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Abstract

One of the great challenges in the post-genomic era is to decipher the underlying principles governing the dynamics of
biological responses. As modulating gene expression levels is among the key regulatory responses of an organism to
changes in its environment, identifying biologically relevant transcriptional regulators and their putative regulatory
interactions with target genes is an essential step towards studying the complex dynamics of transcriptional regulation. We
present an analysis that integrates various computational and biological aspects to explore the transcriptional regulation of
systemic inflammatory responses through a human endotoxemia model. Given a high-dimensional transcriptional profiling
dataset from human blood leukocytes, an elementary set of temporal dynamic responses which capture the essence of a
pro-inflammatory phase, a counter-regulatory response and a dysregulation in leukocyte bioenergetics has been extracted.
Upon identification of these expression patterns, fourteen inflammation-specific gene batteries that represent groups of
hypothetically ‘coregulated’ genes are proposed. Subsequently, statistically significant cis-regulatory modules (CRMs) are
identified and decomposed into a list of critical transcription factors (34) that are validated largely on primary literature.
Finally, our analysis further allows for the construction of a dynamic representation of the temporal transcriptional
regulatory program across the host, deciphering possible combinatorial interactions among factors under which they might
be active. Although much remains to be explored, this study has computationally identified key transcription factors and
proposed a putative time-dependent transcriptional regulatory program associated with critical transcriptional
inflammatory responses. These results provide a solid foundation for future investigations to elucidate the underlying
transcriptional regulatory mechanisms under the host inflammatory response. Also, the assumption that coexpressed genes
that are functionally relevant are more likely to share some common transcriptional regulatory mechanism seems to be
promising, making the proposed framework become essential in unravelling context-specific transcriptional regulatory
interactions underlying diverse mammalian biological processes.
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Introduction

Inflammation and activation of innate immunity are essential

defense responses against invading pathogens and endogenous

danger signals. The innate immune response involves the initial

recognition of conserved pathogen-associated molecular patterns

by members of the Toll-like receptor (TLR) family [1]. The

exposure of the host to gram negative bacteria, simulated by

lipopolysaccharide (LPS) recognized by TLR-4, triggers intracel-

lular signalling cascades which eventually release a lot of pro- and

anti- inflammatory cytokines [2]. While the host inflammatory

response is essential to resolve the infection or repair the damage

and restore the system homeostasis, it also plays a central

pathogenic role in a wide spectrum of diseases including sepsis

[3]. Under healthy circumstances, inflammatory responses are

activated, clear the pathogen in the case of infection, initialize a

repair process and then abate [4]. However when anti-inflamma-

tory processes fail, an amplified inflammation can turn what is

normally a beneficial reparative process into a detrimental

physiological state with severe, uncontrolled systemic inflamma-

tion [5].

Studies involving experimental human endotoxemia have

reported rapid intravenous infusion in doses of 2–4 ng/kg body

weight, which effectively induces an acute systemic inflammatory

condition that mimics the early flow phase of injury and infection

[6,7,8,9,10]. In human peripheral blood leukocytes, intravenous

administration of endotoxin elicits dynamic and reproducible

changes in the circulating leukocyte population as well as

significant changes in blood leukocyte gene expression patterns

[11]. This perturbation of leukocyte gene expression involves

several thousands of transcripts and accompanies the systemic

physiological responses during inflammation, which peaks ,4–

6 hours after endotoxin exposure and resolves within 24 hours,

compatible with a large and dynamic regulatory network.
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Transcriptional regulation is driven by incoming signals which

activate transcription factors (TFs) through mechanisms such as

phosphorylation or dimerization. Activated complexes are subse-

quently translocated into the nucleus and bind to the promoter

region of target genes in the genome in order to activate or repress

gene expression [12]. It is hypothesized that this regulation process

is mainly controlled by the interplay between TFs and their

corresponding transcription factor binding sites (TFBSs) on the

proximal promoters of the target genes [13,14,15]. Recent

technological developments have enabled the ability to broadly

assess TF activities at a genome-wide scale. However, there is still

no transcription factor-focused method that enables monitoring of

all TFs at a time; technologies such as Chip-on-chip [16,17],

SELEX [18,19] can identify all DNA binding sites occupied by a

single TF given a condition. In order to compensate for this

inability, computational techniques have become an essential tool

in predicting putative TFBSs at a large scale [20,21].

Due to the fact that TFs in higher organisms regulate gene

expression in a combinatorial manner rather than in isolation

[22,23] and that TFBSs tend to form clusters of binding sites,

known as cis-regulatory modules (CRMs) [24,25], computational

methods have shifted towards discovering CRMs instead of a

single TFBS. A cis-regulatory module is generally considered as the

smallest functional regulatory unit [26]. From a computational

standpoint, such module is mainly characterized by two factors: (i)

composition which consists of a set of non-overlapping binding

sites of TFs on the control regions of a gene and (ii) structural

constraints that take into account the strand orientation to which

TFs bind, the order and the distance between successive binding

sites [27]. A variety of methods have been proposed to search for

CRMs that include the structural constraints (FrameWorker [28],

CMA [29]) or without the structural constraints (CREME [30],

ModuleMiner [31], Stubb [32]). Some methods attempt to

incorporate a priori knowledge of CRMs (HexDiff [33], ESPERR

[34,35]) to increase the specificity of the prediction while some

others are purely computationally discovery of CRMs (CisModule

[36], CSam and D2Z-set [37]).

However, given a methodology to search for CRMs, a critical

issue in predicting functional binding sites is identifying a set of

relevant promoters that share common cis-regulatory modules or

alternatively a set of genes that are potentially coregulated [38]. As

such it is more appropriate to explore the concept of ‘gene battery’

originally proposed by Britten and Davidson [39] and has been

further explored in the literature [40,41,42,43]. A gene battery

refers to a group of genes that are coordinately expressed and/or

functionally coupled since their regulatory regions respond to the

same transcriptional signals [37,44]. With the assumption that

genes in a gene battery are involved in key biological processes,

recognized CRMs will consist of putative functional binding sites

that are associated with essential transcriptional regulators. Yet, in

higher eukaryotes especially in humans the problem turns to be

much more difficult. One of the most critical issues is to determine

which genes belong to the same gene battery. Prior studies assume

that either coexpressed genes [45,46,47] or genes that belong to

the same biological process [48,49] could be governed by some

common regulatory mechanism. However, recent evidence

suggests that co-expression or co-function alone is not sufficient

to infer the existence of common regulatory mechanisms [50,51].

Oftentimes co-expressed genes can participate in a diverse array of

biological functions while functionally-relevant genes can be

characterized by different expression patterns [52,53]. Predicated

upon these, in this study we explore the possibility that genes that

are both co-expressed and functionally-relevant may be more

likely to be co-regulated. Since genes within the same pathway

encode for a set of interacting proteins, they are more likely to be

governed by some common regulatory mechanism [54]. There-

fore, the unifying hypothesis of this study is that genes that

participate in the same pathway are functional relevant.

In this study, given the transcriptional profiling analysis of

human blood leukocytes we hypothesized that genes that are most

responsive to an external perturbation (endotoxin) and have

concerted changes in their expression profiles are governed by

some common regulatory mechanism. Based on our prior work,

high-dimensional microarray data are decomposed into a

comprehensive set of temporal responses that, in the case of

transient human endotoxemia, capture the essence of a pro-

inflammatory phase, a counter-regulatory response as well as a

dysregulation in leukocyte bioenergetics [55]. Upon identification

of these patterns, a number of inflammation-specific pathways are

selected by evaluating the enrichment of the corresponding subsets

and thereby defining a putative set of ‘coregulated’ genes. The

CRM-se arching process, similar to FrameWorker [28], is

proposed with a novel heuristic to address the issue related to

multiple alternative promoters in eukaryotic genes. The definition

of CRM structural constraints has been adjusted so that no

parameter is required for the searching process except for the

statistically significant threshold for the CRM selection. Further-

more, motivated by the work of Schones et al. [56] a pre-

compilation step is performed by converting all promoter

sequences into a set of corresponding promoter profiles of binding

sites improving the estimation of the statistical significance of

recognized CRMs. Overall, the present study aims to computa-

tionally identify transcription factors that are crucial to the

dynamics of essential physiological processes associated with the

acute human inflammatory response and provides significant

insights into putative transcriptional regulatory mechanisms that

underlie gene expression. Computational results were verified

primarily based on available literature.

