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Simple Summary: The American Bullfrog (Lithobates catesbeianus), known as one of the most prob-
lematic amphibians in the world, was introduced to South Korea in the 1970s. Although it has
spread very rapidly over the past 50 years, there is no focused strategy to manage the frogs. With
the introduction of American Bullfrogs into nature, numerous native species (mostly amphibians)
are rapidly decreasing due to predation, a transmission of infectious diseases, and crossbreeding.
In particular, the critically endangered Suwon treefrog (Hyla suweonensis) is the most affected by
Bullfrogs. In this study, we modeled what environment the American Bullfrog settled in and how
it could spread in the future. It was confirmed that the distribution of the two species overlaps in
many areas at present, and the distribution of the American Bullfrog may spread to the distribution
area of the Suwon treefrog according to future climate change. Through the results of this study,
we intend to suggest a management direction for the spread of invasive species and the protection
of endangered species. Our result could contribute to many countries that have problems with the
American Bullfrogs at present and in the future.

Abstract: The American Bullfrog (Lithobates catesbeianus) has been imported into South Korea in
earnest for food since the 1970s and introduced into nature due to release and escape. Accordingly,
the influx and spread of American Bullfrogs are expected to have a direct impact on native species, but
few related studies have been conducted on this. We predicted changes in the potential distribution
and future distribution based on climate change scenarios to analyze how those changes affect
critically endangered Suwon treefrogs. Suwon treefrog sites (63.9%, 78/122) overlapped with the
distribution of Bullfrogs. According to the prediction of the future distribution of Bullfrogs, the
overlapping of American Bullfrogs and Suwon treefrog will remain similar to the current level in
the Representative Concentration Pathway (RCP) 4.5 scenario. On the other hand, in the RCP 8.5
scenario, the number of overlapping sites will increase to 72.1% (88/122) due to the spreading of the
American Bullfrogs. The results show that climate change directly affects the distribution expansion
of the American Bullfrogs but also indirectly can lead to an increased threat to Suwon treefrogs. In
conclusion, our results strongly suggest why climate change should be actively addressed in terms of
the spread of invasive species and the protection of endangered species.

Keywords: amphibian; climate change; invasive species; Maxent; modeling

1. Introduction

The decline in biodiversity is caused by many reasons such as habitat destruction,
pollution, climate change, and disease. Recently, invasive non-native species have become
a threat to ecosystem biodiversity as globalization facilitates their spread. The invasion of
the non-native species is caused by natural reasons such as habitat changes due to climate
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change, accidental draft, or typhoons. On the other hand, the artificial introduction is also
one of main causes of invasion, such as with pest controls [1], food [2], pets [3,4], and
religious release [5]. In many cases, the introduced species die out naturally, but once
they settle successfully, it is difficult to remove them by artificial methods. The non-native
species that are introduced to the wild not only cause competition [6], predation [7], and
hybrid formations [8] with the endemic species but also problems over the wider area
such as parasites or the inter-mediation of diseases [9,10]. Moreover, the socio-economic
damages required to control the invasion of non-native species are damages that humans
directly suffer from [11,12].

The American Bullfrog (Lithobates catesbeianus) is native to the United States and
Canada and is one of the most widespread amphibians in the world [13,14]. At a size of
over 150 mm, the American Bullfrog is advantageous for the predation of small endemic
species, and the characteristic of laying more than 20,000 eggs facilitates the rapid formation
and spread of the population when settled in a new environment [15,16]. In South Korea,
the American Bullfrog was first imported in late 1950 for the purpose of edible usage, but
their attempted cultivation failed [5]. Later, they were re-imported from Japan in 1973, and
after successful farming, spread to farms across the country. However, in most cases, low
profits and decreases in consumption due to dietary changes have increased the number of
farms that have given up farming, and most of the imported species were released into the
wild [17]. Over the past 50 years, American Bullfrogs have been found in very large regions,
including many islands [17]. The American Bullfrog in South Korea has food sources such
as endemic species, birds, frogs, insects, and small mammals including endemic and
endangered turtles such as Mauremys reevesii [18–20]. In addition, previous studies have
shown that the decrease in the seriously endangered Suwon treefrogs (H. suweonensis) may
be linked to diseases mediated by L. catesbeianus [10]. Therefore, the spread of L. catesbeianus
has resulted in an additional problem of ecological disturbances in South Korea, and it has
the possibility to continue in the future.

