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Behavioral, neuropsychological, and neuroimaging evidence has suggested that
categories can often be learned via either an explicit rule-based (RB) mechanism critically
dependent on medial temporal and prefrontal brain regions, or via an implicit information-
integration (II) mechanism relying on the basal ganglia. In this study, participants viewed
sine-wave gratings (Gabor patches) that varied on two dimensions and learned to
categorize them via trial-by-trial feedback. Two different stimulus distributions were used;
one was intended to encourage an explicit RB process and the other an implicit II
process. We monitored brain activity with scalp electroencephalography (EEG) while
each participant: (1) passively observed stimuli represented of both distributions; (2)
categorized stimuli from one distribution, and, 1 week later; (3) categorized stimuli from
the other distribution. Categorization accuracy was similar for the two distributions.
Subtractions of Event-Related Potentials (ERPs) for correct and incorrect trials were
used to identify neural differences in RB and II categorization processes. We identified
an occipital brain potential that was differentially modulated by categorization condition
accuracy at an early latency (150–250 ms), likely reflecting the degree of holistic
processing. A stimulus-locked Late Positive Complex (LPC) associated with explicit
memory updating was modulated by accuracy in the RB, but not the II task.
Likewise, a feedback-locked P300 ERP associated with expectancy was correlated with
performance only in the RB, but not the II condition. These results provide additional
evidence for distinct brain mechanisms supporting RB vs. implicit II category learning
and use.
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Introduction

Categories, as conceptualized based on perceived regularities, allow us to make sense of,
describe, and order our worlds (Rips et al., 2012). Categories come in many different
forms—from categories based on a single feature (e.g., objects that are red) to much more
complicated relational concepts (e.g., chases or conduit). Many have argued that human
categorization is not a unitary process, but rather can engage different systems depending
on the category structure or the conditions during category learning (e.g., Yamauchi and
Markman, 1998; Nomura and Reber, 2008; Smith and Grossman, 2008; Seger and Miller,
2010; Ashby and Maddox, 2011). Behavioral, neuropsychological, and neuroimaging evidence
suggests that these various systems can make differential demands on neural networks of
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the brain (e.g., Kéri, 2003; Nomura and Reber, 2008; Smith
and Grossman, 2008; Seger and Miller, 2010; Ashby and
Maddox, 2011). However, describing the algorithm and neural
implementation of category-learning systems, as well as the
factors that determine when each systemwill be engaged and how
these systems interact, is still a very active endeavor.

A prominent way to characterize category-learning systems
postulates distinct rule-based (RB) and information-integration
(II) categorization strategies that engage different neurocognitive
networks (see Ashby andMaddox, 2011).Within this framework,
Maddox et al. (2003) have developed a feedback category-
learning paradigm which parametrically varies the perceptual
properties of sine-wave gratings (Gabor patches) to create
category distributions that encourage either RB or II category
learning strategies (see Figure 1).

RB tasks are those where the categories can be learned via a
reasoning process such as hypothesis testing (Ashby et al., 1998,
2005). In contrast, II category learning and use appears to occur
implicitly, such that the rule for the category structure is difficult
to learn consciously or to describe verbally. After learning,
participants can explicitly describe the rule they use to categorize
the stimuli. This RB mechanism would require maintaining and
updating the rule and the boundary condition, requiring the
use of both working memory, dependent on prefrontal cortex
(PFC), and long-term memory, dependent on medial temporal
lobe (MTL; Nomura and Reber, 2012).

In contrast, II learning appears to occur implicitly, such
that the rule for the category structure is difficult to learn
consciously or to describe verbally. II tasks appear to encourage
participants to consider the stimuli holistically, integrating
perceptual information from different stimulus features early
during processing. II learning may depend on implicit learning
supported by computations involving the caudate nucleus and
visual processing areas in occipital cortex (Nomura and Reber,
2012). Dopaminergic reward circuits of the caudate may be
responsible for associating specific categories with neuronal

FIGURE 1 | Rule-based (RB) and information-integration (II) category
distributions used in the study. Sine-wave gratings varied based on spatial
frequency and spatial orientation. (A) The RB category was defined based on
frequency whereas orientation varied unsystematically. (B) The II category was
defined based on both frequency and orientation with a diagonal decision
bound.

patterns in occipital cortex that code for relevant visual features
(Ashby et al., 1998).