Results

Identification of putatively ‘coregulated’ genes
Given the assumption that genes that are co-expressed and

functionally relevant are more likely to be co-regulated, we first

identify significant expression patterns from in vivo human

transcriptional data [11]. Based on 3,269 differentially expressed

probesets, we explored the potential of our prior work to identify

highly coexpressed genes [55]. Specifically, the algorithm performs

a consensus clustering and a trivial cluster removal procedure

resulting in four expression patterns that describe the dynamic

evolution of endotoxin-induced human inflammation (Figure 1).

The ‘early-up’ pattern consists of genes that are involved in critical

pro-inflammatory processes (e.g. TNF, NFkBIA, C-X-C motifs –

CXCL1, CXCL2, and CCL20). The ‘middle-up’ pattern

represents an increased expression of genes with the peak at

4 hrs post-endotoxin administration, containing inflammatory-

relevant signaling pathways such as Apoptosis, Toll like receptor

(TLR) signaling. The ‘late-up’ pattern characterizes anti-inflam-

matory processes and the ‘down’ pattern which is the most

populated expression motif is characterized by genes involved in

cellular bio-energetic processes e.g. oxidative phosphorylation,

ribosome biogenesis and assembly.

Since pathways are robust and flexible enough to ensure cell

survival under environmental changes, the corresponding genes

are more likely to be characterized by a stronger coherency rather

than those in a gene ontology (GO) definition. Based on the

hypothesis that genes encoding a set of related proteins are more

likely to be transcribed under some common regulatory mecha-
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nisms [54], we opt to use biological information in the context of

pathways (KEGG database) rather than GO terms. All genes that

participate in the same pathway are considered to be functionally

relevant are related [53]. In each expression pattern, we select

statistically inflammatory relevant significant pathways (p-val-

ue,0.05) based on literature information [55]. Accordingly,

fourteen sets of genes that belong to a specific pathway and a

pattern of gene expression are extracted. We further assume that

these groups of genes represent gene batteries, and hereby are

more likely to be coregulated (Table 1).

Statistical significance of common CRMs
Within a gene battery, CRMs that are present on the control

regions of corresponding genes above a frequency threshold (e.g.

d= 70% of the number of genes) are considered as common

CRMs. However, such CRMs can also be overrepresented in

random gene sets. Therefore, in order to restrict the false positive

matches and increase the statistical power of our method, we

estimate the hyper-geometric p-values of common CRMs vs. a

background set and only select those CRMs whose p-values

exceed a pre-defined statistically significance threshold (e.g. 1024).

However, this threshold is very sensitive to the size of the gene

battery and thus a uniform significance threshold cannot be

applied for all gene batteries. As a result, we developed a heuristic

procedure for estimating the significance threshold of common

CRMs with respect to the size of gene batteries. The procedure is

repeated 100 times for each N-size gene-set (N = 4, 5…, 20). At

each iteration, the algorithm randomly selects N genes from the

background set, searches for common CRMs that are present on

the promoters of these genes (d= 0.7), estimates the statistical

significance (p-values) for each CRM (see materials and methods),

and records the minimum one. In this study, we choose the

approximate values of the mean of these minimum p-values to set

the criterion for the statistical significance of CRMs in a gene

battery with size N (Figure 2). Consequently, for each gene

battery only those CRMs that are identified with p-values less than

the corresponding p-value thresholds are used to infer relevant

transcription factors (see Data S1, sheet ‘p-value’).

Identification of inflammation-relevant transcriptional
regulators

One of the key features in our analysis is the identification of

significantly overrepresented CRMs in each gene battery (see

Materials and methods and Algorithms S1). Based on the size of a

gene battery, a corresponding significance threshold is applied to

select statistically significant CRMs. Since these recognized CRMs

are located on the control regions of many putatively coregulated

genes (i.e. a gene battery), they are likely to be composed of

functional binding sites that are activated upon the initiation of the

transcriptional machinery. We therefore decompose these CRMs

into a list of TFBSs to infer associated TFs which can be

considered as relevant transcriptional regulators of the corre-

sponding gene battery. In particular, TFs that are present with the

high frequency among gene batteries (at least three times across

fourteen gene batteries) are assumed to play a key role in the

biological process (Table 2). We identify 34 transcription factors

(TFs) relevant to the human inflammatory responses, of which

around 25% has been experimentally shown to be involved in the

inflammatory and/or immune response based on literature

evidence (discussed below) and more than half of the remaining

have been computationally shown to play a critical role in the

regulation of immune system [57] (see Data S1, sheet ‘CRMs’,

‘TFs’, and ‘Middle-up TLR’).

Putative temporal program of transcriptional regulation
The administration of a low dose of endotoxin to human

subjects elicits dynamic and reproducible changes in the

circulating leukocyte population by altering the expression level

of numerous genes. Since the host response to endotoxin evolves

Figure 1. Critical responses to human inflammation. Gene expression patterns selected from the LPS dataset, including early up – 182
probesets (red), middle up – 119 probesets (green), late up – 284 probesets (blue), and down – 1,118 probesets (magenta); totally 1,730 selected
probesets over 3,269. Top-left is the average expression profiles of these patterns; bottom-left is the corresponding heat-map; and the rest are
expression profiles of selected genes in four patterns (the horizontal axis is six time-points (0, 2, 4, 6, 9, 24 hours) and the vertical axis is the intensity
of mRNA levels).
doi:10.1371/journal.pone.0018889.g001
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dynamically, it is possible to observe a dynamic representation in

the transcriptional regulatory program (Figure 3). Due to the fact

that transcription factors are characterized by pleiotropic effects

[58], it is also reasonable to anticipate a significant overlap among

sets of transcriptional regulators across various biological process-

es. On the other hand, our results also illustrate the phenomenon

in which genes involved in the same function (pathway) may

exhibit different expression patterns and genes within an

expression pattern can participate in different functions, implying

that there are different regulatory mechanisms regulating genes in

the same function or in the same expression pattern. Along with

this dynamic response, the regulatory mechanisms can also be

Table 1. Data information and inflammation-relevant significant functions.

Expression data (3,269 probesets*) Relevant significant functions (p-value,0.05)

Patterns
# of probesets
(Total: 1703)

# of genes+

(Total: 1213) Pathways (KEGG) Corresponding selected genes

Early-up 182 141 Apoptosis1 il1a, il1b, nfkbia, tnf

Cytokine-cytokine receptor interaction1 ccl20,ccl4, cxcl1, cxcl2, il1a, il1b, il8, inhbb, tnf

Toll-like receptor signaling pathway1 ccl4, il1b,il8, map2k6, nfkbia, tnf

Middle-up 119 88 Apoptosis1 casp10, cflar, fas, irak3, myd88, nfkb1, nfkb2, rela

Toll-like receptor signaling pathway1 myd88, nfkb1, nfkb2, rela

Late-up 284 185 Apoptosis1 casp8, il1r1, il1rap, irak4, pik3cg, tnfrsf10c, tnfsf10

Cytokine-cytokine receptor interaction1 ccr1, csf3r, il10rb, il13ra1, il1r1, il1rap, il8ra, il8rb, tnfrsf10c, tnfsf10

Toll-like receptor signaling pathway1 casp8, irak4, pik3cg, tlr1, tlr5, tlr8

Jak-STAT signaling pathway1 csf3r, il10rb, il13ra1, pik3cg, stat2, stat5b

Down 1118 799 Citrate cycle (TCA cycle)2 acly, idh2, idh3a, mdh1, mdh2, suclg2

Pyrimidine metabolism2 dck, dctd, dut, entpd6, pole3, polr2b, polr2e, polr2k, rpa1, uckl1

