± 0.003

SL2 3.79 E-3 6.56 E-1 6.52 E-1 0.006 ± 0.002 9.25 E-2 4.17 E0 4.08 E0 0.022 ± 0.004

SL3 2.58 E-2 1.96 E0 1.93 E0 0.013 ± 0.003 3.29 E-1 1.16 E1 1.13 E1 0.029 ± 0.005

SL4 1.11 E-1 4.46 E0 4.35 E0 0.025 ± 0.004 9.16 E-1 2.46 E1 2.37 E1 0.037 ± 0.005

SL5 3.41 E-1 8.93 E0 8.58 E0 0.038 ± 0.005 2.06 E0 4.55 E1 4.35 E1 0.045 ± 0.006

SL6 8.28 E-1 1.65 E1 1.56 E1 0.050 ± 0.007 4.01 E0 7.63 E1 7.23 E1 0.052 ± 0.007

SL7 1.61 E0 2.80 E1 2.63 E1 0.058 ± 0.007 7.05 E0 1.19 E2 1.12 E2 0.059 ± 0.007

SL8 2.80 E0 4.45 E1 4.17 E1 0.063 ± 0.008 1.16 E1 1.79 E2 1.67 E2 0.065 ± 0.008

SL9 4.50 E0 6.78 E1 6.33 E1 0.066 ± 0.008 1.79 E1 2.59 E2 2.41 E2 0.069 ± 0.008

SL10 6.98 E0 1.01 E2 9.37 E1 0.069 ± 0.008 2.60 E1 3.61 E2 3.35 E2 0.072 ± 0.008

SL11 1.05 E1 1.47 E2 1.36 E2 0.071 ± 0.008 NA NA NA NA

SL12 1.50 E1 2.08 E2 1.93 E2 0.072 ± 0.008 NA NA NA NA

SUR 1.45 E-2 1.84 E-1 1.70 E-1 0.079 ± 0.008 3.86 E-2 4.89 E-1 4.50 E-1 0.079 ± 0.003

BW 1.59 E0 3.34 E1 1.75 E1 0.486 ± 0.036 6.69 E0 1.79 E1 1.12 E1 0.373 ± 0.031

Note: σα2, σp2, and σe
2 represent additive genetic variance, phenotype variance, and residual variance; S1-S12, SL1-SL12, SUR, and BW: see legend in Table 2; NA, not applicable.
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Trajectory of correlations between S and SL estimates

across the grow-out test period are illustrated in Figure 2.

Genetic correlations between binary survival traits (S) and

survival days (SL) were all high at the different observation

times and ranged from 0.855 to 0.982 for BL2019 and 0.877 to

0.956 for BL 2020. The results reported above suggest that

families with high survival rates are also likely to show a

general trend for a longer mean life span over the test period.

Trajectories of genetic correlations for S traits across time

were consistent with that of estimation for SL, with estimates

for rg gradually decreasing across the experimental time

period (Figure 3). Patterns of change on rg estimates for

S/SL across time were similar between breeding lines in

both years.

Full-sib family effects

The likelihood ratio test suggested that there were very limited

full-sib family effects (c2) in the genetic analysis. Among

26 comparison for BL2019, 24 tests were not significant for the

likelihood ratio tests (Supplementary Table S5). In contrast, S1 and

SUR were significant for c2 (χ21df). Data interpretation for genetic

parameters for S1 and SUR however, showed limited potential for

improving an animal model fit for full-sib family effects (Model 3)

because the new results for S1 and SUR genetic parameters showed

large associated SE estimates (S1, h2 = 0.005 ± 0.009; SUR, h2 =

0.053 ± 0.070). Similarly, there was limited potential for improving

animal model fit for full-sib family effects in the genetic analysis of

survival data fromBL2020 based on the result of likelihood ratio tests.

FIGURE 2
Trajectories of heritability for survival traits (S and SL), phenotypic correlation (rp) and genetic correlation (rg) between S and SL across grow-out
test period of (A) BL2019 line, (B) BL2020 line.
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Discussion

The current study provides the first genetic analysis of the

trajectory of survival traits across grow-out stage for improved lines

in a farmed aquatic species. Results of the genetic evaluation indicate

that heritability estimates for the two defined types survival applied

here were very similar. In general, estimated levels of heritability for

survival traits were low but increased gradually across the grow-out

test periods for both year classes. In addition, genetic correlations

between the binary trait of survivability (S) and the continuous trait

of survival time (SL) were relatively high. These findings will be

useful for genetic analyses of survival data in field environments and

potentially contribute to the development of relatively robust farmed

aquatic strains used in aquaculture. An issue we identified in the

analysis however, was missing records of some individual mortality

events across our test periods. This reflects in general the difficulty of

collecting survival data for aquaculture species in the field when

working in commercial test environments.