The study on species distributions through modeling is instrumental in predicting set-
tlement and spread after species introduction [21]. The invasion of the L. catesbeianus, a
representative non-native species, has been the subject of several regional distribution pre-
dictions [22–24] and distribution studies conducted around the world [21]. A prior study
predicted that L. catesbeianus could be distributed with high probability throughout the coun-
try, and the actual distribution accorded with that prediction except in some inland areas [17].
In addition, the diseases spread by L. catesbeianus have been estimated by modeling meth-
ods [25]. Modeling also makes available the ability to predict the effects among interspecies
or intergroup through changes in the distribution of organisms. The distribution modeling
is crucial to predicting the distribution of species that are currently coming into the country,
as well as those with the potential of entering into the country, and to the prediction for
the distributions and the possible spread of mediated diseases [25,26]. Using modeling to
determine the distribution characteristics of an organism is a fundamental criterion for setting
the range for control of the target species.

Hyla suweonensis is an endemic species that was first discovered in 1980, which is
very similar to the Japanese treefrog (Hyla japonica) but has distinctly characterized calling
and genetic traits [27,28]. This endemic species is usually found only in rice paddies and
has the characteristic of hibernating around rice paddies [29,30]. However, the number of
species is decreasing rapidly as the area of rice paddies diminishes [31]. Currently, they
are only found in limited areas in the west part of Korea [32]. In addition, it is believed
that the propagation of chytrid fungus (Batrachochytrium dendrobatidis) by L. catesbeianus
will be a serious threat to H. suweonensis [10,32]. As a result, the Korean government has
designated H. suweonensis as endangered species (Class 1) and has included them in the
red list to protect them. So far, many research results have been announced to protect them,
but it is difficult to find specific management methods and scope related to L. catesbeianus,
a direct threat factor.
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In this study, we predicted the potential distribution of L. catesbeianus in South Korea
according to climate change scenarios. Additionally, we assessed how the change in the
distribution of L. catesbeianus would affect endangered H. suweonensis. It will also be the
basis for effective control of L. catesbeianus that have been introduced to South Korea and
are rapidly spreading, and the basis for establishing strategies for the protection of seriously
endangered H. suweonensis.

2. Materials and Methods
2.1. Collecting Location Data

The location data used for the prediction of distribution and spreading model is based
on the database from the previous study [17]. The location data used in prior research
are from the four-time repeated state-led surveys for introduced species covering the
entire region of South Korea from 2006 to 2017 [17]. In order to reduce the differences in
results according to the investigation method, experts in the field of amphibians conducted
it based on the same survey guidelines [33]. To minimize the redundancy for the site
survey, we divided the entire country’s land (824,155.7 km2) into the grid units (1 cell:
11.2 km × 13.9 km) [17]. To reduce errors or redundancy in distribution data, we checked
each point through Google Maps and QGIS (2020) and retained or maintained a total of
2416 spots [17,34]. The distribution of H. suweonensis was based on a survey of potential
habitats from 2014 to 2016, and distribution data of the 122 locations that directly identified
the objects used in this study [35].

The climate variable made use of the 19 bioclimatic variables from 1960 to 1990 with
30 arc-second grids (~1km) provided by Worldclim (ver 1.4. http://www.worldclim.
org; accessed on 9 September 2020) [36]. Spearman’s correlations analysis was used to
reduce the collinearity that causes similarities among the variables [25]. Similar variables
were removed on the basis of the correlation r > 0.7 between the two variables. The
results showed that a total of five variables were suitable for predicting the distribution
of L. catesbeianus in Korea: Isothermality (Bio03), Maximum Temperature of the Warmest
Month (Bio05), Minimum Temperature of the Coldest Month (Bio06), Annual Precipitation
(Bio12), and Precipitation of the Wettest Month (Bio13) (Table 1). The variables, Bio01
(Annual Mean Temperature), Bio02 (Mean Diurnal Range), Bio04 (Temperature Seasonality),
Bio07 (Temperature Annual Range), Bio08 (Mean Temperature of Wettest Quarter), Bio09
(Mean Temperature of Driest Quarter), Bio10 (Mean Temperature of Warmest Quarter),
Bio11 (Mean Temperature of Coldest Quarter), Bio14 (Precipitation of Driest Month), Bio15
(Precipitation Seasonality), Bio16 (Precipitation of Wettest Quarter), Bio17 (Precipitation
of Driest Quarter), Bio18 (Precipitation of Warmest Quarter), and Bio19 (Precipitation of
Coldest Quarter), were removed due to collinearity (see Hijmans et al. 2005 for the details
of variables) [37].

