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BACKGROUND: Physiological heat strain induced by extreme temperatures in cities has led to significant heat-related deaths. Although socioeconomic
adaptation is suggested to mitigate this issue, its effectiveness is limited. Conversely, there is a lack of comprehensive evaluation on the effectiveness
of landscape-level strategies for mitigating heat-related deaths.

OBJECTIVES: We developed a comprehensive modeling framework to estimate the impacts of environmental stresses and mitigating strategies on
heat-related deaths in China’s cities from 2016 to 2055.

METHODS: The framework assesses future heat-related deaths through five experiments considering the influences of climate change, urbanization,
socioeconomic adaptation, and landscape-level strategies. We used extrapolated region-specific exposure–response functions (ERF) and recent
advancement of geo-statistics for public health to generate urban patch level ERF curves. We used these curves and temperature and population data
to generate future heat-related deaths with a 1-km resolution and conducted 5,000 Monte Carlo simulations for uncertainty analysis.

RESULTS: Our analyses estimated that heat-related mortality will increase from 136:5±16:5 deaths per million in 2016 to 175:7± 27:5 deaths per million
in 2055 under SSP2-RCP4.5 (shared socioeconomic pathways–representative concentration pathways) scenario and from 140:0± 21:4 deaths per million
to 230:2± 38:7 deaths per million under SSP5-RCP8.5 scenario, despite socioeconomic adaptation and landscape-level strategies. Socioeconomic adapta-
tion (reducing deaths by 18:4–64:1 permillion) and landscape-level strategies (reducing deaths by 45:6–51:3 permillion) significantly mitigate heat-
related deaths with varying effectiveness across different income levels. Specifically, in high-income cities with dense populations, landscape-level
strategies are 2.2–4.3 times more effective than socioeconomic adaptation. Within these cities, implementing the same landscape-level strategies in the
high-density urban centers led to an additional reduction up to 4:9–6:8 deaths=km2 in comparison with surrounding areas.

DISCUSSION: Our framework helps to systematically understand the effectiveness of landscape-level strategies in reducing heat-related mortality.
Future sustainable city management should prioritize landscape-level strategies along with socioeconomic adaptation to support healthy and comforta-
ble communities. https://doi.org/10.1289/EHP15010

Introduction
Epidemiological andhumanhealth studies1–3 show that heat extremes
can induce significant magnitudes of mortality and morbidity
in global cities. According to the collected case histories of
16 European countries,4 more than 70,000 additional heat-related
deaths occurred during the summer of 2003. Heat extremes and hot
weather can cause physiological heat strain at the individual level,
which is described as the rise in core temperature, dehydration, and
cardiovascular strain in a human health study.5 In addition, evi-
dence2,5,6 demonstrates that higher ambient temperatures resulting

from globalwarming could further aggravate this physiological heat
strain and increase the number of associated deaths. For instance, a
study7 onmortality in India shows that climate change from 1960 to
2009 corresponds to a 146% increase in the possibility of heat-
related deaths of more than 100 people. The future-projection
studies8–10 indicate that climate change, indirectly driven by
anthropogenic activities, is projected to elevate global tempera-
tures by 2–4:9�C10–13 by the end of the 21st century, which could
significantly increase future heat-related deaths. For instance, by
the end of the 21st century, the average temperature in China10 is
projected to increase by 1:5�C under representative concentration
pathway (RCP) 4.5 and 3:8�C under the RCP8.5 scenario in com-
parison with the historical period. This warming is projected to
amplify the health burden of heat stress, with the attributable frac-
tion of heat-related excess mortality—defined as the ratio of heat-
related deaths to total deaths—rising from 1.9% in the 2010s to
3.1% under the RCP4.5 scenario and to 5.5% under RCP8.5 sce-
nario by the 2090s. Besides, more than 27,900 additional esti-
mated heat-related deaths annually in urban areas of China11 could
be induced by the additional warming from 1:5�C to 2�C.

As a direct impact of anthropogenic activities at the local
scale,2,5 accelerated urbanization14–16 results in a ubiquitous
occurrence of hot spots of heat-related deaths in metropolitan
areas. Urbanization promotes a notable increase in local tempera-
ture and further intensifies physiological heat strain,14,16 also
known as the urban heat island (UHI) effect,17 primarily because
of the high density of impervious surface area constructed with
poor thermal properties. A case study18 shows that UHI-induced
warming is about 40%–70% as strong as that caused by climate
change. Moreover, a large number of populations gathering in the
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urbanized areas19,20 can also exacerbate human exposure to heat
extremes. A few human health studies6,21 have attempted to
incorporate UHI-induced warming into the projection of future
heat-related deaths, revealing a significant contribution of this
temperature rise to the increase in nonaccidental mortality rate.
For instance, Iungman et al.6 demonstrated that 4.33% of summer
nonaccidental mortality could be attributed to the UHI effects for
93 European cities in 2015.

In response to above global and local temperature rises, socioe-
conomic adaptation, quantified through per capita gross domestic
product (GDP) changes following established methodologies,11,12

promotes individual’s purchasing capacities for cooling facilities
and health care,10,13,21–24 thereby improving their ability to adapt
effectively during periods of extremely hot events,12 which will
enhance the human ability to cope with physiological heat strain
and reduce heat-related deaths. However, the most vulnerable
groups5 in cities cannot afford the financial and environmental cost
of air conditioning, electric fans, and cold water ingestion. Even in
a society with significant socioeconomic improvement,11,12 pro-
jections indicate that heat-related deaths could increase under
future climate change. These findings demonstrate that relying
solely on socioeconomic adaptation maybe insufficient to address
the potential physiological heat strain.

Therefore, in response to the rising global and local tempera-
tures, it is crucial to integrate additional mitigation strategies to
effectively confront heat-related challenges. Evidence indicates
that landscape-level strategies, including increasing vegetation
coverage,25,26 enhancing surface albedo,27,28 improving roof
reflectivity,29,30 and implementing green roofs,27,28 can effectively
lower ambient temperature. These strategies alter local surface
energy balance through three aspects25,27,28: evapotranspiration,
shading effects, and altering solar radiation reflectivity. For
instance, a continental-scale human health analysis6 reveals that
increasing urban tree coverage to 30% can prevent roughly 40% of
UHI-induced heat-related deaths. However, very few studies have
incorporated these landscape-level strategies into future heat-
related death projections, which limits practical evaluation of
future death reduction potential and hampers the formulation of
related policies in urban areas (Table 1).