Numerous behavioral experiments comparing RB and II
category learning have shown that they are employed using
dissociable strategies. For example, working memory dual-task
procedures interfered with RB much more than with II learning
(e.g., Zeithamova and Maddox, 2006, 2007). Delaying feedback
beyond an initial period did not interfere with RB learning
but disrupted II learning (e.g., Maddox et al., 2003). Changing
the response key associated with a particular category also
interfered with II but not RB categorization, suggesting that II
learningmay require stimulus-response association learning with
relatively immediate feedback, characteristics associated with
implicit procedural learning (Ashby et al., 2003).

Mechanistically RB processing is thought to depend on
hypothesis testing. For instance a participant trying to categorize
line segments into two groups might hypothesize that length is
what matters, with long segments being one category and short
segments being the other. On each trial they test their theory with
a response to each line segment. While they may find support
for their theory quickly they gradually build a representation
of the category threshold that allows them to improve their
performance. After each test of their hypothesis they then need
to update their memory with whether the test worked and with
a candidate threshold value. This evaluation requires selective
attention and working memory, likely implemented in PFC, as
well as the ability to form enduring mental representations of the
rule and boundary condition dependent on the hippocampus and
MTL. In contrast, II learning is believed to require information
integration of multiple stimulus attributes at a predecisional
stage (Ashby et al., 1998). Unlike in RB learning, learners
frequently cannot articulate what they have learned, but can show
their learning through successful performance, a hallmark of
nondeclarative memory (Squire, 2009). Thus, II learning may be
likened to gaining category expertize with complex objects such
as faces (Bentin et al., 1996) or Greebles (Rossion et al., 2002).

Working from this distinction, functional magnetic resonance
imaging (fMRI) methods have been useful to spatially dissociate
the brain networks responsible for categorization and use when
participants learn either an RB or II category distribution. In
a study by Nomura et al. (2007b), participants who learned
the RB distribution showed greater activation in the MTL on
correct than incorrect trials, while participants who learned
the II distribution showed greater activation in the body of
the caudate on correct than incorrect trials. Another category
learning study using a different paradigm likewise found activity
in the body and tail of the caudate and putamen to be active
when learning stimulus-category associations (Cincotta and
Seger, 2007). Nomura and Reber (2012) subsequently reanalyzed
several sets of RB/II paradigm fMRI data (Nomura et al., 2007a)
using PINNACLE (Parallel Interactive Neural Networks Active
in Category Learning), a computational model that includes
multiple competing categorization systems. Using a participant’s
behavioral decision data, PINNACLE employs principals of
Decision-Bound Modeling Theory (Ashby and Maddox, 1993)
to estimate which categorization system is likely engaged on
a given trial. Thus, PINNACLE can be used to sort trials of
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neuroimaging data to obtain estimates of the neural correlates for
individual category-learning systems. This approach identified
areas in PFC important for correct decisions during RB category
learning, a finding consistent with another previous fMRI study
of RB category learning (Filoteo et al., 2005). Posterior regions
of occipital cortex were associated with correct decisions during
II category learning, a finding consistent with previous fMRI
studies of implicit category learning (Reber et al., 1998a,b;
Waldschmidt and Ashby, 2011). In addition, this approach found
evidence that regions of dorsolateral PFC were involved in the
process of resolving competition between the two systems based
on the model-identified moments of high levels of inter-system
competition.

Further progress in understanding the neurocognitive
mechanisms of category learning will depend on the ability to
measure relevant processing. In particular, measures with high
temporal resolution are needed to comprehensively distinguish
RB and II mechanisms. In the present study we computed event-
related potentials (ERPs) from scalp electroencephalographic
(EEG) recordings to examine neural correlates of category
learning during both categorization and feedback stages.
Participants learned RB and II category distributions during
separate testing sessions and their responses were analyzed
using Decision-Bound Modeling Theory (Ashby and Maddox,
1993) to identify participants likely to be using RB and II
category learning processes with corresponding distributions.
Based on prior behavioral and neuroimaging results, we
anticipated that RB and II category learning mechanisms
would produce different ERPs, when comparing successful
(correct) and unsuccessful (incorrect) trials. Specifically,
we anticipated differences in an early occipital N1 ERP
previously associated with visual category learning (Curran
et al., 2002), and consistent with occipital activation found
for II category learning in our previous work (Nomura and
Reber, 2012). Secondly, given the previously demonstrated
reliance of RB category learning on MTL (Seger and Cincotta,
2006; Nomura et al., 2007a; Seger et al., 2011) we predicted
that a Late Positive Complex (LPC) ERP associated with
explicit memory (Voss and Paller, 2008) would be modulated
by accuracy in the RB condition but not the II condition.
Lastly, to the extent that RB learning is more explicit than
II learning (Huang-Pollock et al., 2011; Seger et al., 2011),
we anticipated that the P300 to positive feedback would
index participant’s confidence in their learning (Hajcak et al.,
2005).

