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ABSTRACT

In Bayesian phylogenetic inference, marginal likelihoods can be estimated using
several different methods, including the path-sampling or stepping-stone-sampling
algorithms. Both algorithms are computationally demanding because they require a
series of power posterior Markov chain Monte Carlo (MCMC) simulations. Here we
introduce a general parallelization strategy that distributes the power posterior MCMC
simulations and the likelihood computations over available CPUs. Our parallelization
strategy can easily be applied to any statistical model despite our primary focus on
molecular substitution models in this study. Using two phylogenetic example datasets,
we demonstrate that the runtime of the marginal likelihood estimation can be reduced
significantly even if only two CPUs are available (an average performance increase of
1.96x). The performance increase is nearly linear with the number of available CPUs.
We record a performance increase of 13.3x for cluster nodes with 16 CPUs, representing
a substantial reduction to the runtime of marginal likelihood estimations. Hence, our
parallelization strategy enables the estimation of marginal likelihoods to complete in
a feasible amount of time which previously needed days, weeks or even months. The
methods described here are implemented in our open-source software RevBayes which
is available from http:/www.RevBayes.com.

Subjects Bioinformatics, Computational Biology, Evolutionary Studies, Statistics
Keywords Bayes factor, Parallelization, Phylogenetics

INTRODUCTION

Model selection in Bayesian phylogenetic inference is performed by computing Bayes
factors, which are ratios of the marginal likelihoods for two alternative models (Kass ¢»
Raftery, 1995; Sullivan & Joyce, 2005). The Bayes factor indicates support for a model when
the ratio of the marginal likelihoods is greater than one. This procedure is very similar
to likelihood ratio tests with the difference being that one averages the likelihood over all
possible parameter values weighted by the prior probability rather than maximizing the
likelihood with respect to the parameters (Posada ¢ Crandall, 2001; Holder ¢ Lewis, 2003).
More specifically, the marginal likelihood of a model, f (D|M), is calculated as the product
of the likelihood, f (D|6, M), and the prior, f (8|M), integrated (or marginalized) over all
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possible parameter combinations,

f£(DIM) = / £ (DI, M)F (9]M)do. 1)

In the context of Bayesian phylogenetic inference, this quantity is computed by
marginalizing over the entire parameter space, namely over all possible tree topologies,
branch lengths, substitution model parameters and other model parameters (Huelsenbeck
et al., 2001; Suchard, Weiss ¢ Sinsheimer, 2001).

The computation of the marginal likelihood is intrinsically difficult because the
dimension-rich integral is impossible to compute analytically (Oaks et al., 2019). Monte
Carlo sampling methods have been proposed to circumvent the analytical computation
of the marginal likelihood (Gelman & Meng, 1998; Neal, 2000). Lartillot ¢ Philippe (2006)
introduced a technique called thermodynamic integration, (also called path-sampling; Baele
et al., 2012a), to approximate the marginal likelihood. A similar method, stepping-stone-
sampling (Xie et al., 2011; Fan et al., 2011), has more recently been proposed (see also Baele
et al., 2012a; Baele & Lemey, 2013; Friel, Hurn & Wyse, 2014; Oaks et al., 2019; Fourment
et al., 2020 for a summary and comparison of these methods). The fundamental idea of
path-sampling and stepping-stone-sampling is to use a set of K importance distributions,
or power posterior distributions, from which likelihood samples are taken (Gelman ¢
Meng, 1998; Neal, 2000; Lartillot & Philippe, 2006; Friel ¢ Pettitt, 2008). The sampling
procedure for each importance distribution is performed by a Markov chain Monte Carlo
(MCMC) algorithm. That s, instead of running a single MCMC simulation, as is commonly
done to estimate posterior probabilities (Huelsenbeck et al., 2001; Huelsenbeck et al., 2002),
K (usually between K =30 and K =200) MCMC simulations are needed to estimate the
marginal likelihood of a model of interest (Fan et al., 2011). Estimating marginal likelihoods
for phylogenetic models using power posterior distributions is implemented, amongst
others, in MrBayes (Ronquist et al., 2012), PhyloBayes (Lartillot, Lepage ¢ Blanquart,
2009), BEAST 1 & 2 (Suchard et al., 2018; Bouckaert et al., 2019) and Phycas (Lewis, Holder
& Swofford, 2015). Obviously, this strategy can be very time consuming considering that
a single MCMC simulation may take from hours to several weeks of computer time. The
high computational time poses a major challenge for Bayes factor computations for many
important problems, for example, comparing molecular substitution models (Posada ¢
Crandall, 2001), selecting between complex diversification rate models (FitzJohn, 2012),
and evaluating competing continuous trait processes (e.g., Uyeda ¢» Harmon, 2014).

