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Abstract: Fusarium graminearum, the main causal agent of Fusarium Head Blight (FHB), is one of
the most damaging pathogens in wheat. Because of the complex organization of wheat resistance to
FHB, this pathosystem represents a relevant model to elucidate the molecular mechanisms under-
lying plant susceptibility and to identify their main drivers, the pathogen’s effectors. Although the
F. graminearum catalog of effectors has been well characterized at the genome scale, in planta studies
are needed to confirm their effective accumulation in host tissues and to identify their role during the
infection process. Taking advantage of the genetic variability from both species, a RNAseq-based
profiling of gene expression was performed during an infection time course using an aggressive
F. graminearum strain facing five wheat cultivars of contrasting susceptibility as well as using three
strains of contrasting aggressiveness infecting a single susceptible host. Genes coding for secreted
proteins and exhibiting significant expression changes along infection progress were selected to
identify the effector gene candidates. During its interaction with the five wheat cultivars, 476 effector
genes were expressed by the aggressive strain, among which 91% were found in all the infected
hosts. Considering three different strains infecting a single susceptible host, 761 effector genes were
identified, among which 90% were systematically expressed in the three strains. We revealed a robust
F. graminearum core effectome of 357 genes expressed in all the hosts and by all the strains that
exhibited conserved expression patterns over time. Several wheat compartments were predicted to
be targeted by these putative effectors including apoplast, nucleus, chloroplast and mitochondria.
Taken together, our results shed light on a highly conserved parasite strategy. They led to the identifi-
cation of reliable key fungal genes putatively involved in wheat susceptibility to F. graminearum, and
provided valuable information about their putative targets.

Keywords: Fusarium graminearum; Triticum aestivum; plant–fungus interaction; in planta; transcrip-
tomics; effectoromics; susceptibility factors

1. Introduction

Fusarium Head Blight (FHB), mainly caused by the Ascomycota fungus Fusarium
graminearum, is one of the most prevalent diseases of small grain cereals, especially in
wheat [1,2]. With direct impacts on yield, grain quality and through the accumulation of
carcinogenic mycotoxins (e.g., deoxynivalenol, DON) [3–5], FHB is considered as a major
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limiting factor for wheat production in Europe, North America and Asia [6–9], resulting
in substantial economic losses that reached up to USD 1.176 billion over 2015 and 2016
in the USA for instance [10]. Because FHB is expected to be even more frequent and
intense along with the rises of temperatures and the occasional increases in air humidity
promoted through the climate change [11,12], further research is needed to develop better
management strategies and sustainable control solutions [13]. FHB resistance trait is strictly
quantitative and involves multiple Quantitative Trait Loci (QTLs) with relatively weak
effects [14,15] that makes them insufficient when environmental conditions are favorable
to the fungus. Thus, identifying sustainable solutions able to efficiently control FHB
epidemics requires the search of alternative sources of resistance. For the last twenty years,
the multiple evidences of the role of a plant’s susceptibility factors in promoting pathogen
infection have opened new opportunities to identify such pivotal determinants of plant
diseases, and a number of studies already reported that mutation or loss of susceptibility
genes can be used in resistance breeding [16,17]. With the increasing evidences of the role
of wheat’s susceptibility factors in FHB development [18–23], elucidating the mechanisms
of wheat susceptibility to F. graminearum appears as a promising approach to improve FHB
resistance [17,24–26].

A pathogen’s ability to hijack a host’s biological processes such as defense responses,
physiology and primary metabolism to exploit host resources is assumed to be one of the key
drivers of a plant’s susceptibility. These interactions involve a complex molecular crosstalk
between the two partners, including the delivery of effectors, which include small secreted
proteins able to alter host cell structure and to target specific functions into host tissues,
the so-called susceptibility factors [27–32]. The role of an effector is therefore determined
by its in planta localization, i.e., the apoplast or host’s intracellular compartments, and
the targeted susceptibility factors [32–35]. Mining a robust catalog of pathogen effectors,
i.e., the effectome, offers major opportunities to improve resistance breeding through the
identification of the host’s susceptibility factors, i.e., the targetome. This further could make
possible the identification of functional markers to screen plant germplasm, as well as new
targets for host-induced gene silencing [32,36,37]. However, their systematic search in silico
is still challenging because most of them lack shared protein features or conserved domains
within and across species, and very few are structurally characterized [28,32,35]. The only
universal fungal effector’s characteristics are their expected secretion and their fine-tuned
synthesis along the infection progress [35,38], making in planta exploratory methods such
as transcriptomics and proteomics necessary to narrow down the effector candidates and
identify the active ones [37,39,40].

Numerous effectors are deployed by pathogens and their role within the molecular
crosstalk and in the fate of the interaction is determined by their conservation among
pathogen species or between the different strains of a particular species. This conserva-
tion is also partly driven by the coevolution with their hosts and their targetome [40,41].
Conserved effectors are thought to play an indispensable role to ensure compatibility by
targeting conserved host’s immune or metabolism functions, while specific effectors are
thought to be involved in the host’s adaptation and strain aggressiveness [40–43]. Thus,
elucidating the complexity of such molecular crosstalk underlying plant–pathogen in-
teractions and elaborating robust and relevant effectomes require consideration of the
diversity from both partners of the interaction. The genomics variability of many fungal
pathogen species is well characterized, but its impacts on the infection program remains to
be addressed [44–48].

In Fusarium graminearum, genomics variability has been well characterized and the first
pangenome of the species, built from 20 strains, was published in 2021 [49]. If the in silico
characterization of F. graminearum secretome [49,50] is now available, our knowledge about
the effective in planta effectome remains fragmented and needs to be clarified. Several
in planta studies outlined a highly dynamic and complex molecular dialogue between
wheat and F. graminearum, involving a stage-specific delivery of the effectors [19,25,51,52].
However, the impacts of wheat and F. graminearum genetic backgrounds are largely un-
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known. In a previous proteomics study, F. graminearum infection strategy was described
in three strains of contrasting aggressiveness facing three wheat cultivars of contrasting
susceptibility at one time point, resulting in the identification of highly conserved fungal
determinants of the infection [20]. Owing to its higher ability in detecting low-abundant
molecules, as are the fungal molecules within host tissues, applying RNA-seq technol-
ogy over infection progress appears as a promising approach to complete the picture of
F. graminearum effectome during FHB and to identify its core components.