Materials and Methods

Task Description
We used a visual category-learning paradigm (Maddox et al.,
2003) in which subjects learned to categorize visual stimuli into
two categories via feedback given at the conclusion of each
trial. Stimuli were circular sine-wave gratings that varied in
spatial frequency (number of lines per patch, also perceived as
thickness of lines) and spatial orientation (tilt of lines). For the RB
distribution, the stimuli were divided into two categories based
on a vertical decision boundary such that category membership

depended only on the spatial frequency of the sine-wave grating
(Figure 1A). For the II group, the categories were defined by
a diagonal decision boundary that required II of frequency and
orientation information (Figure 1B). Trial timing was similar
to that used by Nomura et al. (2007a) in their fMRI study
(Figure 2).

Participants
Twenty-eight Northwestern University students served as
participants in this experiment. Participants received US$15 per
hour for two 2 to 3 hr testing sessions. Participants categorized
the RB and II category distributions in separate sessions
1 week apart. Distribution order was counterbalanced across
participants. Participants gave informed consent according to the
oversight of the Northwestern University Institutional Review
Board.

Procedure
Prelearning
In order to rule out differences in ERPs due to differences in
the physical stimuli in the RB and II distributions, participants
passively viewed 160 sine-wave gratings from both distributions
over the course of two blocks prior to attempting to learn
categories. Gratings were representative of the range of spatial
frequency and orientation used during category learning. During
prelearning participants received no instruction that categories of
stimuli were present or that they should categorize. Prelearning
trial timing was identical to that during category learning, but
participants did notmake a response during prelearning and thus
received no feedback.

Category Learning
Participants categorized 320 sine-wave gratings presented in
four blocks during each category-learning session. One session
involved the RB distribution and the other session involved the
II distribution. Distribution order was counterbalanced across
participants. Prior to testing, subjects were familiarized with the
procedures, including trial timing, button pressing, and feedback.
Participants did not receive instructions about the nature of the
categories; rather, they were asked to discover the categories
with the aid of auditory feedback. Participants received auditory
feedback 2.5 s after stimulus onset. For a correct decision the
feedback was a bell sound. For incorrect decisions the feedback
was a short buzzer, while participants heard a long buzzer of
equal duration when no response was made in the allotted 2 s.
Responses after 2 s were not considered in the analysis. Subjects
were debriefed about their categorization strategies after the
second testing session.

EEG
Continuous EEG recordings were made during prelearning and
category-learning blocks from 59 evenly distributed scalp sites
using tin electrodes embedded in an elastic cap (Figure 3). Four
additional electrodes were used for monitoring horizontal and
vertical eye movements, and two electrodes were placed over
the left and right mastoid bones. Participants were instructed to
attempt to refrain from blinking or moving their eye position
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FIGURE 2 | Schematic of a single trial. A fixation cross was followed
by the to-be-categorized-stimulus for a fixed duration, followed by a
short visual mask, followed by auditory feedback and a brief ISI before
the next trial. The subject responded “category A” or “category B”

during the 2 s the stimulus was on the screen by pressing one of two
buttons on a hand-held response box. EEG was recorded continuously,
and stimulus- and feedback-locked ERPs were calculated from each
trial.

from fixation during the categorization and feedback portions
of each trial. Electrode impedance was ≤5 k�. EEG signals were
amplified with a band pass of 0.05–200 Hz and sampled at a rate
of 1000 Hz. The online reference (left mastoid) was changed to
average mastoids offline and a 59 to 60 Hz band-stop filter was
applied. EMSE Software Suite (Source Signal Imaging, SanDiego,
CA, USA) was used to process raw EEG files and to compute
ERPs. Electrooculograph (EOG) artifacts were corrected by using
a blink-correction algorithm based on independent component
analysis. Averaging epochs for stimulus and feedback lasted 1200
ms, including a 200 ms pre-stimulus baseline. Trials showing a
greater than 100 µV deflection during the epoch were discarded.
Fewer than 15% of trials were excluded for any given condition
for any given participant.