In the present article we demonstrate how power posterior simulations can be performed
on parallel computer architectures and report the achieved computational gain. The idea
of parallel power posterior simulations is very similar to parallel Metropolis coupled
MCMC algorithm (Altekar et al., 2004), with the important difference that power posterior
simulations can be parallelized even more easily because no communication between
processes is necessary. Additionally we show how our parallelization scheme can combined
with existing parallelization techniques for distributed likelihood computation (e.g.,
Aberer, Kobert ¢ Stamatakis, 2014) to maximize usage of available CPUs. Here we focus
on two common approaches of computing marginal likelihoods: path-sampling and
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stepping-stone-sampling. Nevertheless, our parallelization strategy is also applicable to
other approaches such as the generalized stepping-stone-sampler (GSS) (Fan et al., 2011;
Holder et al., 2014; Baele, Lemey & Suchard, 2016).

METHODS

The algorithm underlying path-sampling and stepping-stone-sampling can be separated
into two steps: (1) likelihood samples are obtained from a set of K power posterior
simulations; and (2) the marginal likelihood is approximated either by numerical
integration of the likelihood samples over the powers (path-sampling) or by the likelihood
ratio between powers (stepping-stone-sampling). The first step is the same for both methods
and is the computationally expensive part. Thus, once samples from the power posterior
distributions are obtained, it is possible to rapidly compute both the path-sampling and
stepping-stone-sampling marginal likelihood estimates.

Power posterior sampling

Both stepping-stone-sampling and path-sampling techniques construct and sample from
a series of importance distributions. Lartillot &~ Philippe (2006) define the importance
distributions as power posterior distributions, which are obtained by modifying the
posterior probability density as

f5:(0) =f (Y10, M)Pif (0|M). 2)

Here, B represent a vector of powers between 0 and 1. Then, for every value of §;
a draw from the power posterior distribution is needed and its likelihood score, I;, is
recorded (Lartillot ¢ Philippe, 2006; Friel ¢ Pettitt, 2008). In principle, one such likelihood
sample per power posterior distribution is sufficient, although multiple samples improve
the accuracy of the estimated marginal likelihood considerably (Baele et al., 2012b; Oaks et
al., 20195 Fourment et al., 2020). We will use the notation [;; to represent the jth likelihood
sample from the ith power posterior distribution.

We illustrate the mean log-likelihood over different values of 8 in Fig. 1. Commonly,
the values of the powers 8 are set to the ith quantile of a beta(0.3, 1.0) distribution (Xie
et al., 2011; Baele et al., 2012a). The rationale is that more narrowly spaced intervals are
needed for the range of § where the expected likelihood changes most rapidly, i.e., for 8
values close to 0 (Fig. 1).

Draws from the power posterior distribution are obtained by running a modified
Markov chain Monte Carlo (MCMC Metropolis et al., 1953; Hastings, 1970) algorithm:

1. Let 6; denote the current parameter values at the jth iteration, initialized at random at
the start of the MCMC algorithm.
2. Propose a new values 6" drawn from a proposal kernel with density q(6’|6;).
3. The proposed state is accepted with probability
o — min (Lf(DI@/)ﬂ’ y CD) o Q(9j|9/)>’
f(DI6;))P ~ f(6;)  q(6'6;)

4. Set 6 =0 with probability & and to 6;,, = 6; otherwise.

(3)
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Figure 1 An example curve of mean log-likelihood samples over a range of different powers. The ver-
tical, dashed lines show which values of powers were used when K = 11 and 8; = (i/(K — 1))"%/%3 for i €
{0,K — 1}. The curve shows explicitly over which range of powers the log-likelihood changes most drasti-
cally; when B is small and thus the importance distribution is close to the prior. Hence, a good numerical
approximation of the log-likelihood curve is obtained when most powers take small values.