Mortality

Records of daily mortality in breeding lines are not only

important for genetic evaluation of survival traits, but also for

assessment of general husbandry management of population

health status in breeding lines. Changes in daily mortality

here were similar to those reported in our previous study with

the mortality rate varying between 0.1% and 0.15% (Ren et al.,

2020a). Designing and managing reliable, high quality water

culture conditions is a major constraint in selective breeding

programs for penaeid shrimps. Most daily mortality rates for

farmed penaeids domestication programs range between 0.1%

and 0.5%, depending on the different types of culture systems

employed (Yano, 2000; Coman et al., 2005; Duy et al., 2012).

The highest daily mortality peaks in both test years occurred

in late grow-out stages (Figure 1), periods that coincided with the

coldest weather temperatures in the winter seasons at the

hatchery location in China. In general, husbandry

FIGURE 3
The trajectory of phenotype (above diagonal) and genetic correlations (below diagonal) between (A) S1-S12, SUR and BW for the breeding line of
BL 2019, (B) SL1-SL12, SUR and BW of BL 2019, (C) S1-S10, SUR and BW for the breeding line of BL 2020, (D) SL1-SL10, SUR and BW for the breeding
line of BL 2020.
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management of penaeid breeding lines are considered

appropriate if daily mortality rate fluctuates around 0.5%, and

higher mortality rates do not last for longer than 7–10 days. In

our study, when mean daily temperatures increased from this

relatively low range, mortality decreased to normal levels again.

Furthermore, in most cases individuals that died during low

temperature periods were of smaller or weaker individuals.

In the current study, we observed a gap in bias between

survival estimators across the test period and the final population

census data. Collecting survival data in natural ‘field’ conditions

can be difficult in aquaculture breeding programs compared with

that in terrestrial farm animals because most mortality events are

under water and consequently, may not be detected. While

survival phenotype derived from controlled experimental

challenge tests can be more accurate (Ødegård et al., 2011;

Yáñez et al., 2014), the use of survival data in natural field

conditions can often provide better information for

developing robust culture lines in aquaculture species

(Houston et al., 2008; Lillehammer et al., 2013; Bangera et al.,

2014; Dégremont et al., 2015). In particular, survival data

collected under field conditions will better reflect natural

processes of changes in mortality in a population and

collecting these data can avoid potential G-by-E impacts when

using artificial challenge test environments.

Survival estimators and final population census results in the

current study were comparable with earlier reports on genetic

breeding programs conducted on penaeid shrimps. In Mexico,

survival rate of P. vannamei selection lines were reported to range

from 71% to 82.2% during the grow-out test stages (Campos-

Montes et al., 2013; Caballero-Zamora et al., 2015). Breeding

nucleus data for farmed P. vannamei in Colombia reported

survival rates ranging from 56.9% to 77.2% (Gitterle et al.,

2005), while they were 70% and 73% for two grow-out stages

in a selection program for P. monodon in Australia (Coman et al.,

2010). In Vietnam, survival rates for P. monodon were 34%–49%

in a family selection program (Van Sang et al., 2020).

Animal models for survival analysis

While survival traits are often recorded as non-normally

distributed binary traits, reports of genetic evaluation of survival

data in dairy cattle (Sasaki et al., 2015; Van Pelt et al., 2015, 2016;

Heise et al., 2016, 2018) suggest that linear models are likely to be

more appropriate for genetic analysis of survival data in

aquaculture. Proportion hazards models (PHM) have been

often considered to fit time-to-event survival data better

(Ducrocq, 1994; Neerhof et al., 2000), however, computing

time to analyse these data successfully is much high than with

linear models. Furthermore, using a PHM approach, it is difficult

to assess genetic correlations with other continuous traits.

Similarly, threshold models require significantly more

computing resources for genetic analysis of survival data

compared with linear models. Moreover, correlations of EBVs

estimated with threshold models and linear models have been

almost identical, indicating that there are few advantages of

applying threshold models in routine genetic analyses of

survival data (Boettcher et al., 1999; Vazquez et al., 2009). In

practical terms, consideration of model choice in breeding

programs can be a balance between multiple factors,

including: simplified data records, comparative model

performance, available computing resources, and integration

of data from other important economic traits at the same

time. We therefore consider linear multivariate animal models

(LMA) to provide informative and reliable tools for routine

genetic analysis of survival data in farmed aquatic species.