The presented work addresses qualitative and quantitative characterization of
F. graminearum paneffectome using an RNAseq-based profiling of the effector coding genes
during a time course infection in a two-pronged approach: one using a single aggressive
strain facing five wheat cultivars of contrasting susceptibility and a second using three
strains of contrasting aggressiveness infecting a single susceptible host. Our results led to
the first detailed in planta description of the F. graminearum effector repertoire and identified
the dynamics of key drivers of the infection process.

2. Results

Fusarium graminearum transcripts were detected in all infected plant samples with an
increase of assigned read pairs along with the infection progress, as expected. In the Host
Variability (HostV) experiment, the assignation to F. graminearum genome accounted for
1.7%, 8.3% and 16.2% of the assigned pairs at 48 h post-inoculation (hpi), 72 and 96 hpi,
respectively (Supplementary Table S1A). In the Pathogen Variability (PathoV) experiment, it
corresponded to 3.5%, 8.6% and 22.6% of the assigned pairs at 48, 72 and 96 hpi, respectively
(Supplementary Table S1B).

2.1. In Planta Expression Signature of the F. graminearum Gene Set Coding Secreted Proteins

A total of 9544 and 9898 F. graminearum transcripts were reliably identified in the
HostV and PathoV experiments, respectively (Figure S1A). These two expressed gene sets
shared 93% of their accessions. They included 1105 and 1162 genes encoding putative
secreted proteins (SP genes) in HostV and PathoV, respectively, accounting for 1183 unique
gene accessions (Supplementary Table S2 and Figure S1B). Noticeably, the pangenome
mapping approach allowed the identification of 151 new fungal transcripts, absent from
the PH-1 reference genome, of which 16 genes were SP genes.

In the HostV data set, 974 SP genes (88.2%) among the 1105 expressed SP genes
were expressed in all hosts independently of their susceptibility level, thus representing a
host-independent SP gene set (Figure 1A). About 8.7% of the SP gene set (96 genes) was
expressed only in some of the different hosts, of which 28% were not detected in the Asian
wheat line ‘Chinese Spring’ (CS). A total of 35 genes were identified in only one host of
which 43% were specific to the FHB susceptible wheat cultivar ‘Recital’ (REC). A total of
six newly characterized gene accessions, not present in the PH-1 reference genome, were
detected, including three genes expressed in all the hosts. In the PathoV data set, 1016 SP
genes (87.4%) among the expressed SP genes were expressed in all strains independently
of their aggressiveness; they form a strain-independent SP gene set (Figure 1B). About
5.5% of the PathoV SP gene set (64 genes) was expressed only by some of the different
strains. A total of 82 genes were identified in only one strain and nearly 45% of them were
found in the most aggressive strain MDC_Fg1. The PathoV data set resulted in 15 newly
identified SP genes of which seven were specifically expressed by MDC_FgU1, four others
by MDC_Fg1 and two by MDC_Fg13. SP genes expressed systematically in all the infected
hosts and by all the different strains accounted for more than 80% of the whole SP detected
genes in both HostV and PathoV experiments (Figure 1C).
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Figure 1. In planta expression signature of F. graminearum genes coding for putative secreted proteins.
Barplots represent the structure of the gene sets coding for putative secreted proteins expressed in
planta for the HostV (A) and the PathoV (B) experiments. HostV barplot displays the number of genes
expressed by the strain MDC_Fg1 in all the infected hosts, in some hosts (Accessory) and in only a
specific host: ‘Arche’ (ARC) specific, ‘Courtot’ (COU) specific, ‘Chinese Spring’ (CS) specific, ‘Recital’
(REC) specific or ‘Renan’ (REN) specific. PathoV barplot displays the number of genes expressed
by the three strains MDC_Fg1, MDC_Fg13 and MDC_FgU1, by two strains only (Accessory) and by
only one strain (MDC_Fg1 specific, MDC_Fg13 specific, MDC_FgU1 specific). The Venn diagram (C)
represents the intersection of the gene sets expressed in all the hosts (HostV) and expressed in all the
strains (PathoV).

2.2. Characterization of Differential Expression of SP Gene Sets at the Early Stages of Infection
2.2.1. Fungal Gene Expression in Different Host Cultivars

Among the 3180 HostV differentially expressed genes (DEGs) (Figure S2A), a signifi-
cant enrichment of SP genes was found (p-value < 1.13 × 10−64), summing 626 accessions
significantly impacted by at least one of the tested factors (host, infection progress or
their interaction effect) (Figure 2A). They included 201 (32.1%) and 150 (24%) genes whose
expression was only impacted by the infection progress (infection regulated genes; Infection-
DEGs) and by the host genetic background (host regulated genes; Host-DEGs), respectively,
while 204 (32.6%) genes exhibited basal expression differences depending on the infected
host cultivar along with differential expression driven by the infection progress (Host +
Infection regulated genes; H + I-DEGs). Only 11.3% of the SP DEGs (71 genes) displayed a
significant interaction of the two main factors (Host x Infection Progress regulated gene



Int. J. Mol. Sci. 2022, 23, 1914 5 of 22

set; HxI-DEGs), depicting differences in expression dynamics in the different host cultivars.
Overall, 476 SP genes (76%) were significantly regulated during the infection progress.
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Figure 2. Number of secretome genes from the HostV (A) and the PathoV (B) experiments sig-
nificantly impacted by the different effects tested in the differential expression (DE) analysis. For
each factor of the DE analysis, the Venn diagrams indicate the number of genes displaying significant
expression variations. Significance threshold: p-value corrected by Benjamini–Hochberg method < 0.001.

