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Abstract: Dentin adhesives (DAs) play a critical role in the clinical success of dental resin composite
(DRC) restorations. A strong bond between the adhesive and dentin improves the longevity of
the restoration, but it is strongly dependent on the various properties of DAs. The current review
was aimed at summarizing the information present in the literature regarding the improvement of
the properties of DAs noticed after the addition of bioactive inorganic fillers. From our search, we
were able to find evidence of multiple bioactive inorganic fillers (bioactive glass, hydroxyapatite,
amorphous calcium phosphate, graphene oxide, calcium chloride, zinc chloride, silica, and niobium
pentoxide) in the literature that have been used to improve the different properties of DAs. These
improvements can be seen in the form of improved hardness, higher modulus of elasticity, enhanced
bond, flexural, and ultimate tensile strength, improved fracture toughness, reduced nanoleakage,
remineralization of the adhesive–dentin interface, improved resin tag formation, greater radiopacity,
antibacterial effect, and improved DC (observed for some fillers). Most of the studies dealing with
the subject area are in vitro. Future in situ and in vivo studies are recommended to positively attest
to the results of laboratory findings.

Keywords: bioactive fillers; dentin adhesive; dental resin composite; remineralization

1. Introduction

Dental resin composites (DRCs) are polymeric materials used for restorative and
aesthetic repairs [1]. They have gained a lot of popularity in recent years, and the number
of composite restorations has surpassed 166 million in the United States (U.S.) only [2].
Monomers most commonly used in DRCs include bisphenol A-glycidyl methacrylate
(Bis-GMA), Bis-GMA’s ethoxylated version (BisEMA), Triethylene glycol dimethacrylate
(TEGDMA), and urethane dimethacrylate (UDMA) [3]. With the help of photo-initiators
such as camphorquinone (CQ) with 2-dimethylamino ethyl methacrylate (DMAEMA) or
ethyl-4-dimethylaminobenzoate (EDMAB), the resin matrix gets polymerized when it is
exposed to a visible blue light source, such as light-emitting diodes (LEDs) [4]. Despite
several advantageous characteristics of DRCs, they have questionable longevity (possessing
a mean replacement time of 5.7 years) [5]. The most common reasons for the failure
of DRCs include polymerization shrinkage, microleakage, and consequent secondary
caries development [6]. Since their introduction in the market six decades ago, various
modifications have been made in the composition of their polymer matrix and adhesive
component in order to improve their longevity [1]. Dentin adhesives (DAs) are crucial for
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the clinical success of DRCs, as adhesion forms an intimate bond between the adhesive
and tooth’s hard tissue [7]. This bond is formed when the adhesive components infiltrate
the micro-porosities (created by etching) in the tooth structure to develop resin tags [8].
These tags form a mechanical interlocking between the adhesive and the tooth structure [9].
Various studies have proposed that the advances in polymer chemistry and incorporation
of bioactive filler particles have augmented the properties of DAs [10,11]. These properties
that are improved by the incorporation of bioactive inorganic fillers in the adhesives are
summarized and presented in Figure 1.
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2. Methodology

The current review is aimed at summarizing information present in the literature
regarding the improvement of the various properties of DAs after the addition of bioactive
inorganic fillers. The methodology adapted for this review is presented in Figure 2.
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3. Bioactive Inorganic Fillers
3.1. Bioactive Glass (BG) Fillers
3.1.1. Overview

BGs are calcium-sodium phosphosilicate-based materials that can regenerate hard
tissues [12]. The use of BGs in dentistry has recently increased due to their compositional
similarity to the bone and dental hard tissues [13]. BGs are currently being used in dentistry
for wide-ranging clinical applications and have been incorporated in toothpaste, glass-
ionomer cement, and dental resin polymer composites [14–16]. The addition of BG fillers
in the DAs can augment their properties, and this aspect will be discussed in detail below.

3.1.2. Improvement of DA’s Properties

The inclusion of BG fillers in the adhesive could improve its hardness and modulus of
elasticity [17]. In a previous study, Profeta et al. reported high micro-tensile bond strength
(µTBS) and reduced nanoleakage at the resin–dentin interface when the adhesives were
incorporated with BG doped fillers [18]. Sauro et al. echoed similar findings and reported
an increase in the hardness and elastic modulus for BG-containing bonding systems instead
of BG-free adhesive systems along with the dentin interface [19]. Yang et al. formerly
reported that orthodontic adhesives containing BGs exhibited clinically acceptable shear
bond strength (SBS) [20]. Biosilicate® (BG-based material) has also been shown to increase
the bond strength of the adhesives [21]. Jun et al. revealed that the addition of copper
doped BG fillers in the adhesive resulted in the remineralization of the adhesive–dentin
interface [22]. Niobophosphate BG fillers, when added to the commercial adhesives, have
demonstrated greater radiopacity, hardness, and degree of conversion (DC), as compared
to the adhesives devoid of BG fillers [23]. BG fillers could also reduce the marginal gap
development by forming the apatite during the polymerization process [24]. The studies
mentioned above provide evidence that DAs, after the inclusion of BG fillers, demonstrate
enhanced properties. It should be noted that BG filler content could positively control
the change in the adhesive’s properties; still, too high wt.% of the BG filler content could
compromise the adhesive’s properties (especially the bond strength) [25].