To fill this significant knowledge gap, we developed a model-
ing framework to conduct an investigation of heat-related deaths
in China’s cities, with consideration of climate change, urbaniza-
tion, socioeconomic adaptation, and landscape-level strategies
(Table 2). An analysis of future heat-related deaths reveals the
critical potential of landscape-level strategies that remain under-
studied in predictive modeling for reducing mortality, especially
in the high-density urban settlements of megacities with high
income levels.

Methods
We projected heat-related deaths in China’s cities under different
scenarios of urban expansion, GDP levels, and population devel-
opments [shared socioeconomic pathways (SSP)] and greenhouse
gas emission (RCP) scenarios during the warm seasons (May–
October) from 2016 to 2055. The choice of 2055 as the projection
end point was motivated by our objectives to assess near-term cli-
mate change and urbanization impacts on heat-related mortality,
providing actionable insights for imminent adaptation strategies.
This time frame also corresponds with numerous studies focusing
on the 2050s, ensuring consistency with the existing body of
research.21,31,32 A previous study33 has identified four Tier-1
SSP-RCP integrated scenarios, SSP1-RCP2.6, SSP2-RCP4.5,
SSP3-RCP7.0, and SSP5-RCP8.5, as crucial for climate science
research. In addition, numerous future temperature-related mor-
tality projection studies34–37 have used SSP2-RCP4.5 and SSP5- T
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RCP8.5 scenarios. Consequently, this study selected these two
scenarios to maintain consistency with prior research.

We initially considered future temperature as having two
components: climate change and urbanization-induced warming

(Figure 1). Future air temperature due to climate change for each
future urban patch was obtained from simulated climate data (re-
ferring to future air temperature at urban patch level) (Table S1).
We then used a three-phase model to predict urban-induced

Table 2. A protocol designed by stepwise increasing the influencing factors on heat-related deaths, including climate change, urbanization, socioeconomic ad-
aptation, and landscape-level strategies under the SSP2-RCP4.5 and SSP5-RCP8.5 scenarios.

Experiment Climate data Urbanization
Socioeconomic
adaptation

Landscape-level
strategies Description

I Historical daily
temperature

/ / / • Historical heat-related deaths during the baseline
period (2008–2012)

• Only consider historical air temperature
II Future daily

temperature
under RCP4.5
and RCP8.5

/ / / • Estimating future heat-related deaths during
2016–2055 under the influence of climate change

• Considering climate change under RCP4.5 and
RCP8.5 scenarios

• Each scenario includes 21 climate models
III Experiment II Future urban land

under SSP2 and
SSP5

/ / • Estimating heat-related deaths under climate
change and urbanization

• Considering urbanization under SSP2 and SSP5
scenarios

• Two integrated scenarios: SSP2-RCP4.5 and
SSP5-RCP8.5

IV Experiment II Experiment III Change of per
capita GDP

/ • Future heat-related deaths under the influences of
climate change, urbanization, and socioeconomic
adaptation

• Socioeconomic adaptation refers to the change
rates of per capita GDP under SSP2-RCP4.5 and
SSP5-RCP8.5 scenarios

V Experiment II Experiment III Experiment IV Tree cover

Cool pavement
Green roof
Cool roof

• Future heat-related deaths under the influences of
climate change, urbanization, future adaptation,
and landscape-level strategies

• The influences of four landscape-level strategies
on temperature reduction: tree cover > cool pave-
ment > green roof > cool roof

Note: The symbol “/” indicates that the corresponding factor was not considered in that specific experiment. GDP, gross domestic product; RCP, representative concentration path-
ways, describing a series of trajectories of different greenhouse gas concentrations in the future; SSP, shared socioeconomic pathways, which provide a range of possible future socioe-
conomic development pathways for the analysis of different scenarios in climate models.

Figure 1. Flowchart of the proposed methodology in this study. This study designed five experiments, each with different input data. Subsequently, the differ-
ences between Experiment II and Experiment I, Experiment III and Experiment II, Experiment IV and Experiment III, as well as Experiment V and
Experiment IV, were used as the attribute analyses for the impacts of climate change, urbanization, socioeconomic adaptation, and landscape-level strategies
on heat-related mortality, respectively. Note: ERF, exposure–response functions; GDP, gross domestic products; MFT, most frequent temperature; MMT, mini-
mum mortality temperature; UHI, urban heat island.
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warming at the suburban patch level. Specifically, following the
recent advancement of geo-statistics for public health,11 we
developed the spatially explicit exposure–response function
(ERF) at the urban patch level. Finally, we integrated future tem-
perature (urban patch level or suburban patch level resampled to
1 km), ERF (urban patch level), and future population (1 km) to
provide a high-resolution (1 km) mapping of future heat-related
deaths. We also conducted an attribution analysis to estimate the
relative influence of the drivers on heat-related deaths. We con-
ducted 5,000 Monte Carlo simulations to demonstrate the mean
and standard deviation (SD) of heat-related deaths, illustrating
the uncertainty in the results influenced by future climate models,
urbanization-induced warming, and the cooling effects of landscape-
level strategies. We used Python 3.13.1 (Python Software
Foundation) to analyze five experiments and uncertainty results
and ArcMap 10.5 (Esri) to create maps.

Data Sources
We collected data for this study from multiple sources (Table S2).
We acquired the fifth generation European Center for Medium-
Range Weather Forecasts atmospheric reanalysis of the global cli-
mate (ERA5) daily aggregates dataset to provide a globally com-
plete and consistent dataset of daily mean temperature from 2005
to 2016 from Google Earth Engine Data Catalog (https://
developers.google.com/earth-engine/datasets/catalog/ECMWF_
ERA5_DAILY). In addition, future projected temperature data
with a 0:25� ×0:25� grid under RCP4.5 and RCP8.5 scenarios
(Figure S1A) were obtained from the NASA Earth Exchange
Global Daily Downscaled Climate Projections (NEX-GDDP)
dataset under the Coupled Model Intercomparison Project
Phase 5 (CMIP5),18,38 which includes 21 General Circulation
Model (GCM) runs provided by Google Earth Engine Data Catalog
(https://developers.google.com/earth-engine/datasets/catalog/NASA_
NEX-GDDP).