2.2.2. Fungal Strain Specificities

Among the 5879 PathoV DEGs (Figure S2B), a significant enrichment of SP genes was
found (p-value < 3.85 × 10−42), summing 897 accessions significantly impacted by at least
one of the tested factors (strain, infection progress or their interaction effect) (Figure 2B). SP
genes whose expression was only impacted by the infection progress (Infection-DEGs) were
more than twice as numerous as those only regulated by the strain genetic background
(Strain-DEGs) with, respectively, 287 (32%) and 136 (15.2%) genes, while 401 genes (44.7%)
exhibited basal expression differences between the different strains along with differential
expression driven by the infection progress (Strain + Infection regulated genes; S + I-DEGs).
Only 8.1% of the SP DEGs (73 genes) displayed a significant interaction of the two main
factors (Strain x Infection Progress regulated genes; SxI-DEGs), depicting differences in ex-
pression dynamics depending on the strain. Overall, 761 SP genes (85%) were significantly
regulated during the infection progress.

2.3. Parsing Secretome Gene Sets towards Effectome Gene Sets That Are Regulated along the
Infection Progress

Among the DEGs that proved to be SP genes, those demonstrating fluctuating tran-
scription during the interaction are supposed to be essential components of the infection
progress (as effectors are defined [32,35]). With this regard, we established two effectomes
in both HostV and PathoV data sets with, respectively, 476 and 761 accessions, by selecting
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only SP genes with varying expression levels during the infection progress (Supplementary
Table S3A,B).

In the HostV data set, the aggressive strain MDC_Fg1 displayed 91% (433 genes) of its
effectome in all the infected wheat genotypes (Figure 3A). Genes found in only a subset of
hosts accounted for 35 genes including two newly identified genes absent from the PH-1
genome while only eight effector genes were host-specific. To gain a better understanding
on the impacts of host on fungal gene expression along with the infection progress, we
computed a Partial Least Squares Discriminant Analysis (PLS-DA) on the genes expressed
in all the hosts (Figure 4A). The first component, explaining 42% of total variance, clearly
discriminated the infection stages with the 48 hpi time point on the right side and the 96
hpi time point on the left side of the PLS-DA. For all hosts except CS, the 72 hpi time point
marked a transition between the 48 hpi and 96 hpi time-points. The second component,
explaining 17% of the variance, discriminated the Asian and spring wheat line CS from the
European and winter wheat lines.
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Figure 3. Structure of the HostV (A) and PathoV (B) effectome gene sets. These sets gather the genes
significantly regulated along infection progress and coding for putative secreted proteins. (A) The
flower plot displays the number of genes expressed by the strain MDC_Fg1 in all the infected hosts
(center circle), in some hosts (annulus) and in only a specific host (petals). (B) The flower plot displays
the number of genes expressed by the three strains MDC_Fg1, MDC_Fg13 and MDC_FgU1 (center
circle), by two strains only (annulus) and by only one strain (petals).

In the PathoV data set, the three different F. graminearum strains also displayed a
conserved effectome gene set, including 90% (682 genes) of the effectome (Figure 3B). As
above, effectome genes identified in a subset of strains or in only one strain gathered 39
and 40 genes, respectively; eight of those were newly identified genes absent from the PH-1
genome. The PLS-DA on effectome genes expressed by the three strains showed that the
first component, explaining 47% of the variance, also clearly discriminated the stages of
infection with the 48 and 96 hpi time points located on the opposite sides of the factorial
plane and the 72 hpi time point in between (Figure 4B). The second component of the
PLS-DA, explaining 13% of variance, differentiated the most aggressive strain MDC_Fg1
from the two other strains (MDC_Fg13 and MDC_FgU1).
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Figure 4. Discrimination of HostV (A) and PathoV (B) effectome gene sets expressed in all the hosts
or by all the strains according to the experimental conditions. PLS-DA method was applied on the
433 genes expressed in all the hosts for HostV (A) to predict the host–infection progress combinations
and on the 682 genes expressed by all the strains for PathoV (B) to predict the strain–infection progress
combinations. The plots of the individuals extracted from the PLS-DA are represented on the two first
components. For each condition, confidence ellipses are plotted to highlight discrimination strength
(level set to 95%).

2.4. Different Wheat and F. graminearum Genetic Backgrounds Evidenced a Relevant Core
Effectome Gene Set Expressed at Specific Infection Stages

As a whole, 357 effector genes were expressed in all the infected hosts by MDC_Fg1 and
in Recital by the three strains; they represent an in planta core effectome of F. graminearum
(Supplementary Table S4). Gene and sample Hierarchical Ascendant Clustering (HAC)
applied to HostV and Pathov expression data, confirmed the strong impact of infection
kinetics on quantitative differences in the core effectome gene set (Figure 5). Genes were
expressed per waves and allowed to distinguish the early stages of infection (48 hpi) from
the later ones. In comparison with HostV, the PathoV experiment clearly distinguished the
intermediate time point (72 hpi) from 48 hpi. More than one-third of the core effectome
gene set systematically displayed higher expression levels at 48 hpi as compared to 72 and
96 hpi in both experiments (clusters HostV-1, -2 and clusters PathoV-1, -2) while nearly 60%
demonstrated higher expression levels at the latter stages of infection (clusters HostV-4, -5,
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-6, -7 and clusters PathoV-3, -4, -6). Gathering up to 94% of identical gene accessions, these
expression patterns were highly reproducible in both the HostV and PathoV experiments.
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Figure 5. Expression regulation patterns of the core effectome genes along with the infection progress
in HostV (A) and PathoV (B) data sets. The structure of gene and sample data sets were determined
by HAC based on Ward’s minimum variance method using the z-score transformed gene expression
values. Heatmap color scales represent the z-score transformed expression values of the genes from
the core effectome gene set for each sample. The clustering on top of the heatmap represents the
experimental conditions which are labeled according to the factors Infection Progress and Host
for the HostV experiment, and Infection Progress and Strain for the PathoV experiment. The clus-
tering on the right side of the heatmap represents the genes, which are colored according to their
cluster membership.
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2.5. Host and Strain Driven Regulations of the Core Effectome Gene Set
2.5.1. Host Cultivar Effects