3.1.3. Mechanism of Improvement of DA’s Properties

Various mechanisms can be suggested that may lead to an improvement of DA’s
properties when the BG fillers are incorporated in them. The inclusion of BG filler particles
could cause a release of ions such as calcium and phosphate, which can cause remineraliza-
tion of the adhesive–dentin interface [26]. Another similar reason has been advocated by
various studies that have reported that the inclusion of BG-containing adhesive inhibits
the bond degradation by protecting the collagen fibers via apatite formation [17,18]. The
addition of BG fillers in the DAs could also cause an increase in the pH [27], resulting in
remineralization of the adhesive–dentin interface. The presence of hydrated silica in the
glass ensures that nucleation sites are present for the hydroxyapatite (HA) layer, hence
promoting precipitation instantly after the dissolution initiates. This property helps to
form an HA-like layer on the restoration surface that fills the marginal gap, thus hindering
bacterial penetration and secondary caries development [28].

3.2. HA Fillers
3.2.1. Overview

HA is part of the natural composition of human bones and teeth [29]. In the teeth, it is
an essential constituent of enamel, dentin, and cementum tissues [29]. HA particles are
remineralizing and promote natural apatite formation in human skeletal and dental tis-
sues [30]. HA particles are small but decreasing their size from a micrometer to nanometer
scale, increases their surface area available for reactivity [30]. Nano-HA particles are used
for multiple applications in dentistry, including as a coating material for dental implants,
as alveolar bone grafting material, inside a toothpaste to treat dentinal hypersensitivity,
and as fillers in DAs [31,32]. The inclusion of HA particles can augment the properties of
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DAs, and multiple mechanisms could be possibly involved. The impact of their inclusion
is discussed below.

3.2.2. Improvement of DA’s Properties

From the literature, it is evident that the inclusion of HA fillers in DAs improves their
properties. Al-Hamdan et al. incorporated HA nanoparticles as fillers in their experimental
adhesive (EA), which resulted in an improved bond strength being observed for HA-
containing EA, as compared with the controls [33]. Additionally, the formation of typical
apatite peaks demonstrating the presence of HA in the adhesive were noticed on Fourier
Transform-Infrared (FTIR) spectra [33] (Figure 3, adapted from Al-Hamdan et al. [33]). In
the same study, resin tags with varying depths were also seen depicting appropriate dentin
interaction of the EA containing HA [33]. The resin tags formed by the HA-containing
adhesives are shown in Figure 4, while their dispersion in the hybrid layer is shown in
Figure 5 (adapted from Al-Hamdan et al.) [33]. Another previous study reported similar
findings, and the inclusion of HA nanoparticles improved the µTBS of the adhesive and
demonstrated proper resin tag formation on scanning electron microscopy (SEM) [34].
Various other studies have also reported an improved bond strength and surface micro-
hardness of the adhesive after the addition of HA [33–35]. Though HA particles can
improve the bond strength and resin tag formation ability of the DAs, a compromised DC
has been reported by various studies with an increasing HA particle concentration [33,34].
Therefore, the addition of a high concentration of HA (>10 wt.%) should be made cautiously
as it could lead to agglomeration of particles and increased viscosity, compromising the
DC [36].
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3.2.3. Mechanism of Improvement of DA’s Properties

A major reason for the improvement of DA’s properties is the remineralizing capabili-
ties of HA particles owing to the presence of calcium and phosphate ions [37]. Another
plausible reason could be the smaller size of HA particles. These particles are spherical
and nano-sized as shown in Figure 6 (adapted from Al-Hamdan et al.) [33], thus ensuring
adequate mineral release and availability of more adhesion area [38]. The HA particles are
also able to biomineralize with the collagen fibers of the dental tissues [39], resulting in a
stronger bond between the adhesive–dentin interface, demonstrated by improved bond
strength. The improved micro-hardness illustrated by HA-containing adhesives could
be explained by the presence of functionalized silane groups on the nanospheres of HA,
which lower water sorption and consequently improve micro-hardness [34].
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3.3. Amorphous Calcium Phosphate (ACP) Fillers
3.3.1. Overview

ACP can be considered as a direct precursor of HA, which is directly involved in
the remineralization of human bones and teeth [40]. ACP-based materials have various
applications in dentistry, mainly related to remineralization of the tooth structure [41]. ACP
is an unstable material that, upon exposure to water, changes into HA, releasing calcium
and phosphate remineralizing ions [42]. This feature forms the basis of ACP’s bioactivity
and can be exploited to promote remineralization via DAs.