Then, we collected historical urban land data in 2015 from the
Global Human Settlement Layer (GHSL) dataset,39 daytime and
nighttime land surface temperature (LST) data during the warm sea-
son of 2015 from Moderate Resolution Imaging Spectroradiometer
(MODIS) MOD11A1 V6.1 (https://developers.google.com/earth-
engine/datasets/catalog/MODIS_061_MOD11A1), air temperature
of metrological stations during the warm season of 2015 from
Global Historical Climatology Network-Daily (GHCND) version 3
dataset,40 and impervious surface areas (ISA) with 30-m resolution
from Global Annual Impervious Area (GAIA) dataset41 in 2015 for
China. Future urban land data for the future periods of 2020 (2016–
2025), 2030 (2026–2035), 2040 (2046–2045), and 2050 (2046–
2055), under the SSP2 and SSP5 scenarios (Figure S1B) fromChen
et al.,42 excluding areas smaller than 10 km2. This dataset contains
simulated urban patches (numbers between 1500 and 1700) in
China across different years and scenarios, with an average area
over 60 km2. Future gridded population data under the same SSP
scenarios, with a spatial resolution of 1 km for the same period,
were extracted from a global population projections published by Li
et al.43 Future GDP data under the same SSP scenarios within the
same period were obtained from the latest global gridded GDP pro-
jections published by Wang et al.44 The above future population43
and GDP44 data were used to calculate future per capita GDP at the
prefectural level (Figure S1C).

Baseline period (2008–2012) mortality rates and per capita
GDP of 360 prefecture-level cities in China were collected from
national or local Statistical Yearbooks (https://kns.cnki.net/kns8s/
?classid=HHCPM1F8). We then sorted these values in ascending
order. The quartile partitioning method was systematically applied
as follows: a) Cities below the 25th percentile (≤15,921 yuan/per-
son) formed the low-income group; b) the 25th–50th percentiles

(15,921–23,575 yuan/person) composed the lower–middle-
income group; c) the 50th–75th percentiles (23,575–38,136 yuan/
person) constituted the upper–middle-income group; and d) cities
above the 75th percentile (>38,136 yuan/person) formed the high-
income tier. This quartile-based stratification ensured equal group
sizes (n=90 per tier) (Table S3). Three-dimensional building char-
acteristics of 360 prefecture-level cities with building footprints and
their corresponding building height in 2018 were collected from
Baidu Map (https://lbsyun.baidu.com/). We used these building
characteristics to identify the proportion of the base area of buildings
<10 m in height in each prefecture-level city. These proportions
were used to calculate the cooling effects of cool roofs and green
roofs on the surrounding environment, because studies29,45 have
indicated that implementing cool roofs and green roofs on rooftops
exceeding 10 m in height will not have an impact on outside ambi-
ent air temperature. The administrative boundaries of China (Map
Approval Number: GS(2024)0650) were obtained from the
National Geomatics Center of China (https://cloudcenter.tianditu.
gov.cn/administrativeDivision/) as the basemap.

Experiment Design
Based on previous studies,6,10,11,21,46 we designed five experi-
ments involving different input data to analyze heat-related deaths
(Figure 1). We designed the sequence of factors for different
experiments by synthesizing articles related to projections of
temperature-relatedmortality (Table 2).

Experiment I used historical air temperature data and histori-
cal ERF curves at the urban patch level to estimate heat-related
deaths during the period 2005–2015. The primary aim was to es-
tablish a reference baseline for subsequent comparisons.

Based on Experiment I, Experiment II employed simulated
air temperature data to estimate heat-related deaths from 2016
to 2055. The mortality differential between Experiments II and
I specifically isolated climate change impacts, assuming con-
stant atmospheric forcing agents (aerosols, black carbon) and
static population vulnerability parameters (demographic struc-
ture, health status).

In Experiment III, we extended Experiment II by incorporat-
ing urbanization-induced warming at the suburban patch level,
derived from a three-phase model. The difference between
Experiment III and Experiment II reflects the effects of future
urban expansion–induced warming on heat-related mortality.

In Experiment IV, we integrated future temperature data,
urbanization-induced warming, and the future ERF changes
resulting from socioeconomic adaptations. The comparison of
Experiment IV with Experiment III demonstrates the mitigating
effects of future socioeconomic adaptations on heat-related
mortality.

Experiment V introduced the cooling effects of landscape-level
strategies based on the framework established in Experiment IV.
The difference between Experiment V and Experiment IV estimates
the potential effects of landscape-level strategies in reducing heat-
related mortality.

Historical and Future Temperature Data
We used the ERA5 dataset during the historical period as the
temperature data of Experiment I in Table 2. We obtained histori-
cal temperature data at urban patch level then resampled the data
to a 1-km resolution. For future climate projections, we used the
NEX-GDDP dataset during period 2016–2055 to provide future
daily mean temperature data. Considering the deviations between
the observed data (ERA5) and projected data (NEX-GDDP), we
applied a bias-correction method47 to correct systematic bias
between the two datasets using the overlapping period of 2006–
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2016. Then, we calculated the daily mean temperature of each
future climate grid by averaging the daily minimum and maxi-
mum temperatures10,48 of all 21 GCMs under the RCP4.5 and
RCP8.5 scenarios, which represents medium and high green-
house gas emissions, respectively, being two commonly chosen
scenarios in previous studies.34,49 Finally, we overlaid the future
urban patches with the daily average temperatures to obtain the
daily average temperature for each urban patch during the warm
season (May–October) of each year from 2016 to 2055. These
results resampled to a 1-km resolution were used as the input cli-
mate data of Experiments II, III, IV, and V.

Urbanization-Induced Warming Estimation
We estimated urbanization-induced warming using a three-phase
model (Figure 2).

Phase 1: Relationship between urban size and UHI. In Phase
1, we used a log-linear model to establish the relationship
between whole urban size (GHSL) and UHI (MOD11A1) in
2015. First, to ensure the accuracy of the spatial resolution of
urban land data, we excluded areas smaller than 10 km2 to ensure
the accuracy of the spatial resolution of urban land, aligning with
previous study.50 Second, we calculated UHI from May to
October 2015 as the temperature difference between urban and
rural areas. We then used a log-linear model to build the relation-
ship in 2015 because several studies51–53 demonstrated the non-
linear relationship between UHI and urban size. To better
understand this correlation, we used the natural breaks method to
perform binning, creating 20 bins by averaging the urban sizes
and UHI intensities in each bin, as suggested by previous stud-
ies18,54 (Figure S2):

DLST= a× logUS+ b, (1)

where US refers to the urban size of the urban patch, a is the
slope of the fitted linear regression, b is the intercept.