Basal gene regulations driven by the host genetic background were observed for 43%
of the core effectome (154 H + I DEGs; Supplementary Table S3) while a difference in gene
expression dynamics in different hosts was found for almost 17% of the core effectome
(59 HxI DEGs). In addition, the HAC showed that all 72 hpi samples did not cluster
together, thus demonstrating that expression patterns can depend on the host (Figure 5A).
This exemplifies that according to the infected host, the magnitude of the gene expression
increase or decrease could vary. Indeed, the 72 hpi samples of ‘Arche’ (ARC), ‘Courtot’
(COU) and ‘Renan’ (REN) hosts displayed more similarities with most of the 48 hpi samples
while the 72 hpi samples of CS and REC hosts were clustered with the 96 hpi samples.
These differences were mainly observed in the clusters HostV-1, -2, -4 and -5. For instance,
in cluster HostV-4, the gene expression increase was stronger and continuous between
48 and 96 hpi in CS and REC while it mainly took place between 72 and 96 hpi in ARC,
COU and REN hosts. Finally, MDC_Fg1 displayed specific gene expression patterns at
96 hpi in CS when compared to the other hosts. In the cluster HostV-2 and -4, MDC_Fg1
gene expression changes were larger when facing CS than the other hosts while in cluster
HostV-6 and -7, changes proved to be smaller.

2.5.2. Fungal Strain Effects

Almost 65% of the core effectome gene set displayed strain effects, including 184 S+I
DEGs and 46 SxI DEGs (Supplementary Table S3). This demonstrates that depending on
the strain genetic background, basal gene expression level can be different. Although all
48 hpi samples were clustered together in the HAC, differences at the gene expression level
discriminated the three strains (Figure 5B). For instance, clusters PathoV-2 and -3 clearly
distinguished MDC_Fg13 and MDC_FgU1 from MDC_Fg1 displaying stronger expression
levels while the cluster PathoV-6 clearly distinguished MDC_Fg13 with higher expression
levels than the two other strains. The 72 and 96 hpi samples clearly separated MDC_Fg1
from MDC_Fg13 and MDC_FgU1 mainly through the gene clusters PathoV-2, -3 and -4.
In cluster PathoV-5, the three strains were clearly discriminated from each other at each
time point.

2.6. Fusarium graminearum Putative Effectome Displayed Several Targets in Wheat Spikes at
Different Infection Stages

A predicted localization within the host was found for 268 proteins (75.07%) of the
357 proteins belonging to the core effectome (Figure 6, Supplementary Table S4). Nearly
90% of these proteins displayed a unique predicted localization. Apoplast localization
was found for 85% (227 proteins) of the proteins while the others harbored at least one
subcellular localization within the host. Both apoplast and cytoplasm localizations were
predicted for 29 proteins. The host nucleus was the main subcellular target, gathering
65% (46) of the proteins with a predicted localization. The chloroplast was the second
target with 22 proteins while the host mitochondria included only 11 proteins. Multiple
predicted intracellular localizations were found for eight proteins. Genes supposed to be
secreted in the apoplast or which failed to identify any known subcellular localization
signal, displayed mainly increasing expression along with the infection progress. As for the
genes coding for proteins supposed to enter host cells, the ratio between genes of increasing
and decreasing expression was balanced.
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Figure 6. Localization within the host of the fungal proteins encoded by the core effectome gene set
according to the expression timing during the infection progress. Barplots represent the frequencies
of the predicted localizations within the host of the proteins coded by F. graminearum genes expressed
at the early stages of the infection (Early Expression), at intermediate stages of infection (Intermediate
Expression), at latter stages of infection (Late Expression) in both HostV and PathoV experiments or
expressed with different dynamics between the HostV and PathoV experiments.

2.7. Identification of Additional Effector Features
2.7.1. In Silico Prediction

Based on protein size, net charge and amino acid content [53], EffectorP2.0 led to
the identification of 66 putative effectors among the core effectome; 53 genes displayed
apoplast localization (Supplementary Table S4). Nearly 55% of them showed an increasing
expression pattern along with the infection progress while 32% showed a decreasing
expression pattern. Three other genes harbored a chloroplast localization signal; all of them
were of increasing expression along with the infection progress. Only 1 gene harbored
a plant nuclear localization signal and 1 other with a mitochondria transit peptide; both
displayed different expression dynamics between the HostV and PathoV experiments.

2.7.2. Localization in the Fast-Evolving Subgenome

Because previous comparative genomic studies demonstrated that F. graminearum puta-
tive pathogenicity-related genes were located in variable regions of the genome [49,54,55], the
distribution of our core effectome on F. graminearum genome was studied (Supplementary
Table S4). At both inter- and intrachromosomal level, spatial distribution of the core effector
genes was uneven (Figure S3). Chromosome 1 accounted for 79 genes, chromosome 2 for
118 genes, chromosome 3 for 94 genes and chromosome 4 for 66 genes. With 13 and 12 genes
per Mb, respectively, chromosomes 2 and 3 displayed higher effector gene densities than
chromosomes 1 and 4 (6.7 and 7 genes per Mb, respectively). At the intrachromosomal
level, genes were preferentially located in the telomeres and in the central regions of the
chromosomes. Two-thirds of the core effectome genes were located in the fast-evolving
subgenome [55]. While the distribution of intermediate and late expressed genes was rela-
tively balanced on the genome, early expressed genes were mainly located on chromosome
2 (41.5%).
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2.8. Predicted Functions of the Core Effectome Are Highly Diverse