Full-size Gl DOI: 10.7717/peerj.12438/fig-1

As can be seen from this brief description of the modified MCMC algorithm, only the
likelihood values need to be raised to the power B;. All remaining aspects of the MCMC
algorithm stay the same as the standard implementations in Bayesian phylogenetics
(Huelsenbeck & Rongquist, 2001; Drummond & Rambaut, 2007; Lakner et al., 2008; Lartillot,
Lepage & Blanquart, 2009; Hohna ¢ Drummond, 2012).

It is important to note that every MCMC simulation for each power B; € B necessarily
includes its own burn-in period before the first sample can be taken. The power posterior
analysis can be ordered to start from the full posterior (Bx—; = 1.0) and then to use
monotonically decreasing powers until the prior (8y =0.0) has been reached. Thus, the
last sample of the previous power posterior run can be used as the new starting state.
This strategy has been shown to be more efficient because it is easier to disperse from the
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(concentrated) posterior distribution to the (vague) prior distribution thereby reducing
the burn-in period significantly (Baele et al., 2012a).

Parallel power posterior analyses

The sequential algorithm of a power posterior analysis starts with a pre-burnin phase to
converge to the posterior distribution. Then, consecutive power posterior simulations are
performed sequentially, starting with 8x_; = 1.0 (i.e., the posterior) to 8y = 0.0 (i.e., the
prior). Each power posterior simulation contains L iterations, with the likelihood of the
current state recorded every T'th iteration. These ‘thinned’ samples are less correlated than
the original draws from the MCMC simulation. The number of samples taken per power
is n=L/T. At the beginning of each run a short burn-in phase is conducted, for example
10% or 25% of the run length.

The parallel algorithm for a power posterior analysis is set up almost identically to the
sequential algorithm (see Fig. 2). Let us assume we have M CPUs available. Then, we split
the set of powers into M consecutive blocks; the mth block containing the powers from
'BL*K—(’”M;”K—IJ to Bk —(mk/M)]> €. the first out of four blocks for 128 analyses contains
{B127, .-, Bos}, the second block contains {Bys, ..., Bea}, etc. If the set of B cannot be split
evenly into blocks then some blocks have one additional simulation, which is enforced
by using only the integer part of the index. This block-strategy ensures that each CPU
works on a set of consecutive powers which has the advantage of a shorter burn-in between
simulations because the importance distributions are more similar to one another.

Regardless, each parallel sampler needs to start with an independent pre-burnin phase
which creates an additional overhead. Thus, instead of running only one pre-burnin phase,
as under the sequential power posterior analysis, we need to run M pre-burnin phases.
This overhead could be removed only if it would be possible to draw initial values directly
from the power posterior distribution.

Figure 2 shows a schematic of our parallelization algorithm. After the initial pre-burnin
phase, the workload is divided into blocks and equally distributed over the available
CPUs. Note that CPUs can be combined for distributed likelihood computation. No
synchronization or communication between samplers is necessary because each power
posterior simulation is independent. The only parallelization barrier occurs at the end
when all power posterior simulations have finished. Finally, the master CPU collects all
likelihood samples, combines the results, and computes the marginal likelihood using
one of equations given below. These equations are computationally cheap compared with
obtaining the likelihood samples. We thus expect that the performance gain is close to
linear with the number of available cores. The algorithm described here is implemented
in the open-source software RevBayes (Héhna et al., 2014; Hohna et al., 2016), available at
http:/mwww.RevBayes.com.

Our implementation in RevBayes uses the Message Passing Interface (MPI). That is, a
RevBayes instance that was compiled using MPI can be used on any standard Unix based
computer or high performance cluster (HPC) and executed in parallel. From the user
perspective, no additional commands between using the standard version of RevBayes and
using the MPI version are needed. For example, the command powerPosterior (mymodel,
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Figure 2 Schematic of the parallelization and workload balance between the master CPU and the
worker CPUs. In this example we have M = 4 CPUs and K = 128 power posterior simulations (stones).
The first CPU is the designated master and the remaining CPUs are the workers/helpers. The power
posterior simulations are divided into two blocks from B;,7 to Bss and Bg; to By. The first two CPUs work
on the first block of power posterior simulations and the last two CPUs work on the second block. Each
pair of CPUs shares the likelihood computation between them. Each CPU starts with its own pre-burnin
phase. Then, each CPU runs its block of power posterior simulations. Finally, the master combines the
likelihood samples and computes the marginal likelihood estimate. Thus, the only barrier is after all the
single power posterior simulations, which is after each single CPU has finished its respective job.