Phase 2: Relationship between LST and air temperature. In
Phase 2, we established a relationship between LST and air tem-
perature to project future air temperature elevation, because
human health impact assessments require air temperature expo-
sure compatible with existing epidemiological studies instead of
LST.18,55 This LST-to-AT (air temperature) conversion focuses

on establishing exposure metrics consistent with health models,
not disregarding other meteorological factors (e.g., humidity,
wind speed, and solar radiation). We selected 206 weather sta-
tions located in China and calculated the daily mean air tempera-
ture from the GHCND version 3 dataset for May to October
2015. We then established a linear regression between daily
mean air temperature and daily mean LST data (Figure S3):

AT = c×LST + d, (2)

where AT is the daily mean air temperature, LST is the daily
mean LST, c is the slope of the fitted linear regression, d is the
intercept.

Therefore, the projection of future air temperature elevation
of each urban patch caused by urbanization can be calculated as
the combination of Equation 1 and 2 as follows:

DAT = c× a× logUSt + bð Þ (3)

where DAT is the air temperature elevation of an urban patch
induced by UHI due to urbanization of future year t.

Phase 3: Allocation of future air temperature elevation. In
Phase 3, we allocated the predicted air temperature elevation of
each urban patch, calculated using Equation 3, among different
zones within the urban patch (suburban patch level) (Figure S4).
It is unlikely that the entire patch could experience the same tem-
perature increase. Based on previous studies,56,57 we assumed
that a future increase in ISA would be positively associated with
future air temperature elevation.

First, following the study of Li et al.,58 we: a) extracted the
ISA of 2015 with 30-m resolution in China from GAIA dataset41;
b) aggregated the ISA data to 1 km; c) generated a kernel density
map of 1 km ISA data using a kernel density estimation (KDE)
approach with a search radius of 5 km; d) normalized the KDE
results to 0–1 scale, subdividing the entire urban patches into five
zones (suburban patch level) with intervals of 0.2, where 0.8–1
was the Zone 5, and 0–0.2 was the Zone 1, as suggested by previ-
ous studies.59,60

Second, we calculated the proportions of each future urban
patch within the five different zones: a) the surrounding areas
(buffer) around the future urban patches were defined as three
times the size of urban patch areas based on previous studies57,61;

Figure 2. The three-phase model for predicting urbanization-induced warming and allocating temperature elevation within urban patches: an overview of
Phases 1 (depicted in blue), 2 (depicted in green), and 3 (Depicted in orange). In Phase 1, this study built the relationship between urban size and UHI using
log-linear regression. In Phase 2, this study established the relationship between LST and AT using linear regression. In Phase 3, the future AT elevation calcu-
lated from Phase 2 was allocated within different zones within each urban patch. The detailed allocation method is provided in Figure S2. Note: AT, air temper-
ature; LST, land surface temperature; UHI, urban heat island.
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these urban patches and their surrounding areas constituted the
areas for proportion calculation; and b) we intersected these areas
with the five different zones from the first part and computed the
future urban patch proportion of each zone as the ratio of the area
of urban land to the sum of urban land and surrounding areas.

Third, the allocation of future air temperature elevation to
urban patches across different zones was performed based on
their respective proportions as follows: a) we first calculated the
area proportion of each zone relative to the whole urban patch;
then, we multiplied each zone’s area proportion by the future
urban land proportion to derive the area-weighted coefficient for
each zone; and b) we obtained the future air temperature eleva-
tion for the entire urban patch using Equation 3. c) Finally, we
calculated the future temperature elevation for each zone based
on the area-weighted coefficients and the temperature elevation
for the urban patch.

After calculating the urbanization-induced warming, the
future daily mean temperature considering the compound effects
of climate change and urbanization on temperature (Experiment
III, IV, and V in Table 2) was determined by summing the daily
mean temperature from the NEX-GDDP dataset (urban patch
level) and the air temperature elevation (suburban patch level)
derived from the three-phase model, resampling the results to a
1-km spatial resolution.

We did not directly establish the relationship between urban
size and UHI at the suburban patch level for the following rea-
sons: the relatively poor fit of the binned linear relationship
between the logarithm of urban size and UHI intensity across the
five zones (Table S4) [this contrasts with the stronger relationship
observed between whole urban patch size and UHI (Figure S2)];
and the slopes for Zones 1, 4, and 5 in Table S4 were found to be
negative, suggesting that UHI intensity decreases as urban size
increases, which is inconsistent with findings from previous
studies.51,57

Historical ERF at the Urban Patch Level
A literature search was conducted to retrieve peer-reviewed stud-
ies published between 2010 and 2022 on the association between
heat exposure and mortality in mainland China. Six relevant
studies10,21,62–65 providing regional ERF curves covering main-
land of China were reviewed (Table S5). Considering the number
of sample points used in establishing ERF curves across various
studies, and the distribution balance of these sample points within
each study’s regions, we selected the ERF from Yang et al.,10

which has the second largest number of sample points and the
most balanced distribution (Table S5) across seven regions for this
study. ERF represents the cumulative association between temper-
ature and mortality, which is used to estimate the relative risks that
urban patches will experience under future temperatures. First, we
extracted the ERF curves in seven regions of mainland China from
Yang et al.10 using DataGrabber software (https://github.com/
QY7/DataGrabber) to provide specific relative risk values for dif-
ferent temperatures across various regions. To ensure accu-
racy, two operators independently extracted data from the
figures. If there was a discrepancy between their results, we
averaged the two sets of results to reach a final value. These
extracted associations were then applied as the regional ERFs
in this study, indicating that urban patches in this study within
the same region will have the same ERF.

However, significant spatial variability62,66–68 in minimum
mortality temperature (MMT) has been demonstrated. Assuming
a fixed ERF curve for all urban patches within the same region
would be unrealistic. To address this issue, we adopted the find-
ing69 of the most frequent temperature (MFT) of each urban

patch as an alternative representation of MMT, which concluded
that MFT closely resembles the local MMT for a given period.

MMThis =MFThis, (4)

where MMThis is the historical MMT, and MFThis is the histori-
cal MFT.