Pyruvate metabolism2 akr1b1, glo1, ldhb, mdh1, mdh2, pdhb

Ribosome1 fau, rpl10a, rpl12, rpl13a, rpl14, rpl18, rpl24, rpl27, rpl27a, rpl29, rpl3,
rpl36a, rpl36al, rpl37a, rpl38, rpl8, rps2, rps24, rps7, rps9

Oxidative phosphorylation2 atp5a1, atp5b, atp5f1, atp5g1, atp5g2, atp5g3, atp5i, atp5h, atp5j2,
atp5l, atp5o, atp61f, cox4i1, cox5a, cox6c, cox7c, cyc1, nduf1,
ndufa13, ndufa3,ndufa4, ndufa5, ndufa6, ndufab1, ndufb2, ndufb4,
ndufb5, ndufb8, ndufc2, ndufs4, ndufs5, ndufs6, ndufs7, ndufs8,
ppa2, ucrc, uqcrb, uqcrc2, uqcrh, uqcrq

*: 3,269 significantly differentially expressed probesets were selected by ANOVA (p-value,1024) from the total 44,924 probesets;
+: the number of corresponding genes with promoter annotation in Genomatix;
1: regulatory pathways;
2: metabolic pathways.
doi:10.1371/journal.pone.0018889.t001

Figure 2. Statistical significance thresholds of CRMs. A procedure randomly picks a gene-set with N genes from the background and search
for common CRMs (d= 0.7) in that gene-set. The statistical significant p-value for each CRM is estimated and the minimum one is reported. Each point
in the blue curve is a transformed value of the mean of the minimum p-values of CRMs in 100 times running the procedure for the corresponding k.
Approximately, the red curve shows which thresholds should be used for the non-random cases. After N = 14 genes, only one threshold is used to
ensure the significance (p-value = 0.01).
doi:10.1371/journal.pone.0018889.g002
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dynamic over the time, leading to the flexibility of the

transcriptional network topology. Additionally, the results also

reflect the phenomenon that a gene can participate in various

functions and thus be regulated by different sets of transcriptional

regulators based on the context (e.g. TNF, MYD88).

Discussion

Functional characterization of inflammation-relevant
pathways

Upon identification of four significant patterns of gene

expression, a number of inflammation-specific pathways are

selected by evaluating the enrichment of corresponding subsets

in inflammation-specific pathways, including Toll-like receptor

signaling, Cytokine-Cytokine receptor interaction, Apoptosis and

JAK-STAT signaling cascade, etc. (Table 1). It is now well

established that Toll like receptor signaling pathway is the first arm

of the host defence system that is activated when endotoxin is

recognized by pathogen recognition receptors [59]. During the

recognition process, LPS binds and interacts with its signaling

receptor (TLR4) which triggers a signal transduction cascade

essential for the up-regulation of several pro-inflammatory

mediators [60]. Such mediators including cytokines and chemo-

kines interact with their appropriate receptors, giving rise to the

Cytokine-Cytokine receptor signaling pathway that amplifies and

propagates the inflammatory reaction throughout the cell until the

system restores homeostasis [61]. Therefore, both Toll like

receptor signaling and Cytokine-Cytokine receptor interaction

pathways play a pivotal role in the pro-inflammatory response.

Complementary to this, considerable attention has been given to

the role of an excessive death of immune effector cells (apoptotic

cells) during the progression of an aberrant inflammatory response

[62]. The nature of apoptosis as a rectifying process has led

researchers to the realization that identifying mediators that are

critical in regulating the apoptotic-inflammatory imbalance might

prove beneficial in treating human sepsis [63]. It is therefore

reasonable to assume that apoptosis also plays a critical role in the

endotoxin-induced inflammatory process. Along similar lines,

JAK-STAT cascade is another highly enriched inflammation-

specific pathway that exerts anti-inflammatory properties. Accord-

ingly, recent data provide evidence that a STAT pathway from a

receptor signaling system is a major determinant of key regulatory

systems including feedback loops such as SOCS induction which

subsequently suppresses the early induced Toll like receptor and

cytokine signaling [64,65]. Endotoxin–induced inflammation also

causes a widespread suppression at the transcriptional response

level of genes involved in mitochondrial energy production

(Oxidative phosphorylation) and protein synthesis machinery

(Ribosome). Such dysregulation in leukocyte bioenergetics togeth-

er with persistent decrease in mitochondrial activity can lead to

reduced cellular metabolism [66], resulting in the participation of

a number of critical metabolic pathways, e.g. Citrate cycle,

Pyrimidine and Pyruvate metabolism.

While comparing the inflammatory relevant pathways across

expression patterns, we observe that there is a dynamic evolution

of these pathways during the propagation of LPS signaling. For

example, Toll like receptor signaling appears to be significantly

enriched with a diverse array of genes that are early, middle or late

up-regulated. From a biological standpoint, since the recognition

process of LPS from its signaling receptor (TLR4) leads to the

transcriptional activation of cytokines and chemokines (e.g. TNF,

IL1B, CCL4), the early transcriptional event (t = 2 h) can possibly

reflect this initiating process [67] while at later stages of the

inflammatory reaction (t = 4 h), the effect of LPS has been

translated into the signal transduction cascade mediated by the

up-regulated cytokines. Such a signal transduction cascade is likely

to be initiated by the conserved Toll/IL1 receptor (TIR) signaling

domain [65] explaining the presence of TLR signaling in the

early–up response (t = 2 h). Meanwhile, the presence of this

pathway in the middle-up response (t = 4 h) is indicative for

Table 2. Critical transcription factors in human endotoxemia model.

No. Patterns Functions Transcription factors

1 Early-up Apoptosis BRNF, CLOX, E2FF, EKLF, ETSF, HEAT, HOXF, IRFF, MAZF, MYT1, NFKB, RXRF, SORY, SP1F

2 Middle-up Apoptosis AP4R, CREB, E2FF, ETSF, GATA, HEAT, MAZF, MZF1, NFKB, NKXH, PAX6, SP1F, ZBPF

3 Late-up Apoptosis ATBF, BRNF, CLOX, EBOX, ETSF, FKHD, GATA, HOMF, HOXF, IRFF, NKXH, OCT1, PARF, SORY,
STAT, TBPF

4 Early-up Toll-like receptor signaling pathway EKLF, HEAT, MAZF, MYT1, SP1F

5 Middle-up Toll-like receptor signaling pathway CREB, E2FF, EGRF, EKLF, ETSF, EVI1, HEAT, MAZF, MYBL, MZF1, NFKB, NR2F, PAX6, SORY,
SP1F, STAT, ZBPF

6 Late-up Toll-like receptor signaling pathway AP4R, ATBF, BRNF, CLOX, ETSF, EVI1, FKHD, GATA, HOMF, HOXF, IRFF, MEF2, NKXH, OCT1,
PARF, SORY, STAT, TBPF

7 Early-up Cytokine-cytokine receptor interaction SORY, TBPF

8 Late-up Cytokine-cytokine receptor interaction AP4R, CLOX, EBOX, ETSF, EVI1, FKHD, GATA, HEAT, HOMF, HOXF, IRFF, MAZF, MEF2, NFKB,
NR2F, OCT1, PARF, PAX6, RXRF, SORY, SP1F, TBPF

9 Late-up Jak-STAT signaling pathway AP4R, BRNF, CLOX, E2FF, EGRF, ETSF, HEAT, HOMF, HOXF, MAZF, MZF1, RXRF, SP1F, ZBPF

10 Down Citrate cycle (TCA cycle) ATBF, BRNF, EGRF, ETSF, FKHD, HEAT, HOMF, HOXF, MAZF, MEF2, MYBL, MYT1, MZF1,
NR2F, RXRF, SP1F, STAT, TBPF, ZBPF

11 Down Pyrimidine metabolism CREB, E2FF, EBOX, ETSF, IRFF, MYBL, SP1F, ZBPF

12 Down Pyruvate metabolism HEAT*

13 Down Ribosome E2FF, ETSF, RXRF

14 Down Oxidative phosphorylation None

*: present in cis-regulatory module ‘+HEAT__+NRF1__+NRSF’.
doi:10.1371/journal.pone.0018889.t002
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amplifying the activity of pro-inflammatory transcription factors

(e.g. NFkB) essential for mediating the host response at later time

events. Regarding the late up-regulated transcriptional event

(t = 6 h), the system activates the expression of various genes that

can effectively constraint the inflammatory response. Thus, anti-

inflammatory mechanisms involve either the activation of JAK-

STAT cascade (e.g. IL10RB, IL13RA1), or the increased

expression of receptors (e.g. IL1R1, IL8RA, CCR1) that intend

to replace and compensate for those that have been consumed

during pro-inflammation [68]. Therefore, this cascade of events

sheds significant insight on the dynamic evolution of critical pro-

inflammatory pathways including TLR signaling, Apoptosis and

Cytokine-Cytokine interaction signaling.