Full-size &l DOL: 10.7717/peerj.12438/fig-2

moves, monitors, ‘‘output/powers.out’’, cats=100, sampleFreq=10) will
automatically perform the power posterior analysis—as used in the study—in parallel.
Hence, our implementation in RevBayes takes care of the parallelization for the user
without the need of further specifications, assuming RevBayes was executed using MPI
and several processes (e.g., mpirun -np 16 rb myscript.Rev). Such an analyses can be
run on any standard HPC with submission systems such as SLURM and TORQUE.

Path-sampling

Path-sampling was the first numerical approximation method developed for marginal
likelihood computation in Bayesian phylogenetic inference (Lartillot ¢ Philippe, 2006).
Path-sampling uses the trapezoidal rule to compute the integral of the log-likelihood
samples between the prior and the posterior (see Fig. 1), which equals the marginal
likelihood (Lartillot ¢ Philippe, 2006). The equation of the trapezoidal rule for a single
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likelihood sample from each power posterior simulation is

K-1

Inf (D|M) = Z

k=0

(In(l) +1In(les1)) * (Bi+1 — Br)
5 .

(4)

Samples of the log-likelihood have a large variance. Hence, it is more robust to take many
log-likelihood samples and use the mean instead. This yields the equation to estimate the
marginal log-likelihood,

K—1 <Z?:1’11n(lk,i) + Z;lzllf;(lk+1,i)> % (,Bk—H —Br)
Inf(DIM) ="

k=0 2

(5)

which was proposed by Baele et al. (2012a).

Stepping-stone-sampling

Stepping-stone-sampling approximates the marginal likelihood by computing the ratio
between the likelihood sampled from the posterior and the likelihood sampled from the
prior. However, this ratio is unstable to compute and thus a series of intermediate ratios is
computed: the stepping-stones (Xie et al., 2011; Fan et al., 2011). The stepping-stones can
be chosen to be exactly the same powers as those used for path-sampling. The equation to

approximate the marginal likelihood using stepping stone sampling is

K-1 1 n lllcsk‘ﬂ
Fon =] (;Z - )
k=0 i=1 ‘k,i

K-1 n
1 _
— 1_[ (_Zlfkiﬂ ﬂk) 6)
1 4 ,
k=0 i=1

Numerical stability of the computed marginal likelihood can be improved by retrieving

first the highest log-likelihood sample, denoted by max, for the kth power. Re-arranging
Eq. (6) accordingly yields

K-1 " N B
ln(f(DlM)):Z[ln(ZeXp((ln(lk’l) me;xk)>z<(ﬂkJrl )

k=0

) + (Brr1— Br) *m]le}-
(7)

Asseenin Egs. (5) and (7), only the set of likelihood, or log-likelihood, samples is needed

i=1

to approximate the marginal likelihood. Both marginal likelihood estimates approach the
true marginal likelihood when the number of samples and powers increases. Since both
computations are comparably fast, they can be applied jointly and, for example, be used to
test for accuracy without additional time requirements.

Simulation design

Several previous studies have evaluated and compared the accuracy of different approaches
to estimate the marginal likelihood of phylogenetic models (Baele et al., 2012a; Baele, Lemey
& Suchard, 20165 Oaks et al., 2019). Overall, the findings suggest that power posterior
based estimators (PS, SS and GSS) outperform other estimates for the cost of being
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computationally more expensive. The objective of this simulation study was to test the
performance gain when using multiple CPUs. Thus, we tested the performance of the
parallel power posterior analyses using two phylogenetic examples; a smaller and a larger
dataset. As the small example dataset we chose 23 primate species representing the majority
of primate genera. We used only a single gene sequence, the cytochrome b subunit,
containing 1141 base pairs. For the larger example data set we chose an alignment with
4 genes (with a total of 6720 base pairs) from 305 taxa of the superfamily Muroidea
(Schenk, Rowe & Steppan, 2013). For both examples we used the same model with the only
difference that the larger dataset was partitioned into four subsets of sites (see protocols
1 and 2 from Héhna, Landis ¢ Heath, 2017). We assumed that molecular evolution can
be modeled by a general time reversible (GTR) substitution process (Tavaré, 1986) with
four gamma-distributed rate categories (Yang, 1994). Furthermore, we assumed a strict,
global clock (Zuckerkandl ¢ Pauling, 1962) and calibrated the age of the root. As a prior
distribution on the tree we used a constant-rate birth-death process with diversified taxon
sampling (Hohna et al., 2011; Hohna, 2014) motivated by the fact that one representative
species per genus was sampled, which is clearly a non-random sampling approach. The
specific models correspond to the protocols described in Hiohna, Landis ¢~ Heath (2017)
and can also be found as tutorials at https:/revbayes.github.io/tutorials/.