To determine the MFT of each urban patch, we extracted
the daily mean air temperature from the ERA5 dataset for base-
line period. The MFT of each urban patch was then calculated
as the mode of the daily mean temperatures within the 54th–
92nd range of distribution69 during the period 2008–2012 (ERA5).
We subsequently adjusted the regional ERF curve derived from
Yang et al.10 to account for the spatial variability in MMT across
urban patches (Figure S5).

Future ERF Considering Socioeconomic Adaptation
Under the same high temperature conditions, regions with higher
socioeconomic levels11,12 are better able to cope with associated
higher heat risks. Therefore, future socioeconomic adaptation is
considered a means of reducing the relative risk associated with
high temperatures. In comparison with the baseline per capita
GDP, the change in future per capita GDP, referring to the pro-
jected gross domestic product derived from Wang et al.,44 can
determine the change in the slope of ERF curve12 (Figure S6). In
this study, we employed the quadratic association between rela-
tive risk and per capita GDP under different heat intensities in
China11 to reflect the influence of future socioeconomic adapta-
tion on ERF curves (Figure S7). By adjusting the historical ERF
based on the future economic growth rate in comparison with the
baseline period, we obtained the future ERF, which considers the
future adaptation capacity improvements of each urban patch. It
should be noted that using per capita GDP change as socioeco-
nomic adaptation excludes direct effect of social improvement,
including public cooling spaces, strengthening of primary health
care, regulatory controls on occupational heat exposure, and early
heat warning systems.

The Cooling Effects of Landscape-Level Strategies on
Surrounding Temperature
We conducted a literature review (Table S6) of studies on the cool-
ing effects of landscape-level strategies on surrounding temperature
during the warm season across different climatic zones. Based on
the results of Table S6, we presented the cooling effects of four
landscape-level strategies, including tree cover, cool pavement, cool
roofs, and green roofs, on surrounding air temperature (Table 3).

For instance, a study in Baltimore70 demonstrated that a 10%
increase in tree cover could reduce the monthly mean air temper-
ature for summer months of June, July, and August by 0.19°C–
0.4°C. Similarly, Pace et al.71 suggested that a 10% increase in
tree cover in Naples, Italy, generated a 0.2°C reduction in maxi-
mum hourly air temperature. A literature review27 indicated that
urban trees and hedges could lead to an average air temperature
decrease ranging from 0°C to 3.5°C, with most reduction concen-
trated between 0.1°C and 1°C. After synthesizing the effects of
tree cover on temperature reduction, we concluded that most
studies conducted worldwide suggest that increasing urban tree
cover by 10% can reduce air temperature by 0.1°C–0.4°C
(Table 3). Using the same methodology, we also analyzed the
impact of cool pavement, green roofs, and cool roofs on air tem-
perature, with their value ranges detailed in Table 3.

When calculating the average reduction in heat-related mortal-
ity attributable to landscape-level strategies, we used the average
cooling effect within the specified range for each strategy. For
instance, increasing tree cover by 10% can reduce air temperature
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by 0.25°C in this study. These cooling effects were incorporated in
Experiment V by reducing the temperature under the compound
effects of climate change and urbanization on temperature elevation.
In addition, given the variability in the cooling effects of different
strategies, this study randomly selected values within the cooling
range for each strategy during the uncertainty analysis (please refer
to the section titled “Uncertainty Analysis”).

Heat-Related Deaths Projection
In this study, we conducted one experiment (Experiment I) on
heat-related deaths with a 1-km resolution during the baseline pe-
riod and four experiments (Experiment II, III, IV, and V) on
future heat-related deaths with a 1-km resolution from 2016 to
2055 under the SSP2-RCP4.5 and SSP5-RCP8.5 scenarios by
integrating population data (1 km), daily nonaccidental mortality
rates (urban patch level), and relative risk derived from ERFs
associated with daily mean temperature (resampled to 1 km)13
(Figure 1):

HDi, d,t =
POPi,t × RRi,d,t − 1ð Þ×NMRm,i,c

RRi,d,t
Ti,d,t >MMT

0 Ti,d,t ≤MMT

8<
: (5)

and

HDc,t =
Xn

i=1

X184

d=1
HDi,d,t, (6)

whereHDi,d,t is the heat-related deaths of pixel i at day d of year t;
POPi,t is the population of pixel i at year t; RRi,d,t is the relative
risk of pixel i at day d of year t, which is derived from historical/
future ERF associated with daily mean temperature (more details
can be found in the section titled “Historical ERF at the Urban
Patch Level”);NMRm,i,c is the daily nonaccidental mortality rate in
the baseline period of pixel i in city c, which is calculated by multi-
plying the annual nonaccidental mortality rate in city c by the
monthly mortality proportions (May–October) then divided by
days in month m13; the annual nonaccidental mortality rate in the
baseline period of city c is calculated bymultiplying the prefectural
mortality rates from the Statistical Yearbooks by China’s propor-
tion of nonaccidental deaths obtained from the Global Burden of
Disease study21; Ti,d,t is the daily mean temperature of pixel i at
day d of year t; MMT is the minimum mortality temperature
derived from the lowest point of historical/future ERF curves, re-
ferring to the temperature having the lowest relative risk; and
HDc,t is the heat-related deaths of city c at the year t from May to
October (total 184 d), which is the sum of the heat-related deaths of
all n pixels within city c from May to October at year t. After esti-
mating the annual heat-related mortality for the years 2016–2055,
we employed linear regression to fit the relationship between the
year and mortality rates. We assessed the statistical significance of
the linear trend based on a p-value (from the t-test) <0:01.

Uncertainty Analysis
We evaluated uncertainty originating from three major sources in
estimating future heat-related deaths, including future climate
change models, urbanization effects, and parameters for landscape-
level strategies.

Previous studies6,21 have suggested that climate change and
urbanization have a compounding effect on heat-related deaths. To
evaluate the uncertainties associated with future climate change
and urbanization effect, we conducted a Monte Carlo simulation
consisting of 5,000 repetitions of experiments per year over the pe-
riod from 2016 to 2055. For climate change, daily temperature data
was randomly selected from one of the 21 GCMs, and this pro-
cess was repeated 5,000 times. For urbanization, we quantifiedT
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uncertainty induced by the three-phase model of evaluating
urbanization-induced warming by 5,000 repetitions. Because
urbanization-induced warming uncertainty mainly originated
from the fitting models, the ranges of three coefficients (coeffi-
cients of a, b, c in Equation 3) can be found in Figures S2 and S3.
The results of uncertainty of climate change and urbanization can
be found in Figure S8 (red shaded areas).