Data structure in the current study applied a larger number

of full paternity and half-sib families that were suitable for

achieving highly accurate heritability estimates. In addition,

full and half-sib families were produced over a relatively short

time period (1 week) that effectively removes time of age effects

and common environmental effects in the genetic analysis. This

can enhance the accuracy of the animal model results generated.

We therefore chose a linear multivariate animal model (LMA)

approach for our genetic analyses rather than other more

sophisticated linear animal models such as a random

regression model or repeatability model to fit age effects of

time for the survival data set here.

Heritability estimates

Heritability estimates for S1 to S12 and SL1 to SL 12 were

consistent with results reported from other pacific white shrimp

breeding programs. Gitterle et al. (2005) evaluated binary

survival traits based on 430 full-sib families in different test

environments and reported heritability estimates that ranged

from 0.04 to 0.10. In another genetic analysis of

2008–2010 survival data of pacific white shrimp in Mexico,

heritability estimates for early stage survival were 0.03 and

0.04 for later grow-out test stage (Campos-Montes et al.,

2013). In a G-by-E effect study, heritability of survival was

reported to be 0.06 under cold temperature conditions, while

it was much higher (0.11) at normal ambient temperatures (Li

et al., 2015). In addition, genetic parameters for survival in the

presence or absence of a white spot disease outbreak were

reported to be 0.00 and 0.06 (Caballero-Zamora et al., 2015),

respectively. Overall, these results for heritability estimates of

survival traits agree well with quantitative genetic theoretical

predictions that survival traits are a group of fitness-associated

traits that tend to show the lowest levels of heritability (Hill,

2010).

Here we compared two types of survival definitions; binary

traits and continuous traits for our genetic evaluation, with both

showing similar heritability estimates (Table 3). While this result

did not fit our earlier assumption that continuous traits would
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improve the results for heritability estimates via adding more

survival time information to mortality events, similar findings

have been reported for genetic analysis of survival data in

experimental challenge tests on aquaculture species (Joshi

et al., 2021a; Vu et al., 2022). Binary trait recording however,

is much more simple (0, 1) to score than continuous survival data

in practice and thus, should be considered more feasible for

routine genetic evaluation in aquaculture breeding programs.

Knowledge about heritability estimate trajectories across

time is important to improve efficiency in selection programs

and to provide insights on predicted selection response over the

time period in the test. We believe that our study is the first report

on the heritability of survival trajectory across grow-out stage in

farmed aquatic species. Results here, suggest that for both lines

and applying both types of survival trait definition, similar

patterns for trajectory with time were evident. In general,

initial heritability estimates were almost close to 0, following

which they gradually increased across the grow-out test period

before slowing down or reaching a plateau during the latter stages

(Figure 2). Of interest, this pattern in trajectory is similar

compared with some earlier reports for changes in growth

heritability estimates across different age times, whereas

heritability estimates for growth traits reached a plateau phase

in the middle to later grow-out testing stage (Turra et al., 2012;

He et al., 2017). In dairy science, similar patterns for survival trait

heritability were also reported for a 72 month period of milk

production life (Van Pelt et al., 2015). Therefore, this pattern of

heritability estimate trajectories across time can be very useful for

making critical decisions in a breeding plan.

Common full-sib effects (c2) were not significant in the

current study indicating that linear multivariate animal model

(LMA) without full-sib effects was effective for routine genetic

evaluation here. This finding agrees with a systematic review

paper on c2 estimation in aquaculture breeding suggests that full-

sib effects contribute only a small proportion of total phenotypic

variance at earlier growth stages for growth related traits, but for

growth traits in an individual’s later stages or with other

phenotypic traits, full-sib effects (c2) are not significant in

most cases and are essentially zero (Nguyen, 2021). As an

example, routine genetic evaluation models applied in

commercial tilapia selection breeding programs based on

current published genetic animal models do not include full-

sib effects (c2) (Joshi et al., 2021b).

Genetic and phenotype correlations

Both genetic and phenotypic correlations between binary and

continuous survival traits time showed high correlations (>0.8) at
each time window (Figure 2). In an aquaculture context, similar

patterns have been reported for correlations between different

types of growth related traits, including for rg/rp among body

weight, body length, and other morphological growth traits (He

et al., 2017; Schlicht et al., 2018). Patterns for rg/rp also support

findings from heritability estimates that both survival definitions

can be applied equally well for genetic selection on overall

survival trait data in commercial breeding lines.