Biological characterization of identified transcription
factors

Predicated upon the hypothesis that subsets of co-expressed

genes involved in the same biological pathway are more likely to

be co-regulated, their transcriptional regulators are computation-

ally predicted (Table 2). There is considerable evidence indicating

the inflammatory relevance of the aforementioned inferred

transcription factors including MEF2 [69], GATA [70], OCT1

[71], FKHD [72], ETSF [73], IRFF [74], NFKB [75] and CREB

[76]. Specifically, the myocyte enhancer factor 2 (MEF2)

transcription factor plays a central role in the transmission of

extracellular signals to the genome and in the activation of genetic

programs that control cell differentiation, proliferation, survival

and apoptosis [77]. In addition to this, MEF2 proteins serve as the

endpoints for multiple inflammatory signaling pathways including

mitogen-activated protein kinase signaling pathway (MAPK) and

thereby confer signal-responsiveness to downstream target genes

[78]. Also, evidence [79,80] suggests the dual role of MAPK

signaling and thereby the activation of MEF2 transcription factor

under TLR4 and Cytokine dependent mechanism. Furthermore,

the octamer transcription factor 21 (OCT-1) has also been shown

to function as a stress sensor modulating the activity of genes

important for the cellular response to stress [81]. Although OCT-1

is a ubiquitous transcription factor, it has recently been

Figure 3. Putative temporal regulatory program in human endotoxemia plus schematic illustration of the integrated
computational framework. The clustering and selection step extracts a ‘clusterable’ subset of differentially expressed probesets and cluster it
into a number of expression patterns. Subsequently, pathway enrichment is performed in each pattern and relevant significant pathways are selected
based on literature information. The process of CRM searching is then applied to each gene battery which is a group of genes that belong to an
expression pattern and a particular pathway. Eventually, 34 TFs are identified as human inflammation-relevant transcriptional regulators. The results
show a highly dynamic perspective of regulation and interactions between genes, functions, and TF across the time.
doi:10.1371/journal.pone.0018889.g003

Endotoxemia Regulation

PLoS ONE | www.plosone.org 6 May 2011 | Volume 6 | Issue 5 | e18889



demonstrated that it promotes cell survival signifying its involve-

ment in the apoptosis signaling [82]. Additional studies [83]

document the involvement of octamer binding transcription

factors (OCT-1) in regulating the expression of TLR4 in humans;

thus making it a critical regulator of Toll like receptor signaling.

Furthermore, Forkhead Transcription Factors (FKHD) also play a

major role in the control of apoptosis perhaps by affecting the

transcription of the gene encoding FASL [84]. Since these

regulators can be the substrate of the protein kinase B (Akt)

preventing their nuclear translocation, it is expected that FKHD

regulators promote cellular survival and thereby control the

apoptotic machinery [85]. Moreover, IFN regulatory factors

(IRFF) are a family of transcription factors that regulate expression

of various pro-inflammatory and anti-inflammatory genes. Re-

search findings reveal a critical role for these interferon regulatory

proteins in the control of apoptosis [86,87] while it has become

evident [88,89] that such regulators are also essential for TLR

gene expression including the trans-acting factors, IRF-1 and IRF-

2. This implies that in addition to up-regulation of pro-

inflammatory gene expression, TLR stimulation also results in

modulation of TLR gene expression itself via interferon transcrip-

tion factors.

One of the most important cellular factors involved in the

regulation of the host innate immune response is the nuclear factor

(NF)-kB which can be activated by a variety of stimuli including

bacterial products, inflammatory cytokines and growth factors

[75,90]. NF-kB is a pleiotropic transcription factor involved in the

inducible expression of a diverse array of genes. As such, activation

of the NF-kB signalling module involves not only the early up-

regulation of pro-inflammatory cytokines but also the transcrip-

tional control of apoptosis [91]. Oftentimes, transcriptional

regulation requires the participation of several transcriptional

factors through protein-protein interactions, known as transcrip-

tional co-activators or co-repressors. For example, NF-kB

encompasses an important family of inducible transcriptional

activators critical in the regulation of the gene expression in

response to injury and inflammatory stimuli. As such, the CREB-

binding protein has been identified as co-activator of the NF-kB

component p65 and might play an important role in the cytokine-

induced expression of various immune and inflammatory genes

[92]. Such observations emphasize the role of the CREB regulator

in pro-inflammatory signaling pathways including TLR signaling

pathway. Further evidence [93] confers the involvement of over-

expressed CREB in inducing apoptosis while the control of FASL

induction which mediates programmed cell death in human T

lymphocytes [94] appears to be accomplished through a series of

regulatory interactions that implicate the role of NF-kB and

CREB/ATF pathways [95].

Additionally, there is considerable evidence indicating the role

of the early growth response-1 (member of EGR family) in

regulating endotoxin induced SOCS-1 transcription [96]. SOCS-1

has been identified as a critical regulator of both adaptive cytokine

signaling and innate immune responses and therefore understand-

ing its transcriptional regulation under inflammatory conditions

will no doubt be critical in understanding its role in limiting

inflammatory responses [97]. Interestingly, these results demon-

strate an important role of regulatory members of EGR family in

regulating the endotoxin induced activity of the SOCS-1

promoter; thereby validating its presence in our computational

predictions. In addition to transcriptional regulation of the anti-

inflammatory SOCS family, recent data [98] also discussed a

critical role of IL10 signaling in SOCS-3 expression which

provides for feedback attenuation of cytokine induced immune

responses. Other studies [99] document that SP1 regulator may be

a central mediator of IL10 induction and thereby it may also play

a crucial role in cytokine homeostasis. Accordingly, our method

captures the family of stimulating protein 1 (SP1F) as a putative

regulator in late phase (resolution) of the inflammatory response.

On the other hand, we also observe a significant overlap across

various biological processes while comparing these sets of TFs but

it is reasonable since transcription factors are characterized by

pleiotropic effects [58] (Figure 4). TLR signaling appears to be the

principal pathway that initiates the host response to endotoxin and

via the cross-talk among other pathways (e.g. Apoptosis, JAK-

STAT) amplifies and propagates the inflammatory reaction

providing for complex non-linear responses [100].

Dynamic transcriptional regulatory program
The transcriptional regulatory program can potentially show a

dynamic reorganization over time. In order to get a dynamic

perspective, we focus on the apoptotic regulatory program as an

illustration. Apoptosis is tightly regulated process that mainly

responds to the initial stimulus followed by a cascade of events that

involve the initiation and signal transduction phase. The initiation

or preparation phase involves the activation of surface death

receptors (extrinsic pathway); for example, TNFR responds to

appropriate ligands (e.g. TNF), triggering downstream a signal

transduction phase which eventually converges to the activation of

effector caspases [101]. On the other hand, programmed cell

death is regulated by caspase inhibitors which attenuate apoptosis.

Such events would therefore reflect the early, middle and late

apoptosis respectively (Figure 5).