Furthermore, we identified the ranges of the landscape-level
strategies on cooling effects in Table 3. Then, we conducted a
Monte Carlo simulation to predict a set of 5,000 parameter pairs of
landscape-level strategies from 2016 to 2055, keeping other driv-
ers consistent with attribution analysis. The results of uncertainty
of landscape-level strategies can be found in Figure S8 (green
shaded areas).

Theoretically, uncertainties from climate change and urban-
ization and the cooling effects of landscape-level strategies are in-
dependent of each other; thus their joint uncertainty was
calculated as the square root of the quadratic sum of the above
two uncertainties72 (Figure 3A). All analytical code and data
processing scripts are publicly available in the GitHub repository
at https://github.com/meipiao/EHP15010-code.

Results

Near Future Heat-Related Deaths
Our results indicate that the heat-related deaths are projected to
show significant (linear regression, p=0:0001) increasing trends

Figure 3. The near future heat-related deaths in the urbanized area of China. (A) the 3-y average smoothed heat-related deaths estimation (Experiment I) during
the period 2005–2015 based on historical climate data, urban patch level ERF, and prefectural level mortality rates; and the 3-y average smoothed heat-related
deaths estimation (Experiment V) during the period 2016–2055 based on future climate data, urbanization, socioeconomic adaption, and landscape-level strat-
egies under the SSP2-RCP4.5 and SSP5-RCP8.5 scenarios with uncertainty ranges (mean± 1 SD). The influences of climate change, urbanization, socioeco-
nomic adaptation, and optimal landscape-level strategies on heat-related deaths under the SSP2-RCP4.5 scenario (B) and SSP5-RCP8.5 scenario (C). Numeric
data can be found in Excel Tables S1–S3. Note that the tipping point refers to the time at which the future heat-related deaths exceed those during the baseline
period for the first time. Note: RCP, representative concentration pathways; SD, standard deviation; SSP, shared socioeconomic pathways.
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from 2016 to 2055 under two integrated scenarios (Figure 3A).
The projected annual heat-related deaths would increase from
136:5±16:5 permillion in 2016 to 175:7±27:5 permillion in
2055, at an average growth rate of 0:98 permillion=y under the
SSP2-RCP4.5 scenario (Figure 3A; Excel Table S1). Under the
SSP5-RCP8.5 scenario, the projected heat-related deaths would
show an increasing trend, with the total magnitude increases
from 140:0± 21:4 permillion in 2016 to 230:2± 38:7 permillion
in 2055, at an average growth rate of 2:26 permillion=y.

Under the SSP2-RCP4.5 scenario, urbanization explainsmost of
the estimated increase in heat-related deaths during the period
2016–2025, with an annual average magnitude of 80.3 per million
(Figure 3B; Excel Table S2). Although the contribution of climate
change to the estimated increase of heat-related deaths is minimal
(annual average of 0.1 per million). During the years 2046–2055,
urbanization would be responsible for an estimated annual average
of 91.1 per million heat-related death increases, followed by climate
change (39.1 permillion). In addition, during the period 2016–2025,
the estimated contribution of landscape-level strategies and socioe-
conomic adaptation on heat-related deaths would be an annual aver-
age of −49:7 and −19:9 permillion: During the years 2046–2055,
socioeconomic adaptation would account for an estimated annual
average of 43.0 per million in heat-related death reduction, and the
contribution of landscape-level strategies would account for an esti-
mated annual average of 49.1 permillion in death reduction.

Under the SSP5-RCP8.5 scenario, urbanization again plays the
most important role in explaining the estimated increase in heat-
related deaths in 2016–2025 (annual average of 78.8 per million),
followed by climate change (9.4 per million) (Figure 3C; Excel
Table S3). During years 2046–2055, the impact of urbanization on
projected heat-related deaths increases substantially, with an an-
nual average of 102.3 per million, followed by climate change
(95.3 per million). Furthermore, socioeconomic adaptation would

reduce annual heat-related deaths by 58.5 per million during 2046–
2055, compared to a reduction of 22.2 per million in 2016–2025. In
addition, landscape-level strategies would reduce the annual aver-
age of projected heat-related deaths by 47.4–49.6 per million in the
same time period.

Variations among Income Levels
We investigated the contribution of the four driving forces on
heat-related deaths among four income levels (high-income level,
upper-middle income level, lower-middle income level, and low-
income level) (Figure 4; Excel Table S4). Climate change, a
global-scale phenomenon, does not have a large difference
among income levels, even though the changes in climate condi-
tions show large spatial variations (Figure 4A,E; Figure S9). In
high-income cities, where the majority are megacities with dense
populations, climate change would contribute to an estimated an-
nual average of 27–69 permillion heat-related deaths during
2046–2055 under two scenarios. In addition, climate change con-
tributes to an estimated annual average of 79–126 permillion
heat-related deaths in the lower-middle income level.

Moreover, the influence of urbanization on the increase in
heat-related deaths shows an upward trajectory in tandem with
the rise in income levels (Figure 4B,F; Figure S9). In high-
income cities, urbanization would contribute to an estimated an-
nual average of 71–82 permillion heat-related deaths during the
period 2046–2055 under two integrated scenarios, whereas in
low-income cities, usually small cities with sparse populations, it
leads to an estimated annual average of 49–57 per million heat-
related deaths.

The influence of socioeconomic adaptation on heat-related
deaths represents an upward trend from high-income level to
low-income level (Figure 4C,G; Figure S9). In high-income

Figure 4. Attribution analysis of heat-related deaths among four income levels, 2046–2055. A box plot illustrates the effects of climate change, urbanization,
socioeconomic adaptation, and landscape-level strategies on heat-related deaths in different cities. We collected and ranked the per capita GDP of 360 cities.
However, due to the varying sizes of the urban patches (area ≥10 km2), not all cities were included in the study. A total of 332 cities were selected for analysis.
Numeric data can be found in Excel Table S4. Each solid colored dot represents a different city’s location. The center of the diamond denotes the median of
the box plot, while the lines extending from the diamond indicate the maximum and minimum normal values (upper and lower whiskers). Data points beyond
the whiskers are identified as outliers. (A) The impacts of climate change, (B) urbanization, (C) socioeconomic adaptation, (D) landscape-level strategies on
heat-related deaths under the SSP2-RCP4.5 scenario, (E) climate change, (F) urbanization, (G) socioeconomic adaptation, and (H) landscape-level strategies on
heat-related deaths under the SSP5-RCP8.5 scenario 2046–2055.
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cities, future socioeconomic adaptation is projected to reduce an
annual average of 14–23 deaths per million heat-related deaths,
which is substantially lower than that in the low-income cities
with an estimated reduction of 102–141 permillion heat-related
deaths.