As a whole, 140 Pfam and 66 GO terms characterizing 230 and 126 genes, respectively,
were found in the core effectome (Supplementary Table S4). The gene set was significantly
enriched in two GO Biological Process terms: ‘carbohydrate metabolic process’ and ‘prote-
olysis’ with 35 and 15 annotated genes, respectively. At the molecular function level, the
core effectome was enriched in ‘metallocarboxypeptidase activity’, ‘hydrolase activity, hy-
drolyzing O-glycosyl compounds’, ‘polygalacturonase activity’, ‘hydrolase activity’, ‘alpha-
L-arabinofuranosidase activity’ and ‘flavin adenine dinucleotide binding’ functions. Finally,
the core effectome was enriched in the ‘extracellular region’ as GO Cellular Component
term. The search for peptidases in MEROPS database and CAZymes in dbCAN database
yielded 38 and 98 genes of the core effectome genes, including 4 and 16 EffectorP-predicted
effectors, respectively. Moreover, 36 genes were found in PHI-base, including 22 matches
with F. graminearum. Fifteen genes were assigned to the ‘unaffected pathogenicity’ cate-
gory while 16 and 3 other genes were assigned to the ‘reduced virulence’ and ‘reduced
virulence_unaffected pathogenicity’ categories, respectively. One gene matched with a F.
graminearum accession and belonged to the ‘reduced virulence_increased virulence (hyper-
virulence)’ category. Finally, one gene corresponded to a validated effector that belonged to
the category ‘effector (plant avirulence determinant)_increased virulence (hypervirulence)’.
Effects on pathogenicity or virulence were shown for 8 EffectorP-predicted effectors.

3. Discussion

Taking advantage of different F. graminearum strains and wheat host cultivars, this
study identified the in planta expression of 840 unique fungal genes harboring effector-
associated features (i.e., genes encoding secreted proteins and differentially expressed
during the FHB infection), including nine new accessions not included in the reference
PH-1 genome. These represent almost 5% of F. graminearum pangenome and more than
35% of its putative pansecretome [49].

3.1. Fusarium graminearum Infection Involves a Highly Conserved Effectome

Transcriptome profiling of effector coding genes conducted on the three F. graminearum
strains of contrasting aggressiveness and on the five hosts of contrasting susceptibility to
FHB revealed highly conserved effector repertoires. We demonstrated that the three strains
shared 90% of their effector-gene transcripts. While at the genomic scale, these three strains
shared only 58% of their theoretical secretome [49], our results corroborate a previous in
planta proteomics study demonstrating that nearly 100% of the whole identified secreted
proteins were accumulated in the same three strains [20]. This emphasizes that the effective
infection process of the three strains on wheat is based on a conserved effectome that
controls critical plant processes to ensure the success of the infection. Similar results were
already found in other pathosystems. For instance, the gene expression analysis of six
Puccinia triticina strains highlighted a highly conserved infection strategy with 85.7% of the
identified secretome genes expressed by all the strains during wheat infection [44]. Similar
findings were also reported in the maize–Exserohilum turcicum interaction where 97% of
the putative effector genes were shared by two strains [48]. Extending this analysis to the
role of host genetic background on the expressed effectome, our data also demonstrated a
highly conserved infection strategy in different wheat cultivars of contrasting susceptibility
to FHB that engages a common effector repertoire shared at 91%. Few hosts’ specific
gene expressions were already outlined at the whole-transcriptome scale [56]. Our results
support similar conclusions with a special focus on the effectome gene set and are consistent
with our previous proteomics study demonstrating the accumulation of the same fungal
proteins in different wheat hosts [20]. A core effectome composed of 357 genes expressed by
all the strains and in all wheat hosts (Figure 7) exemplified the highly conserved infection
program established by F. graminearum. Because the interaction is systematically producing
FHB disease regardless of the strain aggressiveness or the host susceptibility, these genes
likely include key drivers of FHB in bread wheat. Their functions are thus supposed to be
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crucial determinants of basal processes powering the FHB development in wheat, including
66 putative effector genes and 21 Phi-base matches known to be involved in pathogenicity.
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Figure 7. Model summarizing the conserved and complex F. graminearum infection strategy on wheat
spikes. As a whole, 357 effector genes were identified as the key drivers of FHB infection expressed
by all the strains and in all the infected hosts; they represent the F. graminearum core effectome.
These genes were expressed at very specific infection stages in a per-wave manner, including genes
highly expressed at the very beginning of the interaction with the wheat tissues and others highly
expressed in the later stages of the infection. The timing of gene expression was mostly conserved
independently of the strain or the host. Targeted processes within the host are highly diverse with a
wide array of targeted compartments and predicted functions.

3.2. F. graminearum Core Effectors Are Delivered in a Conservative Per-Wave Expression

The core-effectome demonstrated to be deeply remodeled along with the infection
progress, depicting the dynamic nature of its components. As previously shown, putative
effector proteins were proved to be accumulated at specific stages of the infection process
evidencing a specific transition that distinguishes early from late protein accumulations [19].
In line with this previous work, we also observed changing gene expression patterns at
the same time (48 to 72 hpi transition), thus corroborating the major reorganization of the
molecular arsenal that drives FHB infection. Furthermore, the fine-tuned timing of gene
expression was mostly preserved in terms of dynamics for all the strains independently of
their aggressiveness and in all the infected hosts independently of their susceptibility level,
suggesting that F. graminearum set up a widely conserved genetic program with crucial
functions required at very precise infection stages (Figure 7). This conserved infection
program may be representative of F. graminearum generalist lifestyle, i.e., interacting with
a wide range of hosts and spreading in different tissues [2,57], which results in a lower
selection pressure and coevolution with a specific host species [43,58,59].