FIGURE 3 | (A) Placement of 52 scalp electrodes (of 58 total) used in this
study with respect to 10–20 landmarks. (B) Frontal (F), Central (C), Parietal (P),
and Occipital (O) electrode clusters used for the analysis of the N1. (C) Parietal
electrode cluster surrounding location Pz used in the analysis of the Late
positive complex (LPC). (D) Central electrode cluster surrounding and
including electrode Cz used in the analysis of the feedback P300.

Decision-Bound Theory Modeling
Although participants received stimuli drawn from either the
RB distribution or from the II distribution within each session,
some participants would be expected to fail to adopt the
optimal categorization strategy. As in prior work (Ashby and
Maddox, 1993; Nomura and Reber, 2012), we used Decision-
Bound Theory (DBT) models to classify behavioral patterns
as consistent with either an RB strategy or II strategy. For
each participant, the pattern of categorization responses across
the stimulus space was compared to an RB-F model based
on stimulus spatial frequency (thinness of the black/white
strips reflected as a vertical boundary in stimulus space),
an RB-O model based on spatial orientation (angle of the
black/white strips reflected as a horizontal boundary in stimulus
space) and an II model based on a diagonal partition of
the stimulus space. The specific placement of the category
boundary was optimized to the participant’s behavior and
the quality of the fit was contrasted across models. By this
method, performance in each session can be identified as
consistent with either an RB or II approach that either is
relatively optimal for the administered stimulus set or reflects
a suboptimal strategy. We fit each block of 80 trials using the
DBTmodel. Participants whose performance was consistent with
task demands (i.e., at least three of four blocks showed model-to-
distribution agreement) were considered theModel-Conforming
group and the remaining participants were designated as the
Model-Nonconforming group. Using this technique to identify
participants most clearly expressing the appropriate strategy
strengthens the comparison of ERP differences between RB and
II category learning.

Results

All 28 participants exhibited an RB distribution response best fit
by an RB-F DBT model. For II, only 15 participants comprised
the Model-Conforming Group because they exhibited an II
distribution response profile best fit by an II DBT model. In
contrast, 13 participants comprised the Model-Nonconforming
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FIGURE 4 | (A) II distribution used in the experiment. (B) II distribution category
responses from a participant whose responses were best fit by a RB
decision-bound theory (DBT) model and who was excluded from further

analysis. (C) II distribution category responses from a participant whose
responses were best fit by an II DBT model and who was kept for further
analysis.

Group because they exhibited an II distribution response profile
best fit by an RB-F or RB-O DBT model (see Figure 4 for
distribution profiles from representative participants). Likewise,
when the fits for these two groups were compared directly, the
first group of participants exhibited better II model fits than did
the second (t (26) = 2.7, p = 0.01). However, these two groups
did not differ in the quality of their RB model fits with the RD
distribution (t (26) = 0.02, ns). DBT model fitting thus allowed
data from participants who were likely using a unidimensional
RB strategy with the II category distributions to be excluded from
subsequent analyses.

Behavioral Performance
Of the 15 participants whose DBT fits were consistent with II
strategy use with II distributions, two did not have an adequate
number of incorrect trials (<30) to allow for the correct/incorrect
ERP analysis, so their results were excluded from further analysis.
Data from one additional participant were eliminated because of
poor EEG quality.

To evaluate potential differences in category-learning
accuracy for the RB and II distributions, we ran a 2 (RB vs.
II) by 4 (block) repeated-measures ANOVA. Accuracy for
RB and II distributions (Figure 5A) did not reliably differ
(F(1,11) = 1.6, p = 0.23, ηp2 = 0.13). There was a main effect of
block (F(3,33) = 24, p < 0.001, ηp2 = 0.69), and category learning
linearly increased over blocks (F(1,11) = 50, p< 0.001, ηp2 = 0.81).
However, RB and II distributions did not differ with respect to
this pattern (F(1,11) = 0.4, p = 0.5, ηp2 = 0.04). Thus, observed
differences in correct/incorrect ERP subtractions (described
below) cannot easily be attributed to differences in accuracy
between RB and II learning.