We find a substantial contribution of landscape-level strategies
to the projected reduction of heat-related deaths, especially in
high-income cities (Figure 4D,H; Figure S9), where landscape-
level strategies are capable of reducing the estimated annual aver-
age of heat-related deaths by 48–51 permillion under the SSP2-
RCP4.5 and SSP5-RCP8.5 scenarios during the years 2046–2055.
In contrast, in low-income cities, landscape-level strategies can
potentially only achieve an estimated reduction of an annual aver-
age of 22–26 deaths permillion during the same period.

Differences along Urban-Rural Gradients
Our finding indicates that the effect of the mixed effects (com-
bined climate variability, urbanization, and socioeconomic adap-
tation) on the estimated increase in heat-related deaths exhibits a
gradual increase from the rural areas (low-density population) to
the urban centers (high-density population) (Figure 5; Figures
S10 and S11), and the landscape-level strategies on estimated
heat-related death reduction show the same trend.

Taking the SSP2-RCP4.5 scenario during the years 2046–
2055 as an example, the potential effect of landscape-level strat-
egies on projected heat-related death reduction would increase
from an annual average of 0:01 death=km2 in the rural areas to
0.94 death 0:94 death=km2 in the urban areas in the Beijing–
Tianjin–Hebei region (Figures 5B and 6B). This trend becomes

more pronounced in the Yangtze River Delta (Figure 5F) and
Pearl River Delta (Figure 5J), where the projected magnitude of
heat-related death reduction increases to 4:9 deaths=km2, and
6:8 deaths=km2 in the urban centers, respectively. Moreover, the
influence of mixed effects on the projected increase in heat-
related deaths would potentially increase from an annual average
of −0:02 death=km2 in rural areas to 2:4 deaths=km2 in the urban
centers in the Beijing–Tianjin–Hebei region, 12:7 deaths=km2 in
the Yangtze River Delta, and 11:6 deaths=km2 in the Pearl River
Delta (Figures 5 and 6A).

We also observed that the contribution of landscape-level strat-
egies and mixed effects on estimated heat-related deaths changes
over time. For instance, under the SSP5-RCP8.5 scenario during
the years 2026–2035, landscape-level strategies can lead to an esti-
mated reduction of 0:9 death=km2 in the urban centers of the
Beijing–Tianjin–Hebei region (Figure 5C). During 2046–2055, it
is estimated that the magnitude would increase to 1:1 death=km2

(Figure 5D). Moreover, mixed effects can lead to a potential
increase of 1:7 deaths=km2 in the urban centers of Yangtze River
Delta during 2026–2035 (Figure 5G). During the period 2046–
2055, this magnitude would potentially increase to 2:5 deaths=km2

(Figure 5H).

Discussion
To the best of our knowledge, this study represents a comprehen-
sive investigation to date of the factors, including climate change,
urbanization, socioeconomic adaptation, and landscape-level
strategies, influencing heat-related deaths (Table 2). The perform-
ance of our modeling framework, specifically the reliability of

Figure 5. The spatial distribution of influence of mixed effects and landscape-level strategies on annual mean heat-related deaths at a resolution of
1 km×1 km in the Beijing–Tianjin–Hebei region (A–D), the Yangtze River Delta (E–H), and the Pearl River Delta (I–L). Note that the mixed effects refer to
the combined effects of climate change, urbanization, and socioeconomic adaptation on heat-related deaths. The mixed effects and landscape-level strategies
were spatially visualized using a 2-dimensional legend to intuitively demonstrate the mitigating impact of landscape-level strategies on heat-related deaths.
Numeric data can be found in Excel Table S5. The units represent the impacts of mix effects and landscape-level strategies on heat-related deaths. For instance,
in the Yangtze River Delta, the maximum value of mixed effects is 15.5, which represents an increase of up to 10.5 heat-related deaths per square kilometer
due to mixed effects. Conversely, the minimum value for landscape-level strategies in the same region is −5:5, suggesting a maximum decrease of 5.5 heat-
related deaths per square kilometer due to landscape-level strategies.
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the attribution analysis in estimating heat-related deaths, can be
supported by previous studies.6,18,21 We estimated that climate
change (RCP4.5 and 8.5 scenarios) may contribute to an addi-
tional 39:1–95:3 permillion heat-related deaths during the period
2046–2055 in comparison with the baseline period (2008–2012).
This finding is consistent with a national level study11 conducted
in China, which reported a range of 71:6–97:8 permillion for
1:5�C global warming under various SSPs. Similarly, a local
human health study73 conducted in Jiangsu Province reported a
projected magnitude of 67 and 81 permillion in the years 2041–
2065 under the RCP4.5 and 8.5 scenarios, respectively, relative
to the period of 2016–2040. Moreover, a recent study74 analyzing
temperature-related mortality across 854 European cities reveals
that 13 countries in Europe experienced more than 140 heat-
related deaths per million inhabitants annually during the period

1990–2019 attributable to climate change impacts. Furthermore,
our results indicate that urbanization is the primary contributing
factor to the increase in heat-related deaths, which is consistent
with previous descriptive statements.6,18,21

Evidence11 in China shows that socioeconomic adaptation can
reduce heat-related deaths to 54:9–62:8 permillion for 1:5�C global
warming under various SSPs, which is slightly higher than our esti-
mation (43:0–58:5 permillion during the period 2046–2055). This
difference can be attributed to the data source of future population and
GDP, whereas we used the most updated gridded population and
GDP data with higher resolution and improved prediction model in
comparison with previous studies.11,43,44 Certainly, the health bene-
fits of socioeconomic development exhibit temporal heterogeneity,
with diminishing marginal returns emerging at higher development
levels.75 Although China’s rapid GDP growth historically coincided