3.3.2. Improvement of DA’s Properties

The addition of ACP particles in DAs could prove to be helpful in reinforcing its
properties. In several former studies, it has been demonstrated that the addition of up
to 40 wt.% ACP particles in the adhesive did not have a negative impact on the dentin
bond strength [38,43]. Melo et al. previously demonstrated that ACP-containing adhesives
could penetrate dentinal tubules forming stable resin tags [38]. ACP fillers could fill the
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micro-gaps between the tooth-restoration surfaces, yielding a resilient bond [44]. There
is also evidence of unimpaired DC and diminished volumetric polymerization shrinkage
being observed with the addition of ACP fillers [45,46]. Additionally, the inclusion of ACP
fillers does not considerably affect the curing light’s penetrating power [46].

3.3.3. Mechanism of Improvement of DA’s Properties

Similar to HA and BG, the improvement in the DA’s properties could be attributed
mainly to ACP fillers’ remineralizing capabilities. DAs with ACP particles release higher
amounts of calcium and phosphate ions [38,43]. This release creates a supersaturated
reservoir of ions which inhibits demineralization and promotes remineralization [44].
Additionally, these ions are deposited onto the tooth surface as apatitic minerals, similar
to natural HA present in the teeth [47]. ACP filler particles could also neutralize acids by
increasing calcium and phosphate ion discharge [48]. As ACP lacks the normal crystalline
order and is highly soluble, it can quickly form apatite and increase the acidic solution’s pH
that demineralizes the tooth structure [49]. ACP’s aggregation and excess water sorption is
a concern, but the incorporation of mechanically milled ACP nanoparticles could improve
homogenous filler dispersion and improved biaxial flexural strength [47].

3.4. Graphene Oxide (GO) Fillers
3.4.1. Overview

Graphene-based materials (GBMs) are thermally and chemically stable and retain a
high surface area [50]. GO is a nanomaterial that can be obtained by oxidizing graphite [51],
but unlike other GBMs, it is hydrophilic due to the presence of oxygen in the functional
groups [52]. GO is currently being used for various dental applications, including alveolar
bone regeneration, treatment of oral cancer, drug delivery, as a biomaterial, and as a filler
in DAs [51,53].

3.4.2. Improvement of DA’s Properties

Various researchers have tested the use of GO as a filler to reinforce the properties
of DAs. In an earlier study by Bregnocchi et al., GO-containing adhesive demonstrated
comparable µTBS values to the controls [53]. AlFawaz et al. also incorporated GO particles
in their EA and reported appropriate resin tag formation and greater µTBS values as
compared to the adhesive without GO nanoparticles [54]. It was also reported in their
study that the addition of 2 wt.% GO particles improved the µTBS of the adhesive more
than that observed with the addition of 0.5 wt.% GO nanoparticles [54]. Bin-Shuwaish
et al. also presented similar findings and revealed an improved µTBS paralleled with
controls [11]. GO particles could also enhance the commercial primers’ bond strength, as
reported by Khan et al. previously [55]. However, it should be noted that although an
increase in GO content could increase the bond strength of the adhesive, a compromised
DC could also occur, as demonstrated by several former studies [11,54]. As the DC is
directly reliant on the percentage of the filler content [56], GO nanoparticles should be
added cautiously in the adhesives.

3.4.3. Mechanism of Improvement of DA’s Properties

The positive impact on the properties observed for the addition of GO fillers in the
DAs could be attributed to their hydrophilic nature that could attract calcium ions to
form HA, thus promoting remineralization of the adhesive–dentin interface [57]. The
hydrophilic property of GO also improves the flow of the material, influencing resin tag
formation and supporting the hybrid layer [11]. The oxidation of graphene to form GO
results in the formation of flake-shaped sheets [54]. This sheet-like structure of GO particles
could also reinforce the strength of the material [57]. The flake-shaped GO particles are
shown in Figure 7 (adapted from Al-Fawaz et al.) [54].
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3.5. Calcium Fluoride (CaF2) Fillers
3.5.1. Overview

Demineralization of teeth can have deleterious effects on the health of dental tissues
and overall oral hygiene [58]. Calcium and fluoride are considered essential ions that can
remineralize tooth structure [58]. The inclusion of CaF2 nanoparticles in the material makes
it antibacterial [59], stimulates fluoride release [60], and protects tooth structure against
acidic attacks [61]. Historically, CaF2 nanoparticles have been added in different dental
materials, including pit and fissure sealants [62], glass ionomer cements [63], and DAs [64]
and have yielded positive results. The impact of CaF2 particles in DAs can enhance their
various properties, which is a characteristic that is highlighted further below.