Each analysis consisted of a set of K =100 power posterior simulations (see Fig.
2 for a schematic overview). The analyses started with a pre-burnin period of 10,000
iterations to converge to the posterior distribution. Note that in RevBayes each MCMC
iterations consists of several moves (compared with MrBayes (Ronquist et al., 2012) and
BEAST (Suchard et al., 2018) where each iteration consists of only a single move); the
primates analysis included 38 moves and the Murdoidea analysis included 73 moves per
iteration. Then, each power posterior analysis was run for 10,000 iterations and samples
of the likelihood were taken every 10 iterations. The 25% initial samples of each power
posterior distribution were discarded as additional burnin. The marginal likelihood
was estimated using both path-sampling and stepping-stone-sampling once all power
posterior simulations had finished as they contribute to performance overhead in practice.
We ran each analysis 10 times and measured the computation time on the San Diego
Supercomputer (SDSC) Gordon. Each compute node on Gordon contains two 8-core 2.6
GHz Intel EM64T Xeon E5 (Sandy Bridge) processors. The experiment was executed using
1, 2,4, 8,16, 32 and 64 CPUs, respectively. For each number k of CPUs used, we repeated
the analyses by assigning 1, 2, 4,...64 CPUs to parallelizing the likelihood computation
instead of distributing the stones. Thus, we additionally tested if parallelization over stones,
the likelihood computation, or a mixture is most efficient.

RESULTS

We present the results of the average runtime as a function of the number of CPUs used in
Fig. 3. Performance gains are most pronounced when few CPUs are used. The runtime is
almost halved when compared between 1 and 2 CPUs or 2 and 4 CPUs. For example, our
primate analyses took on average 11.68 h when using only a single CPU. By contrast, the
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Figure 3 The average runtime of a marginal likelihood estimation on a simple phylogenetic model
recorded over 10 repeated runs. The analyses were performed on the San Diego supercomputer clus-

ter Gordon using 1, 2, 4, 8, 16, 32 and 64 CPUs. The runtimes were measured in seconds. The left graph
shows the mean runtime as a function of the number of CPUs. The right graph shows the performance in-
crease (fraction of time needed) compared with a single CPU. Both graphs show the actual performance

increase and the expected performance increase (if there were no overhead between CPUs).

Full-size Gal DOIL: 10.7717/peerj.12438/fig-3

Table 1 Runtime using M CPUs (rows) of which N CPUs (columns) are assigned to the likelihood
computation. Here we show the results of the primates dataset.

M\N 1 2 4 8 16 32 64

1 42,063 * - - - - -

2 21,768 22,268 - - - - -

4 11,275 11,434 12,088 - - - -

8 6,253 6,136 6,185 6,969 - - -

16 3,336 3,189 3,162 3,562 4,612 - -

32 1,856 1,709 1,651 1,846 2,393 4,738 -

64 1,112 944 880 966 1,217 2,406 11,363

analyses took only 6.04 h and 3.13 h when we used two CPUs and four CPUs respectively

(Table 1). Virtually the same runtime improvements were achieved for the larger Murdoidea
dataset (Fig. 3, Table 2).
The performance increase levels off quickly once 8 or 16 CPUs are used. This is simply

due to the fact that twice as many CPUs are needed each time to roughly halve the

computational time. Hence, the gain from 1 to 4 CPUs is approximately equivalent to the

gain from 16 to 64 CPUs. Furthermore, in our setup on Gordon each compute node had

16 CPUs which means that an additional communication overhead occurs once more than

16 CPUs are used. Additionally, the overhead (i.e., the independently run pre-burnin for

each chain) which each CPU needs to perform reduces the performance gain for larger
number of CPUs.
We computed the expected runtime to assess whether our implementation achieved

the largest possible performance gain. For example, we wanted to explore if there is an

additional overhead for using parallelization that was possibly introduced by our specific

implementation. Having M CPUs available, each CPU needs to run at most [K /M1 power
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Table 2 Runtime using M CPUs (rows) of which N CPUs (columns) are assigned to the likelihood
computation. Here we show the results of the Muroidea dataset.