Figure 6. The influences of mixed effects (A) and landscape-level strategies (B) on heat-related deaths along urban-rural gradient among different China’s
cities during the period 2046–2055 under the SSP2-RCP4.5 scenario. To elucidate the spatial variations of mixed effects and landscape-level strategies on heat-
related mortality across urban-rural gradients, Zone 5 obtained via the KDE method was regarded as the urban center of each urban patch and Zone 1 as rural.
Summary data can be found in Excel Table S6. Note that the value on the y-axis represents the average number of heat-related deaths per square kilometer
along the urban-rural gradient. Due to the KDE classification being based on normalized values ranging from 0 to 1, not all 332 cities have patches with all
five levels. Therefore, this figure finally displays the 100 cities that contain all 5 levels of partitioning. Note: KDE, kernel density estimation.
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with substantial health improvements (e.g., health care accessibil-
ity and infrastructure), its transition toward high-income status
could weaken this linkage, mirroring patterns in countries like
Japan,76 where macroeconomic trends and heat-related mortality
became increasingly decoupled in recent decades. More impor-
tant, our study suggests that 48%−63% of urbanization-induced
deaths can be avoided when implementing optimal landscape-
level strategies, where increasing tree coverage can reduce by
20%−26% of urbanization-induced deaths. Although no current
study considers all the landscape-level strategies in large-scale
estimations, our result referring to the effects of increasing tree
coverage are somewhat lower than that in Iungman et al.6 con-
ducted in European cities (showing that roughly 40% of
urbanization-induced deaths can be avoided). Two potential
explanations can be posited for this discrepancy. First, the phe-
nomenon of urbanization-induced warming may lead to elevated
temperatures within urban centers, thereby contributing to
increased mortality associated with urbanization in our study.
Second, our target for enhancing tree cover is set at 10%, in stark
contrast to the more ambitious goal of 40% established by
Iungman et al.6 It is notable that many urban areas with relatively
low baseline tree cover (i.e., below 30%) are likely to experience
a more pronounced increase in tree canopy coverage.

Implementing appropriate urban planning programs is critical for
reducing heat-related deaths in cities. “Greenworks Philadelphia,”77 a
well-known urban planning program, established a goal of achieving
30% vegetation cover per neighborhood in 2009, which has been
shown to significantly prevent premature deaths. Similarly, the
“Consultancy Study on Building Design that Supports Sustainable
Urban Living Space in Hong Kong”78 clearly prescribed that
20%−30%of the building area should be designated for greenery, aim-
ing to enhance environmental sustainability and mitigate heat-related
impacts. In other regions of theworld, analogous landscape-level strat-
egies have been proposed for increasing vegetation cover, such as the
“Kuala Lumpur Structure Plan”79 2020 in Malaysia, and the “Urban
Greening Plans”25 proposed by the European Commission. Our study
highlights the importance of landscape-level strategies in the high-
density urban settlements of megacities with high-income level.
Besides tree coverage, other factors also influence the cooling effec-
tiveness of urban greening, including tree canopy structure,80 tree spe-
cies,81 and water use strategies.82 A study80 demonstrates that tree
height, canopy cover above roads, canopy volume over roads, and leaf
area index are positively correlated with road air temperature differ-
ence. In addition, research by Irmak et al.81 reveals significant differen-
ces in urban temperature mitigation effects among different tree
species. Moreover, adopting different water use strategies82 can affect
trees’ transpiration and shading capacity, thereby altering their effects
on ambient temperature.

During the baseline period, urban residents in high-income
cities already had advanced public cooling infrastructure and had
the financial capacity to acquire cooling equipment, such as air
conditioning. Consequently, future economic improvements in
high-income cities are expected to have ineffective effects in fur-
ther reducing heat-related deaths. In contrast, a substantial
enhancement in cooling capabilities is anticipated in low-income
cities, which will likely result in a more pronounced decrease in
heat-related deaths as economic conditions improve. Given that
landscape-level strategies can induce similar cooling effects in
both contexts, there exists a considerable potential to mitigate
heat-related mortality and enhance public health outcomes in
high-income cities as well. Implementing landscape-level strat-
egies aims to create a healthy and comfortable environmental for
all the groups.

It is evident that prioritizing the implementation of landscape-
level strategies can significantly reduce heat-related deaths,

especially in the high-density urban settlements (Figures 5 and
6); however, the estimated number will still rise irreversibly in
comparison with the baseline period in both scenarios in this
study. Therefore, cities could prioritize enhancing urban green
infrastructure through targeted greening initiatives to achieve
short-term mortality reduction. For instance, implementing ambi-
tious tree canopy expansion goals77 (e.g., 15%) in neighborhoods
with limited existing vegetation could significantly improve heat
mitigation outcomes. Besides, the increase of tree coverage
should be coordinated following the local distribution of the pop-
ulation,43,83,84 because this can effectively target areas with high
population density and maximize the benefits of heat mitigation
and environmental justice.85,86 In addition, except the landscape-
level strategies we mentioned in this study, other strategies,5

including wetland restoration, urban ventilation pathways, and
green traffic infrastructure, can be implemented in the future.

This study has several limitations. First, this study did not
consider the impact of income disparities within urban patches
on heat-related deaths. Future research should involve the heat
risks faced by different income groups within cities, because
this represents a significant issue in the study of urban envi-
ronmental injustice. Furthermore, we did not account for the
differential responses to heat risk across age and gender demo-
graphics. Subsequent work should aim to derive unique ERF
curves for distinct age and gender groups. In addition, it is cru-
cial to incorporate population simulation data that account for
large-scale migrations driven by climate change to accurately
estimate heat-related mortality. Last, although we defined a
6-month period (May–October) for evaluating heat-related
deaths, it is possible that elevated temperatures occurring out-
side this time frame may lead to a minor underestimation of
the associated mortality.

In this study, we provide a high-resolution (1 km) mapping of
the impact of various drivers on heat-related deaths in cities,
addressing a gap in previous studies that primarily focused on
city-level or coarse spatial resolutions (Table 1). Our high-
resolution mapping facilitates a more accurate assessment of the
effectiveness of landscape-level strategies aimed at reducing heat-
related deaths along the urban-rural gradient, which can also be
recognized as the high-low population density gradient in China.
Our findings indicate that landscape-level strategies are likely to
be more effective in mitigating heat-related deaths within densely
populated urban settlements of high-income megacities. In sum-
mary, our study highlights the critical role of high-resolution spa-
tial analysis and landscape-level strategies in reducing heat-related
mortality, offering implications for future research, policy devel-
opment, and urban planning to enhance public health outcomes in
the face of rising temperatures.
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