Despite the identification of condition (time) specific regulators,

the pleiotropic role of some transcription factors across multiple

conditions is also observed. Accordingly, the myeloid transcription

factor, MYT1, appears to be a critical pro-apoptotic regulator that

affects the progression of the early stage apoptosis. Although

considerable evidence [102,103,104] indicates the role of MYT1

in cell cycle regulation through induction of Cdc2 activity, further

Figure 4. Pleiotropic effects of transcription factors across
biological processes. Venn diagram shows pair-wise transcription
factor combinations that overlap between the inflammatory relevant
pathways (*: not present as TFs that regulate Toll-like receptor signaling
pathway in this case).
doi:10.1371/journal.pone.0018889.g004
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studies [105] also implicate the activation of cyclin dependent

kinases in apoptosis induced by various stimuli. Therefore, such

observation implies the possible involvement of Cdc2 regulators

including MYT1 in enhancing programmed cell death during the

early pro-inflammatory phase (early apoptosis). In addition to

regulation of apoptosis, E2F family of DNA binding proteins has

also been shown to have the ability to induce not only cell cycle

but also programmed cell death [106,107] by regulating the

activation of pro-apoptotic genes as seen in Figure 5. Such

evidence allows the identification of transcription factors with

multifunctional capabilities essential for modifying coupled cellular

processes including cell cycle and apoptotic behavior [102].

The retinoid X receptors (RXR) play a critical role in apoptosis.

These proteins act functionally as either homodimers or

heterodimers with other members of the nuclear hormones

receptor family such as retinoid acid receptors (RAR) and

peroxisome proliferators activated receptor (PPAR), which are

all associated with the regulation of inflammation [108]. In

particular, the interplay between RXR and RAR receptors has

been shown to induce apoptosis which validates its role as a time

specific regulator of early apoptosis [109,110]. Despite the

conventional role of NF-kB as anti-apoptotic [111], our results

indicate its putative role in mediating cell death by transcription-

ally up-regulating early and middle pro-apoptotic genes. Such

antagonistic duality for the regulatory role of NF-kB has been

recently outlined in [112] signifying its involvement in a pro-

apoptotic fashion by up-regulating the expression of Fas. Reduced

Fas expression followed by a reduction in apoptosis was also

observed upon endotoxin challenge in relA2/2 (deficient) rodents

suggesting a novel pro-apoptotic function for this protein in Fas

induced cell death [113].

Putative regulators of middle and late apoptosis, including both

pro- and anti-apoptotic transcription factors have been identified

which aim at enhancing and controlling programmed cell death

respectively. As such, activating binding protein (AP4R) which

according to our results is present in middle apoptosis, has been

shown to regulate the expression level of various caspases [114].

On the other hand, CREB binding protein has been shown to play

a pivotal role in rescuing from apoptosis promoting cell survival

via the induction of anti-apoptotic proteins [115,116] while

evidence [117] documents GATA as a novel MAPK substrate

that plays an essential role in a cytokine mediated anti-apoptotic

response. Based on our predictions GATA appears to be a

significant regulator during late apoptosis conferring its role as

anti-apoptotic protein. Since the late transcriptional event has

been previously identified as a critical anti-inflammatory compo-

nent, it is expected the regulators of late apoptosis to participate in

controlling apoptosis by transcriptionally activating anti-apoptotic

genes such as PIK3CG [118]. For example, studies on the STAT

regulator have shown that it exerts an anti-apoptotic function

required for maintenance of neutrophil homeostasis [119].

Furthermore, FKHD proteins also negatively affect apoptosis

signaling through Akt signaling that is implicated in promoting cell

survival [85,120]. Both STAT and FKHD binding proteins exert

direct regulatory links on the late apoptosis (Figure 5).

On the other hand, regarding the case that genes are involved in

different functions within a particular expression pattern, a

possibility relevant to alternative promoter usage can be suggested

[50,51]. Besides alternative promoters activated upon tissue-

specific or condition-specific context, it is possible to hypothesize

that they can be activated upon the coming set of biosignals which

are transcriptional regulators, leading to the case that different

Figure 5. Dynamic representation of transcriptional regulatory network for apoptosis signaling. Transcription factors and target genes
are shown as nodes and their putative regulatory interactions are drawn as edges.
doi:10.1371/journal.pone.0018889.g005

Endotoxemia Regulation

PLoS ONE | www.plosone.org 8 May 2011 | Volume 6 | Issue 5 | e18889



protein isoforms are translated and thus the gene can be involved

in different functions. Taken these together, our analysis provides

significant insights on the potential regulatory interactions among

transcriptional factors and their target genes which is a crucial step

towards quantitative modelling of transcriptional regulatory

networks [121].

In order to assess whether coexpressed genes are more likely to

be coregulated, we estimate p-values of CRMs in individual gene

batteries vs. the corresponding entire pattern of expression

(Table 3). The results show that the estimated p-values values

are similar to those calculated for the background set, implying

that the entire pattern of coexpressed genes behaves more likely

the same as a random background rather than as a set of genes

that share a common regulatory mechanism (see Data S1, sheet

‘CRMs’ and ‘Middle-up TLR’). This supports our assumption

related to the definition of a gene battery. Such preliminary results

indicate that genes that are both coexpressed and functionally

relevant are very likely to be governed by an underlying

transcriptional regulatory program.

Predicting transcriptional regulators of an in vitro
endotoxemia model

In order to assess the stability of our prediction, we applied the

analysis to an in vitro human endotoxin model. Data are extracted

from a culture of peripheral-blood-derived mononuclear cells

stimulated by a high dose of LPS (100 ng/ml) [122]. Clustering

approach reveals that there exist five critical transcriptional

responses. Three of them characterize inflammatory phases similar

to those identified in the analysis of in vivo data including an early-

up response (284 probesets), a late-up response (700 probesets),

and a down regulation (226 probesets). Due to a high dose of LPS

administration, it would have expected an up- (367 probesets) and

a down-regulation (319 probesets) without returning to the base

line after 24 hr of LPS administration. Subsequently, a similar

analysis of pathway enrichment (using KEGG database) was

applied for each set of genes characterizing a transcriptional

response. In an overlap with the analysis of in vivo data, we select

statistically inflammatory relevant significant pathways (p-val-

ue,0.05) that were selected from the analysis on the in vivo human

endotoxemia model. Accordingly, nine sets of genes that belong to

a specific pathway and a pattern of gene expression were

extracted, corresponding to nine genes batteries used to determine

critical transcriptional regulators relevant to the inflammatory

response in this study (Table 4).

Subsequently, the proposed method has been applied to search

for statistical significant CRMs which are decomposed into a list of

TFBSs to infer associated TFs that may be functional transcription

factors in the regulation of inflammatory transcriptional responses.

In a similar manner with the in vivo analysis, TFs that are present

with the high frequency among gene batteries (at least three times)

are reported (Table 4). We identify 27 critical TFs of which more

than 80% are present in the list of relevant transcriptional

regulators found in the analysis of the in vivo data including AP4R,

CLOX, CREB, E2FF, EGRF, EKLF, ETSF, FKHD, HOMF,

HOXF, IRFF, MAZF, NFKB, NKXH, NR2F, OCT1, RXRF,

SORY, SP1F, STAT, TBPF, ZBPF. Given that different dosing

amounts of LPS have been applied in two experiments, there may

be different genes involved in the response of the same function

between the in vivo- and in vitro- model, resulting in different TFs

involved in the transcriptional regulation of the same gene battery

between two cases. However, the significant overlap between two

final lists of predicted TFs relevant to inflammatory transcriptional

responses provides promising implications of the predictive

performance of the method. Therefore, the proposed framework

appears to be a robust and valuable methodology to identify

critical transcriptional regulators relevant to biological responses

under external stimuli (see details in Data S2).

Computational issues
Regarding the computational definition of CRMs, although

taking structural constraints (e.g. the strand orientation, the order,

and the distance between successive TF-binding sites) into account

can reduce the number of false positive matches, a strict definition

of structural constraints can increase the rate of false negative

Table 3. Statistical significance of selected cis-regulatory modules*.