M\N 1 2 4 8 16 32 64

1 329,246 - - - - - -

2 171,797 ‘ - - - - -

4 92,858 92,212 90,432 - - - -

8 52,329 51,072 50,244 53,411 - - -

16 28,248 26,426 26,792 27,573 29,297 - -

32 15,418 14,423 14,126 14,599 15,371 18,450 -

64 9,365 8,234 7,705 7,649 8173 9,641 18,272

Notes.

*Runs using M = 2 CPUs with N =2 CPUs per likelihood did not finish within the wall-time provided by XSEDE.

posterior simulations, which is the ratio of the total number of power posterior simulations
to CPUs rounded upwards (ceiling). Additionally, each CPU runs its own pre-burnin phase,
which had the same length as a single power posterior simulation in our tests. Therefore,
we can compute the average runtime of a single power posterior simulation by dividing
the runtime of the single CPU analysis by K + 1. Then, the expected runtime for M CPUs,
tp, 1s given by

[K/M7]+1
Eltm] =1 x KTl (8)
where f; corresponds to the runtime when only one CPU was available. In general, our
implementation seems to perform close to the expected optimal performance (Fig. 3).
However, we observe an increasing discrepancy between the expected and the observed
performance gain when many CPUs were used. This discrepancy is most likely due to
bottlenecks in competing hardware allocations. For example, we noticed that I/O operations
performed on a network filesystem, which are commonly used among large computer
clusters, significantly influenced the performance, especially when many CPUs frequently
wrote samples of the parameters to a file. To further improve our implementation, this
minor problem could be alleviated by standard approaches such as async/non-blocking
I/O.

We performed an additional performance analysis where we omitted the pre-burnin
phase (running the MCMC sampler on the posterior distribution, see Fig. 2) but kept
the burnin phase for each power posterior distribution. This scenario could be realistic
when one has already performed a full posterior probability estimation and only wants to
compute the marginal likelihoods for model selection. In this case, the samples from the
posterior distribution can be used to specify starting values of the power posterior analysis.
Here we see that the performance improvement becomes more linear with the number of
CPUs (see Fig. 4). Although this case might not happen frequently in practice, we use this
to demonstrate that only the pre-burnin phase prevents us from having an almost linear,
and thus optimal, performance increase.

We also investigated whether the performance overhead (observed in Fig. 3) is correlated
with the number of stepping stones per CPU. For example, we observed the largest difference
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Figure 4 The average performance improvement (runtime reduction) when estimating the marginal
likelihood on a simple phylogenetic model without pre-burnin phase, recorded over 10 repeated runs.
The analyses were performed on the San Diego supercomputer cluster Gordon using 1, 2, 4, 8, 16, 32 and
64 CPUs. The runtimes were measured in seconds. The graph shows the actual and the expected perfor-
mance increase compared with a single CPU, where performance is nearly linear.

Full-size & DOI: 10.7717/peerj.12438/fig-4

between the expected and actual runtime when 64 CPUs were used (each CPU ran only
one or two power posterior simulations plus the pre-burnin phase). Thus, we tested if
there was an effect of small numbers of power posterior simulations by running analysis
with K € {2,3,5,10,20,30,40,50} on a single CPU. As the expected runtime, we computed
the mean runtime per individual power posterior simulation when K = 50. Our results,
shown in Fig. 5, demonstrate that there is an intrinsic overhead for small number of power
posterior simulations. This overhead seemed to be the cause of the discrepancy between
our expected and observed performance increase in the parallel power posterior algorithm
(Fig. 3). Part of the overhead is caused by the additional time to start the process, load the
data, allocate memory, receive file handles and all other tasks that need to be performed
before and after a power posterior analysis.