3.5.2. Improvement of DA’s Properties

Studies from the last ten years demonstrating the effect of the addition of CaF2 fillers
on the properties of DAs are scarce. CaF2 nanoparticles reinforce many properties of
DAs, but they are largely based on their remineralization capabilities and antibacterial
potential. Essam et al. previously incorporated CaF2 nanoparticles in two-step self-etch
adhesives in an in vivo study and reported that due to the presence of these filler particles,
remineralization of the caries-affected dentin was noticed [65]. The incorporation of CaF2
nanoparticles possessing high surface area in dental composites results in overall high levels
of fluoride and calcium ions, even at low filler concentration [66]. Another earlier study
reported that a 2.0 wt.% CaF2 filler containing composite demonstrated the highest Vickers
hardness, compared with the controls [67]. In a previous study, nanocomposites containing
CaF2 revealed strong antibacterial and ion releasing properties [61]. A significant concern
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with the use of CaF2 nanoparticles is their stability; however, they are aptly stable in the
oral environment than generally presumed [68].

3.5.3. Mechanism of Improvement of DA’s Properties

It is a well-known fact that the presence of fluoride promotes the precipitation of
calcium and phosphate ions to form fluorapatite, which is more chemically stable and
resistant to carious attacks [69]. CaF2 nanoparticles serve as a reservoir of fluoride that
could be used for the remineralization of tooth structure [70]. Considering secondary caries
as one of the problems affecting the longevity of the DRC restorations, the incorporation of
fluoride-releasing CaF2 nanoparticles ensures a sustained release of fluoride resulting in an
overall anti-caries effect [71].

3.6. Zn Chloride (ZnCl2) Fillers
3.6.1. Overview

Zn has been incorporated in DAs to achieve reduced collagen degradation, promote
remineralization of the resin–dentin interface, and to sustain bonding efficacy [72,73].
Numerous Zn salts, including ZnO, ZnN3, Zn-methacrylate, and ZnCl2, have been added
previously in the DAs [74–76]. Amongst these salts, ZnCl2 presents a faster dissolution rate
and can result in greater saturation of Zn2+ in the DAs [77]. The impact of ZnCl2 addition
on the various properties of the DAs will now be discussed below.

3.6.2. Improvement of DA’s Properties

Zn-doped DAs can be attained by adding 2 wt.% ZnCl2 particles in the dental ad-
hesives [78]. In addition, this concentration of ZnCl2 does not affect DAs translucency,
thus ensuring that adequate polymerization of monomers is achieved [77]. A former study
validated that ZnCl2 doped DA led to a reduction in the nanoleakage and better seala-
bility at the dentin interface [79]. In another study, ZnCl2-containing adhesive presented
higher flexural strength compared with the controls, and the DC was also not affected [80].
Campos et al. performed a study and reported that the bond strength of ZnCl2-containing
adhesive did not differ from the control group adhesive [81]. A study by Navarra et al.
reported that ZnCl2 adhesives demonstrated DC values [77] that were comparable to DC
values shown by commercial DAs in another study [82]. ZnCl2 is a highly soluble salt, and
higher amounts of leaching could occur in the oral environment, thus affecting properties
of the material over long periods of time [77].

3.6.3. Mechanism of Improvement of DA’s Properties

One of the reasons for the closeness of DC observed for ZnCl2-containing adhesives
and commercial adhesives is the refractive index (RI) of ZnCl2 (1.68), which is closer to
the RI of the organic matrix (1.5) [77]. A high DC ensures that an adequate number of
monomers are photo-polymerized, prolonging the longevity of the DRC restoration [83].
Another mechanism by which degradation of the bond is prevented could be the hybridiza-
tion of demineralized dentin that reduces collagen degradation, which was observed for
ZnCl2 adhesives in a previous study [84]. Biomineralization of dental hard tissues initiated
by adhesives containing Zn salts is also one plausible reason for the improved mineraliza-
tion of the interface, crystallinity, and repair of demineralized dentin tissue, which was
observed in several former studies [76,85,86].