No. cis- regulatory modules avglen-minlen-maxlen
Common
levels

vs. the background1

(p-value3)
vs. the entire pattern2

(p-value3)

1 +AP4R__2GATA__2HEAT$ 288__169__485 0.75 1.88E-06 1.78E-05

2 +E2FF__+MOKF__2E2FF 333.8__170__514 0.75 1.06E-05 9.32E-08

3 +MOKF__2MZF1 168.7__95__236 0.75 3.36E-05 6.37E-07

4 +SP1F__2ETSF__2NFKB 189__110__268 0.75 3.58E-05 1.78E-05

5 +PAX6__+SNAP 154.2__66__260 0.75 4.29E-05 3.82E-05

6 +MOKF__2NKXH 101.3__37__194 0.875 4.51E-05 2.57E-05

7 +PAX6__2ETSF__2ZBPF 271.7__191__326 0.75 4.52E-05 3.82E-05

8 +NKXH__2CREB__2E2FF 518.3__403__788 0.75 6.85E-05 1.35E-04

9 +MAZF__2E2FF 72.1__32__98 0.875 9.82E-05 6.96E-05

10 +NFKB__2CREB__2SP1F 246.2__117__529 0.75 9.91E-05 1.35E-04

*: common significant cis-regulatory modules that are considered as transcriptional regulators for 8 genes in the middle-up expression pattern that belong to the
apoptosis pathway;
‘+’|‘2’ TFBSs present on the forward | backward strand orientation;
$: this CRM contains 3 TFBSs, binding sites of AP4R on the forward and of GATA, HEAT on the backward strand. Its average length is 288 bases while the minimum one
has 169 bases and the maximum one has 485 bases. There are 8*0.75 = 6 instances of this CRM over 8 control regions of 8 genes;

1: the background consists of 5,000 randomly selected genes;
2: the entire corresponding pattern of gene expression (88 genes in this case);
3: hyper-geometric p-value of this group vs. the background set or vs. the entire pattern.
doi:10.1371/journal.pone.0018889.t003
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prediction for the existence of CRMs on promoter sequences.

Usually there is a pre-defined selection in the length (or window

size) and the distance variation between successive binding sites in

the composition of CRMs. However, our analysis excludes these

parameters since a distance variation of several bases or several

hundreds of bases may be invariant in the cells. Instead, we

estimate the CRM length based on the length of its instances

present on the control regions of corresponding genes in order to

select common CRMs and calculate their significance values vs.

the background set. Therefore, there is only one adjustable

parameter (p-value) which defines the significance level of the

resulting CRMs. The statistical significance thresholds for CRMs

are selected following the red curve in Figure 2 which is an

approximation of the blue curve. The fluctuation of the blue curve

is in part due to the random selection of the gene sets as well as due

to the round-up to an integral number of the common level d
(70%) compared to the gene-set size N (e.g. either N is 6 or 7, there

is the same common level for those recognized CRMs – present on

at least 5 genes in this case) (see Data S1, sheet ‘p-value’).

Predicated upon the context-specific nature of the problem as

well as a number of other relevant issues (e.g. establishing the

criteria to measure the performance of the prediction, building up

testing datasets), testing predicted CRMs and/or relevant TFs as

‘true’ or ‘false’ remains a challenge [27]. Thus of critical

importance is to evaluate and validate the computational results

based on literature evidence and those experimentally verified if

possible. In this study, we employed a CRM-searching approach,

similar to FrameWorker method [28], to identify common CRMs

in each gene battery. However, the most critical issue is that a

large proportion of mammalian genes possess multiple transcrip-

tion start sites (TSSs) and therefore multiple alternative pro-

moters regulate gene expression in a context-specific manner

[123,124,125]. For instance, in a recent study Singer et al. [126]

developed and employed a custom microarray platform to show

that there are nearly 35,000 alternative putative promoters present

on around 7,000 human genes. As a result, the computational

identification of CRMs becomes a combinatorial problem and

oftentimes a daunting task due to the large number of alternative

promoters of genes in the gene battery. For example, 7 genes that

belong to Apoptosis pathway and late-up expression pattern can

produce totally 5,600 combinatorial promoter sets; or 10 genes

that are in Cytokine-cytokine pathway and late-up expression

pattern can create 13,440 combinatorial promoter sets; while

complexity further increases in the oxidative phosphorylation

group (down expression pattern) characterized by 40 genes and

1,274,019,840 combinatorial promoter sets. Consequently, search-

ing for common CRMs in all promoter combinations is

computationally intense. Yet, our novelty heuristic can reduce

these complexities into only one running time but still preserve the

same result (see appendix, lemma 1). In a similar manner, the

strategy of converting promoter sequences into promoter profiles

also makes the estimation of the significance of common CRMs vs.

a large background set more computationally tractable [56].

Since it is not clear how long the promoter length should be, our

computational analysis extracts highly qualitatively defined

promoters from Genomatix databases [26] including those with

either an experimentally defined length or a default if there is no

associated prior length information. This default length (500 bp

upstream plus 100 bp downstream the TSSs) is also supported

from a recent experiment known as genome-wide open chromatin

map [127]. Additionally, we also examined how the promoter

length affects the in silico inference of CRMs. Specifically, we count

the number of relevant TFs that can be considered as

transcriptional regulators for the group of 8 genes that belong to

the middle-up expression pattern and the apoptosis pathway. For

each specific length of extracted promoters (27 promoters that are

relevant transcripts; 100*x upstream and 20*x downstream bases,

x from 4 to 10), we applied the same procedure to search for

statistically significant CRMs and then infer the list of relevant

TFs. The results show that the number of relevant TFs increase

linearly with respect to increasing promoter lengths (see Data S1,

sheet ‘Promoter length’). Thus, including prior information of the

promoter lengths is very important to provide reliable computa-

tional predictions.

Another important challenge in computationally identifying TFs

is associated with the fact that transcription factors can bind to

regions far from the TSSs. For example, the P53 factor is a well

established regulator for the programmed cell death (apoptosis)

[128,129]; however such regulator is not identified as putative TF

in the gene batteries relevant to apoptosis pathway. However, if we

increase the promoter length up to approximately 1,000 bp P53 is

identified within the statistically significant CRMs. This leads to

Table 4. Critical transcription factors identified from the in vitro endotoxin study.

No. Patterns Functions Transcription factors*

1 Early-up Apoptosis CLOX, E2FF, EGRF, EKLF, ETSF, FKHD, HOXC, HOXF, IRFF, MAZF, NKXH, NOLF, OCT1, RXRF, SORY, SP1F, STAT,
XBBF

2 Late-up Apoptosis CREB, EKLF, MAZF, NFKB, SORY, ZBPF

3 Early-up Toll-like receptor signaling
pathway

AP1R, CLOX, E2FF, EGRF, EKLF, ETSF, HOXC, IRFF, NFKB, NOLF, NR2F, OCT1, RXRF, SORY, SP1F, STAT, XBBF, ZBPF

4 Late-up Toll-like receptor signaling
pathway

ABDB, CLOX, ETSF, HOMF, HOXF, IRFF, NFKB, NKXH, RXRF, SORY, STAT, TBPF

5 Early-up Cytokine-cytokine receptor
interaction

CREB, ETSF, FKHD, HOXF, RXRF, STAT, TBPF

6 Late-up Cytokine-cytokine receptor
interaction

ABDB, HOXF, NR2F, OCT1, RXRF, SORY, STAT

7 Early-up Jak-STAT signaling pathway ABDB, AP1R, AP4R, E2FF, EGRF, EKLF, ETSF, FKHD, HOMF, HOXF, IRFF, MAZF, NKXH, RXRF, SORY, SP1F, STAT,
TBPF, XBBF, ZBPF

8 Late-up Jak-STAT signaling pathway ABDB, AP1R, AP4R, CLOX, CREB, E2FF, ETSF, FKHD, HOMF, HOXC, HOXF, NKXH, NR2F, OCT1, RXRF, SORY, TBPF

9 Up-remained Pyrimidine metabolism AP4R, E2FF, EGRF, EKLF, ETSF, FKHD, HOXF, MAZF, NFKB, NKXH, NOLF, NR2F, RXRF, SP1F, XBBF, ZBPF

doi:10.1371/journal.pone.0018889.t004
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the hypothesis that P53 might work in a cooperative manner with

other TFs that bind to the distant promoter regions. Alternatively,

it has been recognized that P53 can affect apoptosis via novel

transcription-independent pathways although its role as a

mediator of transcription is well established [130,131,132]. For

instance, apoptosis can still occur when P53 mutants incapable of

acting as transcription regulator are introduced [133,134]. This

indicates the possibility that P53 might not directly regulate the

apoptotic gene batteries as identified from our analysis. Thus,

computational missing P53 as a relevant TF may be a reasonable

result rather than a limitation from our computational analysis;

yet, it is still a question to us in this study. However, since our

analysis only searches for CRMs on the proximal promoters of

genes, it should be acknowledged that we may miss some relevant

transcription factors that bind to the regions far from the TSSs as

well as enhancers that regulate the transcriptional process.