The current study is the first report on patterns of genetic

correlations for survival traits across grow-out testing stage in a

farmed aquatic species (Figure 3). In general, patterns of genetic

correlation for survival traits across time (rg among S1 to S12 and

SL1 to SL12) in the current study were moderate to high. There

was a trend here for a gradual decrease in rg between survival

traits with the time. These patterns for rg were in accordance with

trajectories of genetic correlations for growth traits across ages in

other aquaculture studies (Turra et al., 2012; He et al., 2017;

Schlicht et al., 2018), as well as for survival traits in livestock (Van

Pelt et al., 2015). In addition, results for rp trajectories of

correlation across time between S1 to S12 and/or SL1 to

SL12 were similar with that of rg, but values for rp are always

slightly lower than for rg (Figure 3).

In contrast, genetic correlations between SUR and S1-12/

SL1-12 were much lower but nevertheless, in most instances were

still moderate (Figure 3). From observation of the patterns of

survival traits across times, the real genetic correlations between

SUR and other survival traits are likely to be much higher than

that observed here. This most likely resulted from the missing

data of survival records during the grow-out period and the final

population census. Highly accurate recording of survival data in

field commercial aquaculture environments however, is often

difficult compared with data collection in challenge test

experimental conditions, particularly, for pacific white shrimp

that are of relatively small size and that are cannibalistic. These

characteristics mean that some results of mortality events during

grow-out test period are unlikely ever to be detected under field

conditions.

In the current study, correlations between body weight and

survival traits were generally low (Figure 3), but still positive, a

result that is consistent with previous work on pacific white

shrimp (Campos-Montes et al., 2013; Caballero-Zamora et al.,

2015; Li et al., 2015; Ren et al., 2020a). This suggests overall, that

survival and growth are two groups of separate traits and can be

selected for simultaneously in a genetic breeding program via a

multi-traits selection approach.

Implications

While survival can be considered a relatively ‘old’ trait in

animal breeding, often neglected because of the simple records

(0 or 1) scored and generally low heritability estimates.

Developing routine genetic evaluation systems for survival

traits however, will be important for developing robust strains

using valuable field survival data. Firstly, survival data collection

from commercial lines can be used directly for improving overall

survival rate in target breeding lines (Gjedrem and Rye, 2018).
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Moreover, survival data recorded from commercial lines when

special events arise e.g., disease outbreaks can also be applied

effectively to developing disease resistant strains, and these type

of data are also valuable for avoiding potential G-by-E effects

compared with survival data from controlled (artificial) challenge

experiments (Bangera et al., 2014; Dégremont et al., 2015; Barría

et al., 2020; Fraslin et al., 2022). Additionally, despite of low

heritability of survival traits at the early grow-out testing stage,

routine genetic evaluation of survival data in breeding lines

provides a vital assessment of the relative health status of a

stock under the general husbandry management practices

employed in the breeding lines. Here we provide the first

report of the trajectory of heritability estimates for survival

traits across the grow-out period for pacific white shrimp

breeding lines in China. The results will be useful for applying

commercial field survival data to develop improved

robust culture lines of this important crustacean species in the

future.

Conclusions

In conclusion, we developed routine genetic evaluations for

survival data in selective breeding pacific white shrimp line in

China. Results of heritability and genetic correlation estimates

indicate that both survival definitions for binary traits and

continuous traits of survival time can be used effectively for

genetic analysis of survival data. Binary survival records

following with linear multivariate animal models (LMA)

provide a feasible routine genetic evaluation approach in

practical commercial breeding programs because of the simple

data recording, reduced computing time required, and the ability

to combine performance assessment of multiple continuous

phenotypic traits in the genetic analysis. While heritability

estimates for survival traits here were generally low, they

showed a gradual increasing trend across the grow-out period.

Genetic correlations for survival traits during grow-out tests were

moderate to high, and the closer the times were between

estimates of two survival traits, the higher were the genetic

correlations. Genetic correlations between survival traits and

body weight were low but all estimates were positive. In

summary, we first reported the trajectory of heritability

estimates for survival traits across grow-out stage in

aquaculture genetics, which would be useful for how to use

survival data in field situations to develop more robust culture

strains of P. vannamei and potentially for other farmed aquatic

species in the future.
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