Next we looked for potential differences in category-learning
RT for the RB and II distributions by using a 2 (RB vs. II)
by 2 (Correct vs. Incorrect) by 4 (block) repeated measures
ANOVA (see Figure 5B). Participants were faster on correct
than incorrect trials (F(1,11) = 27, p < 0.001, ηp2 = 0.71). There
was also a trend towards faster responses on RB trials compared
to II trials (F(1,11) = 4.0, p = 0.07, ηp2 = 0.27). Likewise, there
was a trend suggesting an interaction between accuracy and

FIGURE 5 | Behavioral results for Model-Conforming Group. (A)
Accuracy and (B) RTs for participants included based on DBT model fits and
included in the analysis of brain potentials. Error bars represent ±1 standard
error of the mean.

distribution type (F(1,11) = 2.6, p = 0.14, ηp2 = 0.19). Participants
were faster on correct trials than on incorrect trials for both
RB distributions (F(1,11) = 20, p < 0.001, ηp2 = 0.65) and II
distributions (F(1,11) = 14, p = 0.003, ηp2 = 0.56). However,
RB and II trials only differed for correct trials (F(1,11) = 6.6,
p = 0.026, ηp2 = 0.38) not incorrect trials (F(1,11) = 1.1, p = 0.31,
ηp

2 = 0.09).
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EEG Results
Categorization ERPs
Based on our predictions, stimulus-locked analyses were focused
on an early occipital N1 ERP (Figure 6) and a later parietal LPC
ERP (Figure 7) in the Model-Conforming Group.

To measure occipital N1 ERPs, we calculated mean amplitude
from 150–250 ms for a cluster of inferior occipital electrodes
(Figure 6). The same electrodes and time range were used for
every participant. This time range included the occipital N1 peak
for all participants. A 2 (RB vs. II) by 2 (Correct vs. Incorrect)
ANOVA performed on mean amplitudes yielded a reliable
interaction between distribution type and accuracy (F(1,11) = 6.1,
p = 0.03, ηp2 = 0.36), but no main effect of distribution type
(F(1,11) = 0.05, p = 0.8, ηp2 = 0.004) or accuracy (F(1,11) = 0.04,
p = 0.9, ηp2 = 0.003). Amplitudes at this latency for correct
and incorrect trials were reliably different for the II distribution
(F(1,11) = 6.3, p = 0.03, ηp2 = 0.37) and showed a trend in the
opposite direction for the RB distribution (F(1,11) = 2.6, p = 0.14,
ηp

2 = 0.19).
Also consistent with predictions, we found a stimulus-locked

LPC ERP largest over the parietal electrodes (Figure 7A,D). To
quantify LPC, we measured mean amplitude from 400–700 ms in
a cluster of parietal electrodes (see Figure 3C). A 2 (RB vs. II) by 2
(Correct vs. Incorrect) ANOVA performed on mean amplitudes
yielded a reliable interaction between distribution type and
accuracy (F(1,11) = 9.6, p = 0.01, ηp2 = 0.47). The LPC was
reliably larger for correct than incorrect trials in the RB condition
(F(1,11) = 20, p = 0.001, ηp2 = 0.65), but not in the II condition
(F(1,11) = 3.2, p = 0.1, ηp2 = 0.23). To uncover relationships
between this ERP and performance (Figure 7B,D), we used
a smaller parietal region and temporal window (500–600 ms)
targeted for maximal mean amplitude differences as a function
of accuracy. Magnitude of the Correct/Incorrect ERP differences
were reliably correlated with RB performance (Figure 7C;
r(11) = 0.68, p = 0.01) but not with II performance (Figure 7F;
r(11) = 0.05, p = 0.9).

Feedback ERPs
In order to assess hypotheses about the extent to which
categorization was based on explicit knowledge, we examined
ERPs recorded during feedback (Figure 8). Participants interpret
feedback signals as a function of their explicit expectations.
P300 responses have been associated with confidence in learning
with feedback (Hajcak et al., 2005). Accordingly, we expected
P300 potentials to index learning in the RB but not in
the II condition, given that explicit learning mechanisms are
thought to dominate in the RB but not the II condition. Both
Correct and Incorrect trials showed large positive potentials
at approximately 300 ms with central-focused topographies
(Figures 8A,B,D). A 2 (RB vs. II) by 2 (Correct vs. Incorrect)
ANOVA was performed on post-feedback mean amplitudes
at 200–400 ms from a cluster of seven central electrodes
(Figure 3D). The analysis yielded a main effect of accuracy
(F(1,11) = 43, p < 0.001, ηp2 = 0.78), but no effect of distribution
type (F(1,11) = 0, p = 0.99, ηp2 = 0), and no interaction
between distribution type and accuracy (F(1,11) = 0.25, p = 0.6,
ηp