Finally, we compared the performance increase when parallelizing the power posterior
analysis, the likelihood computation, or both. For this combined parallelization scheme
we implemented a hierarchical parallelization structure as describe by Aberer, Kobert ¢
Stamatakis (2014). For example, when 4 CPUs are available we can divide the likelihood
computation over 2 CPUs and divide the power poster analysis into 2 blocks (see Fig. 1). This

Hoéhna et al. (2021), PeerJ, DOI 10.7717/peerj.12438 1117


https://peerj.com
https://doi.org/10.7717/peerj.12438/fig-4
http://dx.doi.org/10.7717/peerj.12438

Peer

o
S _
o *
N *
| ¥
° ¥
£ g
5 8 ¥
g
R
N *
Ko
o
o _| o
o
- * observed
o o expected
O —
re} T 1 | | | | |
2 10 20 30 40 50
Stones

Figure 5 The average runtime over 10 repeated runs of a marginal likelihood estimation on a simple
phylogenetic model for different number of powers posterior simulations K. The runtimes were mea-
sured in seconds. The graph shows the actual runtime and the expected runtime which is based on the
mean runtime per power posterior simulation when K = 50.
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test thus includes the parallelization approach over the likelihood function as suggested by
Baele & Lemey (2013). We tested the performance difference using M = {2,4, 8, 16,32, 64}
CPUs of which we assigned N to share the likelihood computation. We observed the
best overall runtime reduction when we applied a combined likelihood and power
posterior analysis parallelization (Tables 1 and 2). Furthermore, the improvement

of each parallelization yields diminishing returns when many CPUs are used, which
additionally supports the utility of a combined parallelization scheme. We conclude
that using N = [+/M | will give the overall best performance and set this distribution of
CPUs as the default option in RevBayes. Nevertheless, the best performance will depend
on the specific dataset (i.e., number of base pairs), the number of power posteriors (
K) and the pre-burnin length. A motivated user can manually set how many CPUs
are used to parallelize the likelihood computation (option procPerLikelihood in the
powerPosterior command) although the specific speedup might be minor compared
with the overall improvement (Tables 1 and 2).
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CONCLUSION

Modern phylogenetic analyses depend on increasingly complex models and increasingly
large data set sizes. Even phylogenetic analyses which do not use molecular sequence data
(for example, diversification rate analyses (FitzJohn, 2012), continuous trait analyses (Uyeda
¢ Harmon, 2014), and historical biogeography analyses (Landis et al., 2013) have grown
more complex and use time-intensive likelihood calculations that are not always easily
parallelizable. Both trends lead to longer runtimes, which is even more pronounced
for Bayesian model selection exercises using marginal likelihoods (Oaks et al., 2019;
Fourment et al., 2020); the path-sampling and stepping-stone-sampling algorithms used
for approximating marginal likelihoods are inherently computationally demanding. In the
present paper we have developed a simple parallel algorithm to speed up the computation
of marginal likelihoods for Bayesian phylogenetic inference. In our simulation study, which
serves mostly as a proof of concept, we showed that performance improvement is close
to linear for few CPUs, i.e., between one and 16 CPUs. An analysis that previously took 8
weeks on a single CPU can now be completed in four days when 16 CPUs are available.
Current implementations of power posterior algorithms are either sequential or
parallelize the likelihood computation (Ayres et al., 2019 e.g., using the BEAGLE library).
Our new parallel power posterior analysis can be more than an order of magnitude
faster than ordinary, sequential algorithms. The presented parallel algorithm should be
straightforward to be implemented in other software or applied to a variety of different
model types. For example, marginal likelihood estimation using the software package
BEAST can be manually modified to perform each step of the power posterior simulation
independently Baele, Van de Peer ¢ Vansteelandt (2009); Suchard et al. (2018), and thus
each power posterior could be computed in parallel, but is not automated for the user.
Finally, the described parallelization scheme should be applicable to alternative methods
for computing marginal likelihood (e.g., the generalized stepping-stone sampler (GSS) Fan
et al., 2011; Holder et al., 2014; Baele, Lemey ¢ Suchard, 2016) and Bayes factors directly
(Lartillot ¢ Philippe, 20065 Baele, Lemey ¢ Vansteelandt, 2013) because all these approaches
rely on a set of power posterior analyses.
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