Table 1. Bioclimatic variables on the distribution of Lithobates catesbeianus in South Korea.

Bioclimate Variables Mean Min Max

Bio03 Isothermality (BIO2/BIO7) (×100) 27.8 22.0 33.0
Bio05 Max Temperature of Warmest Month (◦C) 30.0 27.0 31.0
Bio06 Min Temperature of Coldest Month (◦C) −4.8 −11.1 2.5
Bio12 Annual Precipitation (mm) 1263.6 1003.0 1637.0
Bio13 Precipitation of Wettest Month (mm) 256.5 172.0 416.0

For the climate change scenario, HadGEM2-ES (HE), the scenario that was used in
the field of animals including the field of amphibians among the global climate models
(GCMs), was used [36,38,39]. The GCMs provide four Representative Concentration
Pathways (RCPs) according to changes in greenhouse gases; RCP 2.6: 2.6 W/m2, RCP 4.5:
4.5 W/m2, RCP 6.0: 6.0 W/m2 and RCP 8.5: 8.5 W/m2 [40,41]. The RCP 4.5 and RCP 8.5
scenarios for the modeling were used in this report, the scenarios where the greenhouse
gas emissions are maintained as of now, and the case that they are in the most critical

http://www.worldclim.org
http://www.worldclim.org
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condition [41]. For the prediction of future potential distribution, the data indicating the
near future and far future were used [37].

Unlike the data of L. catesbeianus obtained by repeatedly surveying the country’s entire
land, the case of H. suweonensis is based on an optional survey of the expected areas [35].
Therefore, it was determined that the data was not enough to predict potential and future
changes in distributions of H. suweonensis. The impact of the change in the distribution of
L. catesbeianus was determined by utilizing only the spot where H. suweonensis was found.

2.2. Predicting Present and Future Distribution

In the case of the data we have used, it is the result of repeated surveys of a wide range
of regions, but data on absence are not included. Therefore, we used the Maxent (ver 3.4.1,
American Museum of Natural History, New York, NY, USA), a species distribution model,
to predict species’ distribution based on presence data [42]. To predict the future distri-
bution of L. catesbeianus, we used a time period (2070, average 2061−2080) where 75% of
the distribution data were randomly selected and used as training data for modeling. The
remaining 25% of them were used to test the generated model. The deviation between
models occurs because we randomly selected the distribution data and derived the results
of the model. To reduce such deviation, each model was run 10 times and the average value
of the models was used. The accuracy of the model was indicated as the AUC (area under
the ROC (receiver operating characteristic) curve) value [43]. Usually, the AUC value is
expressed as 0.5–1, and the model is more reliable as the value is closer to 1 [40].

3. Results
3.1. Potential Distribution of Lithobates catesbeianus

The AUC for the potential distribution model of L. catesbeianus was 0.808. The variables
that mainly affect the distribution were minimum temperature of the coldest month and
the maximum temperature of the warmest month, and the contributions to the creation of
models were 57.4% and 33.4%, respectively (Table 2). It turned out that the distribution of
L. catesbeianus should be concentrated in the southern part of the country (Figure 1).

Table 2. The percentage of contribution for species distribution modeling on Lithobates catesbeianus
introduced in South Korea. Present: 1960–1990, Future: 2070 (2061–2080) (Hijmans et al. 2005) [37].

Bioclimate Variables

Contribution for Modeling (%)

Present
Future

RCP 4.5 RCP 8.5

Bio03 1.5 2.7 1.3
Bio05 33.4 31.1 27.6
Bio06 57.4 56.0 63.3
Bio12 3.4 3.2 2.2
Bio13 4.3 7.0 5.7

The distribution of H. suweonensis was mainly concentrated in the western part of
the country. A total of 78 spots (63.9%) were included within the potential distribution
range of L. catesbeianus, excluding some parts of the northwest and inland (36.1%, 44 spots)
(Figure 1, Table 3).

Table 3. The number of overlapping points with the distribution of the Hyla Suweonensis according
to the change in the distribution of Lithobates catesbeianus.