2 = 0.02).
However, because the P300 is frequently associated with

expectancy violations (Polich, 2007) and is larger when
participants receive unexpected feedback (Hajcak et al.,
2005), we hypothesized that participants who were better
at RB categorization would show lower P300 response
to correct feedback than would participants who had
less-developed rules. To test this idea, we correlated
categorization accuracy with P300 amplitude to correct
feedback signals. Confirming our hypothesis, we found that
accuracy was inversely correlated with P300 amplitude for
the RB distribution (Figure 8C; r(11) = −0.71, p = 0.01),
but not for the II distribution (Figure 8F; r(11) = 0.07,
p = 0.83).

Because the stimulus-locked LPC during categorization
and the feedback-locked P300 both appear to index
effective learning in the RB condition, but not in the II

FIGURE 6 | Early stimulus-locked ERPs from frontal (F; three
marked electrodes just posterior to Fz), central (C; three
marked electrodes including Cz), parietal (P; three marked
electrodes just posterior to Pz) and occipital (three marked

electrodes just posterior to Oz including the Iniun) electrode
clusters (see Figure 3B for precise electrode locations) for (A)
RB and (B) II category-learning conditions.
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FIGURE 7 | ERPs showing the LPC ERP for both (A) RB and (D) II
conditions in a cluster of parietal electrodes (12 marked electrodes
surrounding Pz; see Figure 3C for precise electrode locations).
Topographic maps representing correct minus incorrect subtractions from

500–600 ms for (B) RB and (E) II ERPs. Scatterplots showing the relationship
of accuracy to the correct minus incorrect mean amplitude ERP subtractions
from 500–600 ms for three parietal electrodes near Pz (indicated on the
corresponding topographic maps) for (C) RB and (F) II conditions.

condition, we looked to see whether they were related
across participants. The LPC correct/incorrect subtraction
is negatively correlated with the feedback P300 correct/incorrect
subtraction in the RB condition (r = −0.59, p = 0.03),
but not in the II condition (r = −0.08, p = 0.82). We
believe the negative correlation observed in RB trials
indicates that better performers are generally more
confident in their learning. Thus, they tend to update
their memory more on correct than incorrect trials (larger
Correct/Incorrect LPC difference) and also tend to be
less surprised when they receive positive feedback, (smaller
Correct/Incorrect Feedback P300 difference). This correlation
is dramatically absent in II learning suggesting that even
good II learners do not have explicit awareness of their
learning.

Prelearning ERPs
Our critical comparisons during category learning were between
correct and incorrect trials within either RB or II distributions,
not across the two distributions. Yet, we took steps to ensure
that differences were not due to the nature of the stimuli in
the RB vs. II distributions. Accordingly, we analyzed ERPs
from prelearning at the same latencies and scalp locations
used in the categorization analyses for N1 and LPC. Neither
N1 (t(10) = 1.0, p = 0.34) nor LPC (t(10) = 0.11, p = 0.91)
differed between the two distributions, confirming that effects
can be ascribed to learning rather than physical stimulus
differences.

Discussion

ERP measures differentiated RB and II category-learning
processes from each other. During categorization, differences
in neural activity were observed in an early, occipital N1
ERP component in the form of differential correct/incorrect
activity patterns for RB and II conditions (Figure 6). N1
amplitudes in the II condition were more negative for correct
than for incorrect trials, while a trend toward the opposite
pattern was observed in the RB condition. At a later latency,
LPC amplitudes during RB learning were larger for correct
than for incorrect trials, whereas LPC amplitudes during
II learning categorization were not modulated by success
(Figure 7). In addition, a central P300 ERP to positive feedback
was correlated with accuracy for the RB but not the II
condition (Figure 8). Together, these differences in brain waves
associated with category learning expand on related results from
neuropsychological and fMRI studies. In addition, the current
findings add neurocognitive information about the temporal
order of processing, as discussed further below. Moreover,
the lack of ERP differences for stimuli prior to learning
makes it possible to rule out trivial physical stimulus factors.
Accordingly, we attribute these ERP differences to the distinctive
neurocognitive computations engaged during category learning
and use.