Besides these conserved infection patterns, some specific regulations in effector-genes
were also found in the different fungal strains, but no clear link between gene expression
magnitude and aggressiveness has been observed. Identified effector-genes were mainly
located in the fast-evolving part of F. graminearum genome, characterized by genes of
shorter size, larger variations in exon content and a higher proportion of synonymous
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and nonsynonymous mutations, together with genes known to be highly transcribed
during plant infection in comparison with fungal vegetative growth [49,54,55]. In our
study, chromosome 2 for instance, displaying the highest density of polymorphism, also
exhibited the highest effector gene density [54]. This polymorphism could explain a
part of the observed strain-specific effects on effector-genes expression levels and further
protein accumulations. Moreover, intrinsic characteristics of both MDC_Fg1, i.e., a French
isolate [60], and ‘Chinese Spring’, i.e., an Asian spring cultivar, might be the main cause of
F. graminearum specific expression patterns of the late-delivered effectors observed when
facing ‘Chinese Spring’ in comparison to the European winter wheat cultivars, suggesting
a remarkable ability to adapt to the different molecular contexts expressed in different
wheat cultivars.

3.3. F. graminearum Infection Strategy Involves Integrative Host Cellular Processes

The search for localization signals within the F. graminearum secreted protein sequences
revealed that putative effectors can target host apoplast, as well as different subcellular
compartments including nucleus, chloroplast and mitochondria at several infection stages
(Figure 7). Along with the relatively high diversity of predicted functions (66 GO terms and
140 Pfam), this supports that the infection success is based on a wide array of manipulated
host pathways and echoes previous studies that evidenced the diverse nature of processes
involved in FHB susceptibility [19,20,23].

Host apoplast appeared as the main target of the F. graminearum core effectome,
including 53 putative genes with additional effector features, i.e., small cysteine-rich
proteins. These genes gathered 65 CAZymes that depict the role of cell-wall degradation
during FHB to promote host colonization and nutrient acquisition [61]. Eighteen others
belonged to peptidases suggesting that F. graminearum is able to override host defense
mechanisms especially by interacting with chitin and glucan-triggered immunity and
inhibiting host enzymes and proteases as well as to acquire nutrients [62–65]. Besides these
proteases, a guanine-specific ribonuclease was also predicted as a core apoplastic putative
effector extending the control of plant stress responses to secreted nucleotidases [61,66]. In
addition, three killer toxin KP4-like genes were also identified. Although a previous work
has already shown their upregulation during wheat seedling rot disease and FHB, their
role in virulence was proved only in seedling rot disease [67].

Intracellular core effectors of F. graminearum mainly targeted host nucleus, including
two that match with validated virulence factors, a cysteine-rich secretory protein [68] and a
PhoD-like phosphatase protein [69,70] along with one gene with additional effector fea-
tures, i.e., a small cysteine rich protein. Through its eight predicted core nuclear proteases,
F. graminearum might reprogram host gene expression by interfering with the plant’s tran-
scription factors. This strategy was already found in the pathogenic bacteria Xanthomonas
euvesicatoria and Pseudomonas syringae that target transcription factors involved in phyto-
hormone pathways [71,72]. Nuclear effectors are also known to act on host transcription
machinery by a direct binding on DNA, such as the Melampsora larici-populina Mlp124478
effector that represses genes involved in defense mechanisms [73]. A same strategy might
be involved in the F. graminearum infection process though its own nuclear effectors.

Chloroplast and mitochondria were also important targets of F. graminearum core
effectome, including three and one genes encoding small cysteine rich proteins, respectively,
as well as a putative mitochondrial PhoD-like phosphatase virulence factor [69,70]. These
organelles represent important biological hubs interconnecting primary metabolism, energy
production, signaling pathways and plant responses to stress [74,75]. The inhibition of the
defense mechanisms through the manipulation of chloroplast [76] and mitochondrial [77]
processes was already evidenced in several plant–fungi interactions and proved here to
be part of the F. graminearum infection strategy. In the case of the chloroplast, its central
role has already been described in previous FHB studies [19,20,23]. Finally, effectors with
multiple host targets were also detected, suggesting that one effector can achieve completely
different functions during the infection progress. An effector targeting both the chloroplast
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and the mitochondria was validated in poplar—Melampsora larici-populina [78,79] and, as it
was outlined in Blumeria graminis f. sp. hordei with the BEC1054 RNase-like effector, those
versatile effectors seem to disturb one specific process, such as a host’s defense mechanisms,
at several levels by interacting with multiple host proteins [80].

4. Materials and Methods
4.1. Experiments and Biological Material

The current study is based on two experiments, Host Variability (HostV) and Pathogen
Variability (PathoV). In HostV, the aggressive strain MDC_Fg1 was inoculated in five
bread wheat cultivars, including four French winter genotypes: ‘Arche’ (ARC), ‘Courtot’
(COU), ‘Recital’ (REC), ‘Renan’ (REN) and the Asian spring genotype ‘Chinese Spring’
(CS). In PathoV, three F. graminearum strains of contrasting aggressiveness, in decreasing
order of aggressiveness MDC_Fg1, MDC_Fg13 and MDC_FgU1 [20] were inoculated in the
susceptible wheat cultivar, ‘Recital’ (REC). For both experiments, samples were collected at
48, 72 and 96 h post-inoculation (48, 72 and 96 hpi) (Figure S4).

4.1.1. Preparation of the Fusarium graminearum Inoculum

Spores for all the strains were generated according to the same protocol. Mycelium
was grown on Potato Dextrose Agar (PDA) medium (39 g of PDA for 1 L of reverse osmosis
water) during eight days in the dark at 23 ◦C. To generate spores, mycelium plugs were
suspended in a Mung Bean Broth medium (MBB, 40 g of organic mung bean per L of
reverse osmosis water) during seven days in the dark at 23 ◦C and with an agitation of
150 rpm. Spores were isolated and stored in sterilized water at −20 ◦C.