Potential Distribution
Number of Overlap Points

RCP 4.5 RCP 8.5

Present 78/122 (63.9%)
Future 79/122 (64.8%) 88/122 (72.1%)
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Figure 1. The potential distribution of Lithobates catesbeianus and the actual distribution points of
Hyla Suweonensis in South Korea.

3.2. Future Distribution of Lithobates catesbeianus

The reliability of the model predicting the future distribution shows that AUC is
0.800–0.802. The most significant influential factor in the future distribution of L. catesbeianus
was Bio 06 (Min Temperature of Coldest Month), which was the same in all scenarios
(Table 2). The distribution of L. catesbeianus was expected to increase mainly in the western,
eastern, and southern coastal areas, and decrease inland and some islands (Figure 2A,B).

The distribution spots of H. suweonensis, which overlaps with future L. catesbeianus,
decreased from 81 spots to 79 spots in the RCP 4.5 scenario (Table 3). However, the number
of overlapped spots between the distributions of the two species is expected to increase
under the RCP 8.5 scenario (Figure 3A,B).
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4. Discussion

The potential distribution of L. catesbeianus is wider than the actual area where it is
found and is expected to spread further in the future [22,24,44]. The reason is that future
climate changes, especially temperature changes, will expand the range of survivable
habitats and be a decisive factor in the spread of L. catesbeianus. Even in South Korea, the
most significant climatic factor affecting the distribution of the species was predicted as
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winter temperatures. South Korea has four distinct seasons, and the temperature in winter
drops below zero. Thus, the distribution of L. catesbeianus was concentrated on relatively
warm coasts (west, south, and east). However, according to the future climate change
scenarios, the range of areas where they can survive will increase as the winter temperature
increases. Eventually, considering the current climate change, it is difficult to expect a
natural decline in L. catesbeianus populations. Thus, we need more active and artificial
ways to control the spread.

H. suweonensis has a small scope of behavior and does not move much between
breeding and habitat (brumation) places [30]. This trait may cause a lower chance of
avoidance when L. catesbeianus is introduced. The case of a direct preying on H. suweonensis
has not been reported so far, but there has been a reported case that H. japonica, a very closely
related species of H. suweonensis, is a prey [7]. In addition, infectious diseases mediated
by L. catesbeianus can also be a potential problem for H. suweonensis [10]. Consequently,
considering our results that the distribution of L. catesbeianus can be expanded, the damage
on H. suweonensis is likely to become more severe. Based on the current model results, we
suggest that areas where the two species are overlapped or are possible to be overlapped
should be set as protected areas in advance. The policy approach, which applies the results
of these studies, will be an essential task that should be preceded to protect endangered
species that are rapidly decreasing.

The species distribution modeling is critical in predicting the distribution of introduced
species. However, the result can be distinguished according to the local environment,
the adaptability of a species, and the data used [21]. For example, research by [21,22],
which predicted the potential distribution of L. catesbeianus in the United States, used
the same species distribution modeling program, Maxent, but there were differences in
the habitat suitability. These differences can be seen as the results of limited monitoring,
the scope of the study, the number of distribution spots used, variables, and settings
used for modeling [21,36]. As another example shows, significant differences in the spot
number and the distribution number of L. catesbeianus were recorded in two papers [7,17]
published in the same year in South Korea. If distribution spots and regions are not
enough to be used in the modeling for representing the area, the estimates are likely
to be underestimated or overestimated [7]. Moreover, the environmental variables that
contributed to predicting the potential distribution of L. catesbeianus were also different in
each study because the differences in the variables according to the study were the result
of considering multicollinearity and so forth [21,22,44]. This difference can be seen as the
result that the distribution characteristics of L. catesbeianus in each region are reflected well.
In summary, it means that a sufficient number of distribution data obtained within the
scope, in which the characteristics of the distribution of lives can be enough to be reflected
in the target area, should be requested.

5. Conclusions

Our results indicate that L. catesbeianus, which about 50 years ago was introduced to
South Korea, has spread widely and will continue to spread further in the future. This
expansion will not only disturb the ecosystem but also affect the native species including
H. suweonensis. It is a big challenge internationally and regionally to control L. catesbeianus
that has completely adapted to new environments. However, we need to closely monitor
and study adaptive aspects continuously for the full control of L. catesbeianus. It is also nec-
essary to establish specific management methods and scopes, considering the relationships
with endemic species, including endangered species.
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