Furthermore, we also analyzed the reasons why no statistically

significant CRM is found in the down-regulated gene batteries of

the oxidative phosphorylation pathway (so-called OXPHOS

group). OXPHOS itself is composed of genes that are coexpressed

across numerous datasets under different conditions [135,136] and

it was proposed as a group of genes that might share a common

regulatory mechanism [137]. However, we did not detect any

complex-specific arrangement of TFBSs although it is highly

enriched by a number of common TFBSs even when the promoter

lengths are increased up to 1,000 bp upstream. Although this

conclusion is similar to the result of a previous study [137], we note

that subunits of each complex in OXPHOS group tend to have

tighter coexpression with subunits of the same complex than

subunits of other complex which is also proposed and discussed

extensively in [137]. Based on the assumption that genes

characterized by tightly coordinated expression levels are more

likely to share common regulatory elements (proposed and

demonstrated in [52]), we assume that genes belonging to the

same complex might share some common set of regulatory signals.

Therefore, we applied the same procedure of finding statistically

significant CRMs on the control regions of those subgroups of

genes including complex I – 17 genes, complex III – 6 genes,

complex IV – 4 genes, and complex V – 13 genes. Eventually, we

identified statistically significant CRMs for each complex from

which relevant transcriptional regulators can be inferred. As a

result, from a promoter analysis standpoint we are highly

confident that subunits of each complex in OXPHOS group are

more likely to be under a common regulatory mechanism rather

than all the genes in the entire group (see Data S1, sheet

‘OXPHOS’). However, from a computational standpoint this

result raised another possibility related to whether a subset of

genes within a gene battery can provide more statistically

significant CRMs than the entire gene battery. Assuming that

the possibility is correct, this raises two questions including: (i) what

is an appropriate size of the subset as well as (ii) how genes in the

subset are selected. In order to address this issue, we make a case-

study by randomly selecting a subset of N genes within the

OXPHOS group (N = 17, 6, 4, and 13 respectively) and search for

significant CRMs. The process is repeated 100 times and the

average of minimum significance p-values is calculated. Results

show that for N = 4, the average of minimum p-values is

comparable to the one with N genes randomly selected from the

background set (Figure 2). Yet, for the other cases the average of

minimum p-values is less significant than the ones from the

background set, suggesting that random subsets of genes within a

gene battery behave more or less similarly to the case from the

background set. Certainly, some subsets can provide more

significant CRMs than the entire gene battery but how to

interpret those selected subsets and the corresponding results

remains a challenge. Therefore, it should be emphasized that using

prior biological knowledge might overcome some of these

limitations.

Our analysis has attempted to reverse engineer the underlying

regulatory network of the human blood leukocyte response to a

prototypical inflammatory stimulus (endotoxin). Given the tran-

scriptional profiling data of human blood leukocytes, an

elementary set of temporal responses with putative transcriptional

regulators have been identified. A key feature of the analysis is the

exploration of the concept ‘gene battery’ which represents for a

group of genes that are both co-expressed and functional relevant

to identify inflammatory transcriptional regulators using a context-

specific searching approach [38]. Novel heuristics regarding to

challenging issues e.g. eukaryotic genes consist of multiple

alternative promoters leading to a huge computational complexity

are also proposed. In order to provide a systematically unbiased in

silico approach, CRM structural constraints are also adjusted so

that no parameter is required except for the statistical significance

thresholds. Furthermore, our analysis also allows for the

reconstruction of a dynamic temporal regulatory network, making

it a critical enabler for improving our understanding of how the

transcriptional machinery ‘program’ effectively regulates key

cellular processes.

Although no single analysis can identify all transcriptional

regulators involved in a response, it has been demonstrated that

the proposed framework can identify critical TFs that are relevant

to acute inflammatory responses. Despite the fact that many

methods have been proposed in the literature to search for

relevant transcriptional regulators, different approaches explore

different biological assumptions resulting to different sets of

putative TFs which may or may not significantly overlap each

other. Since the true extent of all TFs involved in the regulation of

a complex response under some external stimuli is unknown, these

differences could not be interpreted as the high- or low- accuracy

of the methods. Instead, all of found TFs may be involved in

different processes of the response but because of the limitation of

the hypotheses used by the methods, they may not be recognized

by a certain approach.

Novel methods are still proposed using different analytical

approaches but generally they can be categorized into two main

directions including mRNA expression-based [138,139,140] and

TF binding pattern-based methods [28,29,30,31,36]. The first

direction somehow utilizes the fundamental hypothesis that the

mRNA expression level of TFs is proportional to their protein

concentration but this may not be appropriate especially in higher

eukaryotes since TF activation is often regulated post-translation-

ally and acts somewhat in an independent manner of expression

level. Some methods also require multiple-condition data as the

input which may not be applicable when practical data are only

sampled under one condition/treatment [138,139,140]. In the

meanwhile, a lot of methods following to the latter direction have

been developed e.g. FrameWorker [28], CMA [29], CRÈME

[30], ModuleMiner [31], CisModule [36], BioMoby [141] etc. of

which ours is among them. These are not limited by the mRNA

expression proportion hypothesis but they are limited by promoter

identification, TF binding profiles, and the underlying assumption

to select the input set of ‘co-regulated’ genes.

In this study, we therefore opt to extend an available

computational tool, FrameWorker, to take into account the fact

that genes of higher eukaryotes contain multiple alternative

promoters exploring the rich information of the Genomatix

database on promoters and TF binding profiles. The underlying

assumption that coexpressed genes are more likely to share some
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common regulatory mechanism when they are functional-relevant

has been explored to predict putative functional activation of TFs

in a specific context. These factors make our method become

incomparable or unnecessary to compare with available methods.

However, given the future availability of more complete TF

binding data and other resources, the method could be enhanced

by integrating protein-protein interaction to refine selected CRMs

or using other tools to support the selection of relevant functions

e.g. Pathway-Express [142]. Since each single method or even

each direction always contains its own limitations and advantages,

one possibility in future improvements could be the development

of a framework to obtain a consensus result under diverse

underlying hypotheses from various outputs of different methods.

Methods

Human endotoxemia model and data collection
In vivo data. The data used in this study were generated as

part of the Inflammation and Host Response to Injury Large Scale

Collaborative Project funded by the USPHS, U54 GM621119

[11,143]. Human subjects were injected intravenously with

endotoxin (CC-RE, lot 2) at a dose of 2-ng/kg body weight

(endotoxin treated subjects) or 0.9% sodium chloride (placebo

treated subjects). Following lysis of erythrocytes and isolation of

total RNA from leukocyte pellets [11], biotin-labelled cRNA was

hybridized to the Hu133A and Hu133B arrays containing a total

of 44,924 probesets for measuring the expression level of genes

that can be either activated or repressed in response to endotoxin

at 0 (before treatment), 2, 4, 6, 9, and 24 hr. Data are publicly

available through the GEO Database (#GSE3284). ANOVA

technique (p,1024) was then applied to filter significantly

differentially expressed probesets, resulting in 3,269 selected

probesets [55]. Average expression profiles of probesets over

replicates for each time-point were used as the final input data for

further analyses [144]. The data have been appropriately de-

identified, and appropriate IRB approval and informed, written

consent were obtained by the glue grant investigators [11].