RB processing is thought to depend on hypothesis testing,
whereby a candidate rule is evaluated by comparing the
representation of the stimulus in the current trial to that of a
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FIGURE 8 | Feedback-locked ERPs from a central cluster of electrodes
(seven marked electrodes surrounding Cz; see Figure 3D for precise
electrode locations) for (A) RB and (D) II category-learning conditions.

Topographic maps representing mean amplitude from correct responses from
200–400 ms for (B) RB and (E) II ERPs. Scatterplots showing the relationship of
accuracy to mean amplitude for correct trials for (C) RB and (F) II conditions.

representation of a category threshold. This evaluation requires
selective attention and working memory, likely implemented
in PFC, as well as the ability to form enduring mental
representations of the rule and the threshold, dependent on the
hippocampus and MTL. In contrast, II learning may be likened
to gaining category expertize with complex objects such as faces
(Bentin et al., 1996) or Greebles (Rossion et al., 2002).

ERP results were consistent with both of these descriptions.
The more positive potential for correct compared to incorrect
RB trials late during each trial (Figure 7) is similar to
positive potentials that have been found in many different
tasks and variously referred to as the P3b, P600, or LPC.
These positive potentials with broad parietal topographies
have been associated with working memory (Kok, 2001;
Polich, 2007) and episodic memory retrieval (Paller et al.,
1988, 2009; Halgren et al., 1994; Fernández et al., 1999;
Guillem et al., 1999). The LPC found here may reflect
retrieval/updating of the categorization rule and some
mental representation of the boundary condition, two
functions consistent with the function of anatomical regions
previously associated with the RB category-learning system
(Filoteo et al., 2005; Seger and Cincotta, 2006; Nomura
et al., 2007a; Seger et al., 2011; Nomura and Reber, 2012).
Likewise, we only found these LPC differences when
participants’ categorization response patterns suggested
they are using a simple rule based on a single feature.
Similarly, the magnitude of the Correct/Incorrect difference was
positively correlated with individual participant categorization
success.

LPC potentials were also apparent in the II condition,
but there were no reliable differences between Correct and
Incorrect trials, and the magnitude of the Correct/Incorrect
difference was unrelated to individual participant categorization
success. One possible explanation for the elevation of the
LPC here is that the neural machinery responsible for the
LPC is engaged during the II condition; however it is not
responsible for successful categorization. This interpretation of
the LPC is consistent with context-updating theory whereby
information from an incoming stimulus results in revision of
a maintained mental representation (Donchin, 1981). Given
the gradual nature of feedback learning it is likely that
participants are updating the mental representation of the
boundary condition throughout successful RB learning. In
contrast, when participants are relatively confident of the
rule they are using, but uncertain about whether a given
stimulus is an A or B they may not update (lower LPC). In
the II condition they are constantly trying to update their
rule and/or boundary condition, but this does not result in
successful learning. In this interpretation the neural systems
responsible for the LPC is engaged during II learning, but
it’s output is likely inhibited (Ashby and Maddox, 2011) and
thus not responsible for the final behavioral decisions. Nomura
and Reber (2012) proposed that RB and II systems are both
active and interact competitively during categorization with
the DLPFC resolving this competition based on appraising
confidence in both systems. Our LPC ERP is consistent with
this proposal that the explicit category-learning system is
engaged in both the RB and II tasks, but it is only effective
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in guiding optimal categorization performance in the RB
condition.

We also observed an early occipital Correct/Incorrect
difference wave (Figure 6). A prior visual category learning
study also as associated with implicit category learning N1 ERP
(Curran et al., 2002). The authors speculated that this ERP could
be related to the N170 ERP frequently observed in studies of face
processing (e.g., Bentin et al., 1996) and expert categorization
(e.g., Tanaka and Curran, 2001; Rossion et al., 2002). This type
of processing frequently engages extrastriate visual cortex (e.g.,
Kanwisher et al., 1997; Gauthier et al., 1999), an area found
to be more active in the II condition of this task (Nomura
and Reber, 2012) and previously implicated in several other
category-learning tasks (Reber et al., 1998a,b). The early time-
course of our effect suggests a shaping of visual perception that
occurs as part of the category learning process in tasks like II
categorization.