4.1.2. Plant Growth Conditions

Wheat seeds were sown in buckets and kept at 20 ◦C during two weeks for germi-
nation. While Chinese spring plantlets were kept at 20 ◦C, an eight-week vernalization
was performed at 4 ◦C and with a 8:16 (L:D) light cycle for the winter cultivars. Then, all
plantlets were transplanted in 4 L pots and transferred into a controlled growth chamber
with an automatic watering system. To allow tillering, plants were grown during three
weeks at 17 ◦C/15 ◦C (day/night), a relative humidity of 70% and a 12:12 light cycle.
Then, the experimental conditions were set as follow: 16:8 light cycle with 21 ◦C/17 ◦C
(day/night) temperatures and a constant relative humidity of 80%.

4.1.3. Experimental Procedures

Complete factorial experiments were designed for HostV and PathoV. For the HostV
experiment, the combinations of the five host cultivars and the three time points measured
on three biological replicates represent a total of 45 samples. For the PathoV experiment,
the combinations of the three strains and the three time points measured on four biological
replicates (except for MDC_Fg13 × 72 hpi modality with 3 replicates) represent a total of
35 individuals. Experimental designs were surrounded by additional plants to limit any
edge effects. Infection was performed at mid-anthesis by inoculating 10 µL of inoculum
at a concentration of 105 spores/mL in the floral cavity of the six central spikelets of three
synchronous flowering spikes. For each individual, the inoculated spikelets were collected
and immediately placed in liquid nitrogen. Samples were ground in fine powder and
stored at −80 ◦C before RNA extraction.

4.1.4. RNA Extraction and Sequencing

Total RNA was extracted from 100 mg of the frozen powder described above, using
a TRIzol protocol (TRI reagent®, Sigma-Aldrich, St. Louis, MO, USA), followed by a
FastDNase treatment (TURBO DNA-freeTM Kit, Thermo Fisher Scientific, Waltham, MA,
USA). Electrophoresis with 1% agarose gel buffered in Tris-Acetate-EDTA was used to
control sample quality. An amount of 10 µg of RNA per sample were used for sequencing.
cDNA libraries were prepared with the TruSeq Stranded preparation kit reverse oriented
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(Illumina, San Diego, CA, USA). For HostV samples, 2 × 150 base paired-end sequences
were generated using Illumina HiSeq4000 and NovaSeq6000 at the Genoscope, the French
National center of sequencing [81]. Sequencing of PathoV samples was performed using
Illumina NovaSeq6000 at GeT platform of GenoTOUL [82].

4.2. Fusarium graminearum Pangenome Construction and Characterization

To construct the reference F. graminearum pangenome, we used all the genomes assem-
bled and publicly accessible. A total of 19 genomes of different origins assembled from
this species [49,54,55,83,84] and previously characterized [49] were used along with the
reference strain PH-1 genome GCA_900044135.1 assembly [85,86]. The assemblies of three
strains (CS3005, DAOM_233423, DAOM_241165) were publicly available. Fourteen strains
(INRA-156, INRA-159, INRA-164, INRA-171, INRA-181, YL-1, HN9-1, HN-Z6, MDC_Fg13,
MDC_Fg5, MDC_Fg8, MDC_202, MDC_Fg593 and MDC_Fg851) were available as Illu-
mina raw data and were assembled with SPAdes v3.13.0 [87]. The two strains MDC_Fg1
and MDC_FgU1 were available as Pacbio long reads and were assembled with HGAP4
implemented in SMRT Link v5.0 [88]. Then, we performed a mapping of each assembled
genome on the PH-1 reference genome using Minimap2 v2.12 [89]. Contigs unmapped and
larger than 1 kb in size have been recovered. Additionally, redundant contigs have been
removed with Cd-hit v4.6.7 [90]. In this way, we completed the PH-1 reference genome and
represented a reference pangenome. On the other hand, to create the GFF/GTF annotation
files of the reference assembled pangenome, we used the MAKER2 v2.31.10 annotation
pipeline [91] with a combination of evidence-based methods (transcriptome data and ho-
mology with known proteomes) and ab initio gene prediction with SNAP v2013-02-16 [92]
and Augustus v3.2.1 [93]. The repeating elements of the assembled pangenome were
masked using the library of all the repeated elements from the Repbase database (1 Febru-
ary 2017 update) [94] using RepeatMasker v4.0.7 [95]. This F. graminearum pangenome
is composed of 17,647 protein coding genes, adding 3502 genes to the GCA_900044135.1
assembly of the reference strain PH-1.

The putative pansecretome of F. graminearum was generated from the panproteome
using SignalP v5.0b software [96] for conventionally secreted proteins and using ApoplastP
v1.0.1 [97] for unconventionally apoplastic secreted proteins. This added 437 putative
secreted proteins to the reference strain PH-1 and achieved a total of 2339 proteins, in-
cluding 1656 conventionally secreted proteins. Localizer v1.0.4 [98] was used on protein
mature sequences generated by SignalP v5.0b to predict the protein’s subcellular local-
ization within the host. Gene Ontology (GO) and Protein family (Pfam) annotations
were generated with Interproscan v5.52-86.0 [99]. To identify putative genes related to
pathogenicity, Blastp [100] searches were performed against the Pathogen–Host Interaction
database v4-10 (PHI-base) [101,102] and against MEROPS v12.1 for peptidases and their
inhibitors [103]. Carbohydrate-Active Enzymes (CAZymes) screening was performed
with HMMER v3.1b2 [104] against the dbCAN HMM profile database v9.0 [105]. Secreted
proteins with additional effector features, i.e., small cysteine rich proteins, were predicted
with EffectorP2.0 software [53].

4.3. RNA-Seq Bioinformatic Analysis

The RNA-seq data obtained in both HostV and PathoV experiments were analyzed
separately using a dual-genome mapping approach, thus generating two independent
data sets (Figure S4). Calculations were performed on the supercomputer facilities of the
Mésocentre Clermont Auvergne University [106] and on the TGCC infrastructure of the
CEA [107].