In vitro data. Isolated from peripheral blood mononuclear

cells collected from three healthy humans, adherent monocytes

were cultured for 10 days in RPMI medium 1640 (20% FBS/L-

glutamine/20 mM Hepes/penicillin/streptomycin/50 ng/ml

macrophage colony-stimulating factor) to generate peripheral-

blood-derived mononuclear cells [122]. These mononuclear cells

were stimulated by 100 ng/ml LPS (Salmonella minnesota R595 ultra

pure LPS; List Biological Laboratories, Campbell, CA) and

sampled at 0 (before stimulation), 2, 4, 8, and 24 hr. Total RNA

was isolated with TRIzol (Invitrogen, Carlsbad, CA) and two

samples for each time-point were analyzed using HG-U133 Plus2

Affymetrix GeneChips producing mRNA expression profiles of

54,675 probesets (#GSE5504). Fold change (fold = 2.5) was then

applied to filter significantly differentially expressed probesets,

resulting in 2,892 selected probesets. Average expression profiles of

probesets over replicates for each time-point were used as the final

input data for further analyses [144].

Clustering and selection
Utilizing the concept of the agreement matrix (AM) in

consensus clustering, we recently proposed a novel method to

identify the core set of probesets that are most agreeable in the AM

of which they belong to the same or different patterns of gene

expression [55]. In order to produce the agreement matrix, a

number of different clustering methods along with different

metrics (Euclidean, Manhattan, and Pearson correlation) were

used to reduce the bias and assumption of any specific clustering

method. After identifying the core set of probesets, the AM is

reduced correspondingly to those selected probesets and then the

hierarchical clustering is applied on the reduced AM to produce a

number of gene expression patterns. Subsequently, we applied a

trivial-cluster removal procedure and obtain four significant

patterns of gene expression which are shown to be critical in the

dynamics of acute human inflammation.

Problem definition
In this study, genes that are both coexpressed and functionally

relevant are assumed to belong to the same ‘gene battery’. The

problem of CRM searching can be formalized as follows: given a

set of N putatively coregulated genes G~ gif gN
i~1, each of which

contains Ki alternative promoters gi~ proikf gKi

k~1 whereas each

promoter is represented by a list of Lik binding sites (‘promoter

profiles’) proik~ bsiklf gLik

l~1 and each binding site is a 3-tuple

of corresponding transcription factor name f, position p and

binding orientation o: bsikl~vbs
f
ikl , bs

p
ikl , bso

iklw, find a set of

M cis-regulatory modules (CRMs) cCRM~ crmj

� �M

j~1
, crmj~

bsjl

� �Mj

l~1
that are present as common over a threshold d (70% in

this study) on the set of gene promoters (Mj is the number of

binding sites, yet to be determined, in CRM crmj). The statistical

significance of each commonly recognized CRM vs. a background

set of genes is then estimated selecting only significant CRMs. The

subscripts i, k, l, j indicate the gene number, the promoter number,

the binding site number, and the CRM number respectively. An

illustration of the computational framework is presented in

Figure 6 while more details are discussed in the following section.

Discovery of TFBSs and promoter profiles
Based on a comprehensive database of promoters – Genomatix

[26], a set of transcript-relevant promoters are extracted coupled

with multiple alternative promoters and experimental information

about the promoter length including those with either an

experimentally defined length or a default if there is no associated

prior length information (500 bp upstream plus 100 bp down-

stream the TSSs). MatInspector [20] is then applied to scan for

PWM matches on those promoter sequences using optimal

parameters from MatBase [26]. In order to speed up the process

of discovering CRMs as outlined in [56], each promoter is re-

modelled with a list of Lik TFBSs ordered by their local positions

on the promoter sequences and represented by the corresponding

TF name (e.g. NFKB, ETSF) along with the binding orientation

proik~ bsiklf gLik

l~1. The conversion aims to answer two basic

questions: (i) given a promoter sequence, identify whether a TFBS

or a CRM is present on this promoter or not, and (ii) given a gene

with Ki alternative promoters, determine if a TFBS or a CRM is

present on any promoter sequence of this gene. From a

computational standpoint each promoter profile is loaded into a

hash table whose field ‘key’ includes the TFBS name plus the

binding orientation (e.g. +ETSF, 2PAX6, ‘+’ as forward and ‘2’

as backward binding orientation) and field ‘value’ is the position

list of the corresponding TFBS with the same binding orientation.

For example, if the key is ‘+ETSF’ and the corresponding value is

‘373__386’, we know that transcription factor ETSF is forward

binding to the promoter at the local position 2373 or 2386

upstream. As a result, to decide the existence of a TFBS including

the binding orientation on a promoter the process only makes a

quick search in the hash keys. In a similar way, to determine the

present of a CRM on a promoter the process will take into account

the binding orientation from the keys and the positions from the

values of corresponding keys to evaluate the structural constraints

(see Data S1, sheet ‘Promoter profiles’).
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Common cis-regulatory modules
Computationally, a cis-regulatory module crmj is a list of Mj

non-overlapping TFBSs ordered by their positions on the

promoter sequence and characterized with their corresponding

binding strand orientation. For example, CRM ‘+NFKB__

2CREB__2SP1F’ consists of three successive TFBSs of tran-

scription factors NFKB, CREB, SP1F with the binding strand

orientation forward, backward, and backward respectively. Besides

the binding orientation and the position order of TFBSs, CRMs

are also characterized by their length. If CRM A appears to be

common in a gene battery of N genes, the average length of all

instances of A on N genes is considered to be the length of this

CRM. In the case that A presents more than one time on

promoters of gene i, the length of instance A for this gene will be

the minimum one. Subsequently, to estimate the common level of

this CRM we only take into account those instances with the

length approximate to the average one (e.g. from the half to the

double). If the number of such instances over N is higher than a

frequency threshold (d= 70% in this study), CRM A is considered

as a common CRM of the gene battery.

However, a gene can have multiple alternative promoters and

virtually in all cases, it is not known which promoter of the gene is

activated. To identify activation of putative promoters, one solution

would be to search for all possible combinations of promoters in the

gene set. Yet given a set of N genes, each gene with K alternative

promoters in average, the total combinatorial number of promoter

sets is KN which is computationally intense and sometimes

impossible to search for all promoter combinations. Consequently,

we propose a novel heuristic where if a TFBS or a CRM is present on any

promoter sequence of a gene, it is considered as present on the control regions of

that gene. The heuristic results in one-time searching instead of KN

but still produces the same results as the brute-force search in all

combinations of promoters (see Appendix S1, procedure ‘IsPresent’

in Algorithms S1 and Procedures S1). Using this heuristic, the main

algorithm to search for common CRMs in a gene battery, similar to

FrameWorker [28], can be simply described with two primary steps

as follows: (1) identify all potential TFBSs that are common in a

gene battery and (2) employ the breadth first search technique to

search for all possible combination of all commonly found TFBSs in

step 1, each of which is a potentially common CRM yet to be

determined quickly by the heuristic above (see details in Algorithms

S1 and Procedures S1).

Estimating the statistical significance of cis-regulatory
modules

Due to the fact that a CRM can be present on promoters of

many genes in the background set, we estimate the statistical

significance of commonly identified CRMs for each gene battery

Figure 6. Flowchart of the CRM searching process. Each binding site is characterized by the TF name, position and binding strand orientation (+:
forward and 2: backward). Promoter sequences are converted into promoter profiles to speed up the calculation. A gene profile contains a set of promoter
profiles that are corresponding to a set of alternative promoters of that gene. The background set contains 5,000 randomly selected human genes.
doi:10.1371/journal.pone.0018889.g006
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vs. the background set to select those that are significantly

overrepresented. Based on promoter profiles, the procedure can

directly identify whether a particular CRM is present on any

promoter sequence of a gene in real-time despite the large

background set of genes. This calculation provides a correspond-

ing hyper-geometric p-value defined as follows:

p{value CRMAð Þ~
b

n

� �
B{b

N{n

� ��
B

N

� �

where B and b is the number of genes and the number of hits

respectively in the background set which is made up of 5,000

randomly selected genes in human genome; N and n is the number

of genes and hits in the gene battery, respectively.
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