One hypothesis is that the observed N1 may reflect the
degree to which a participant uses holistic processing to process
the sine-wave gratings. Ashby and Maddox (2011) have argued
that II tasks encourage participants to integrate perceptual
information from different stimulus features at a predecisional
level. In contrast, RB tasks encourage participants to consider
single features and judge them against a rule.1 Thus, holistic
processing is advantageous with the II distribution, while it may
be detrimental with the RB distribution where attention to spatial
orientation could distract the participant from focusing on the
spatial frequency information necessary to appraise the rule used
to define the RB categories in this study. The presence of the N1
effect in both RB and II conditions is also consistent with the idea
that both processes are regularly active during categorization, but
that the results of the earlier II process may be inhibited to allow
the RB to respond (Ashby and Maddox, 2011).

The electrophysiological methods used in this study also
allowed us to separate neural correlates of categorization
accuracy from neural signals accompanying feedback. We
observed a differential Correct/Incorrect P300 response during
feedback that did not differ in amplitude between RB and
II conditions (Figure 8). However, feedback-related P300
amplitude on correct trials negatively correlated with RB
accuracy but not with II accuracy (Figures 8C,F). P300 responses
to feedback may be sensitive to expectancies, as in prior studies
with very different tasks (e.g., Courchesne et al., 1977; Duncan-
Johnson and Donchin, 1977; Johnson and Donchin, 1980),
and when participants receive unexpected feedback (Hajcak
et al., 2005). In the present case, the observed correlations
may reflect an explicit/implicit distinction between RB and II
category-learning strategies. Specifically, over trials participants
in the RB condition are developing a hypothesized categorization
rule including a representation for the boundary condition
for that rule. Each new stimulus is considered with respect
to this context. When those expectations are confirmed by
positive feedback, participants are less surprised the more

1While not used in this study, RB tasks can also require use of a conjunctive
rule whereby information about more than one feature is evaluated against a
more complex rule at a later stage of processing.

confident they are in their rule and boundary condition
representation. In contrast, while participants perform similarly
with respect to accuracy in the II condition, they do not
become confident in their rule because an explicit RB rule
is not driving their performance. This result is consistent
with participants’ self-reports, which indicate confidence in
their rule description after RB learning and little to no
confidence after II learning. Thus, these results provide further
evidence for an explicit/implicit distinction between RB and II
learning.

The majority of our ERP analyses in this study are based
on correct/incorrect subtractions that seek to isolate what is
unique about successful RB and II categorization. The advantage
of this subtractive approach (see also Nomura et al., 2007a)
is that aspects of the two tasks that may be common such as
seeing the stimulus, making a response, and hearing feedback are
subtracted away leaving us with what is unique. However, this
means by definition that our descriptions of RB and II category
learning are incomplete because these common processes are
certainly part of the whole mechanism and may be important to
achieve a full understanding of category learning. Likewise, it is
difficult for us to use this approach to look at how the category-
learning processes changes over time as so does the balance of
correct and incorrect trials. Given successful learning, correct
trials are more abundant at the end of the experiment than at the
beginning when their neural correlates are likely more affected
by guessing with either RB or II distributions. These factors are
both important, particularly when we consider categories that
may be learned and used frequently over the course of a lifetime.
Recently, in their ambitious study of expertise in category
learning (participants performed 10,000 trials over the course
of the experiment compared to our 320 trials), Waldschmidt
and Ashby (2011) demonstrated that even when considering just
a single distribution type the neural correlates responsible for
category use can change as participants approach expertise in
categorization.

In summary, the present ERP findings illustrate two
distinct neurocognitive processes responsible for successful
category learning. These processes appear to compete on
each categorization trial. The II process utilizes a network
including, but not limited to the occipital cortex likely
reflecting changes in perceptual processing as a result of
implicit category learning. In contrast the more deliberative
RB process occurs later during processing of a stimulus
and employs more anterior cortical regions associated with
working and long-term memory, most likely in association
with MTL networks. In addition, neural activity measured
during feedback suggests participants are aware of their learning
when using an RB process to make their categorization
decisions, but not when they are using the II process.
Our findings do not appear to arise from differences in
stimuli, but rather stem from differences in the neurocognitive
processes which can be engaged while learning different
types of categories. This experimental approach provides new
perspectives on these category-learning mechanisms as well as a
new way to investigate their interaction and competition during
learning.
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Human Research Statement
Humans participated in this experiment according to procedures
approved by the Northwestern University Institutional Review
Board. Before beginning the experiment, participants were
required to read and sign the informed consent form. They
were encouraged to ask any questions and had the option
of leaving at any time with no adverse consequences.
The informed consent forms are kept on record in
the lab.
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