4.3.1. Data Cleaning Step

Raw reads were trimmed for adapters and low quality bases (phred score < 20) with
TrimGalore v0.6.5 [108]. Noncalled bases and polyA tails were trimmed from reads with
homemade Perl scripts. Then, low complexity (compression size < 65%) and short (size
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< 60 nucleotides) reads were discarded from the fastq files using homemade Perl scripts.
Sample files were decontaminated by mapping with STAR v2.7.1.a [109] against a home-
made database of potential contaminants composed of 1649 viral genomes, 9267 bacterial
genomes and the human genome. The genomes were downloaded from the NCBI Refer-
ence Sequence Database [110]. Best whole genome assembly available for each organism or
clade without gaps and unlocalized scaffolds were used while genomes with more than ten
successive ambiguous bases were discarded. Ribosomal RNA reads were removed with
SortMeRNA v4.2.0 [111] against a database of wheat and F. graminearum rRNAs built from
noncoding RNA genes fasta file of Triticum aestivum GCA_900519105.1 assembly [112] and
PH-1 GCA_900044135.1 genome assembly [85].

4.3.2. Mapping and Assignation

Genome and annotation files of Triticum aestivum v1.1 [113] and F. graminearum
(pangenome) were combined into a host–pathogen genome. This combined genome
contains 269,428 (high confidence and low confidence genes) wheat genes and 17,647 F.
graminearum genes. The cleaned RNA-seq files were mapped against this combined genome
with STAR v2.7.1a. For each species of the pathosystem, gene-level counts were generated
with featureCounts software from the subread v2.0.1 package [114]. Only uniquely mapped
read pairs were considered at the read count step.

4.4. Statistical Analysis of F. graminearum Expression Data

Only F. graminearum expression data were considered in this study. HostV and PathoV
experiments were statistically analyzed independently (Figure S4). Statistical analysis was
conducted on R v3.6.3 [115].

4.4.1. Gene Filtering and Normalization

For both experiments, genes were filtered according to their expression levels. HostV
and PathoV genes were filtered per host and per strain, respectively, with a 4 Counts Per
Million (CPM) threshold in at least 3 samples independently of the time point. Counts were
normalized according to library size with the trimmed mean of M values (TMM) method
implemented in edgeR package [116,117].

4.4.2. Differential Expression Analysis

The differential analysis is based on a negative binomial generalized linear model,
where the logarithm of the proportion of normalized counts for a gene is modeled by all
the factors describing the experiment. For the HostV experiment, the log2 of the average
normalized gene expression is an additive function of a time effect (3 modalities), a host
effect (5 modalities) and an interaction between the time and the host (15 modalities). For
the PathoV experiment, the log2 of the average normalized gene expression is an additive
function of a time effect (3 modalities), a strain effect (3 modalities) and an interaction
between the two factors (9 modalities).

To make the processing of these two complex multifactorial designs easier, Differen-
tial Expression (DE) analysis was made using DiffAnalysis_edgeR function of DiCoEx-
press [118], which is a script-based tool implemented in R using pre-existing R packages,
including edgeR for the differential analysis. This function generates automatically a large
number of contrasts. In the HostV experiment, we considered the difference between two
hosts at a given time point, the difference between two time points given a host and the
interaction effect defined as the difference between two time points given a host minus the
difference between the same two time points given a different host. It leads to a total of
77 contrasts. In the PathoV experiment, we considered the difference between two strains
at a given time point, the difference between two time points for a given strain and the
interaction defined as the difference between two time points given a strain minus the
difference between the same two time points given a different strain. It leads to a total
of 27 contrasts. For each contrast a likelihood ratio test was applied and raw p-values
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were adjusted with the Benjamini–Hochberg procedure to control the false discovery rate.
A gene was declared differentially expressed if its adjusted p-value is lower than 0.001.
Enrichment in secretome genes between expressed and DE gene sets was performed using
a hypergeometric test with the ‘phyper’ function of the R stats package [119] with a p-value
threshold of 0.01.

4.4.3. Expression Pattern Characterization

For the following analyses, raw count values were normalized using the regularized
logarithm transformation (rlog) implemented in the DESeq2 package [120] before being
z-score transformed. To assess the capacity of the selected genes to discriminate the samples
according to the host or strain × time point combinations and their relevance to describe
the infection stages, we performed Partial Least Squares Discriminant Analysis (PLS-DA)
using the R package mixOmics [121] with 10 components and default parameters for the
other options. Heatmaps representing gene expression patterns were made using the
Pheatmap package [122]. The Hierarchical Ascendant Clustering (HAC) of genes and
samples was performed with the ward.D2 agglomeration method [123] applied on the
Euclidean distance matrices.

4.4.4. Functional Enrichment Analysis

Over-representation of GO terms and Pfam in gene sets was performed using a
hypergeometric test with the ’phyper‘ function of the R stats package [119]. The p-values
were adjusted for multiple testing with Benjamini–Hochberg method and a threshold of
0.01 was applied to select the enriched GO terms and Pfam.

4.5. Genomic Localization of Effectome Genes

Genomic localizations of the genes were extracted from the GTF annotation file of
PH-1 and their distribution on the chromosomes according to their expression dynamics
was generated with the karyoploteR package [124]. Exact positions of the fast and slow
subgenome of F. graminearum were used to link gene positions and genome structural
information [55,125].

5. Conclusions

We depicted a detailed map of F. graminearum effector genes expressed in planta during
FHB infection. They demonstrated that F. graminearum displayed a remarkably conserved,
fine-tuned and complex infection strategy. This work brings new information about the
early stages of wheat–F. graminearum interaction and paves the way to further functional
analysis of the key fungal molecular drivers of the infection. Taken together with the
previous statements made at the proteomic scale on both plant and fungal sides [20,23], our
results reinforce the assumption that wheat’s susceptibility to F. graminearum is determined
by a conserved set of molecular players from both partners. Therefore, core-effectors
may lead to the identification of the necessary host susceptibility factors targeted by
F. graminearum and represent a valuable resource for wheat breeding.
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