3.7. Silica Fillers
3.7.1. Overview

Silica particles are used in different materials related to dentistry. Most noticeably, they
are used in cements (calcium silicate and glass ionomer) [30,87], toothpastes [88], dental
ceramics [89], and in DAs [90]. The improvement of DA properties is well-documented in
the literature, an aspect discussed below in detail.
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3.7.2. Improvement of DA’s Properties

Improved µTBS of adhesives are noted after the incorporation of silica particles [91].
Guo et al. reported that a mixture of zirconia and silica could enhance fracture toughness
and flexural strength of DRCs [92]. In one study, it was demonstrated that Zn doped silica
nanoparticle fillers could improve the antibacterial and flexural strength and modulus,
hardness, and compressive strength of DRCs [93]. An earlier study also reported that the
addition of sepiolite (nanoparticles based on phyllosilicates) in the adhesive increases its
bond strength [94]. Timpe et al. also reported that the addition of nano-sized silica filler
particles resulted in their uniform dispersion without any marked effect on the viscosity of
the DRCs [95]. Hence, the use of silica nano-sized particles in the adhesive is useful, while
larger-sized silica particles could compromise its properties.

3.7.3. Mechanism of Improvement of DA’s Properties

The silica particles could enhance the properties of the adhesive by remineralizing
the adhesive–dentin interface, as they encourage the formation of calcium-phosphate
precursors and act as a nucleating mineral [96]. The occurrence of silica particles in the
material also ensures that calcium particles are attracted to develop a stable calcium silicate
bioactive compound that can attach to phosphorus [97]. Resin tag formation is enhanced
by the presence of silica particles [91]. The probable reason for this could be that silica
nanoparticles are spherical-shaped, and this morphology helps the material to disperse
and flow properly without any significant effect on the viscosity [98].

3.8. Niobium Pentoxide (Nb2O5) Fillers
3.8.1. Overview

Niobium is a metal that is used in metallurgy to augment the properties of different
metals [99]. The use of niobium pentoxide (Nb2O5) related to dental applications has
risen recently. It can promote HA-like crystal growth when it comes in contact with saliva
and could be used to yield endodontic sealers with enhanced radiopacity and micro-
hardness [100]. Additionally, Nb2O5 could also be used as a filler in DAs to augment their
properties [101].

3.8.2. Improvement of DA’s Properties

A previous study has shown that the addition of Nb2O5 in DAs improves its micro-
hardness, radiopacity, and polymerization rate [101]. In the same study [101], the Nb2O5
containing DA was able to penetrate through the hybrid layer giving stability to the
material. In another study, the addition of 2 wt.% silica and niobium particles led to an
increase in the mineral deposition and improved bond strength [102]. Garcia et al. reported
in their study that Nb2O5-containing DA demonstrated increased opacity, and appropriate
ultimate tensile strength [103].

3.8.3. Mechanism of Improvement of DA’s Properties

The improved micro-hardness and radiopacity of Nb2O5 containing DAs are owed to
the inorganic nature of Nb2O5 particles. The addition of these hard particles in the soft resin
matrix improves its micro-hardness and radiopacity [101]. The incorporation of Nb2O5
particles in the polymer matrix increases the reactivity of the system and decreases the
required energy to yield free radicals, thus causing an increased polymerization rate [101].
In addition, the infiltration of Nb2O5 particles into a collagen matrix that is uncovered by
the etching of acid could encourage the formation of a hybrid layer that is less degradable
with improved biological properties [101].

3.9. Other Bioactive Inorganic Fillers

Certain other fillers that have been added to DAs, along with the specific properties
that they improve in the DAs, are summarized in Table 1.
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Table 1. Other bioactive inorganic fillers used to enhance properties of DAs mentioned in the literature.

S.No. Bioactive Fillers Improves Adhesive’s
Properties Reason(s) for the Improved Properties Selected

Reference(s)

1. Silver (Ag) based fillers
√ Antibacterial property, remineralizing

effect, high surface area [104–106]

2. Niobic acid (Nb2O5·n H2O)
√ Improved resistance against solvents,

bioactive inorganic nature [103]

3. Chitosan
√

Antibacterial [39]

4. Zn based fillers
√

Interference with the matrix
metalloproteinases (MMPs)-mediated
collagen degradation, remineralizing

effect due to slow Zn liberation
resulting in ZnO rich layer

[75,107]

5. Cerium dioxide (CeO2) filler
√ Improved radiopacity, sufficient

dispersion in the DA [108]

6. Tantalum oxide (Ta2O5) filler
√

Improved radiopacity, improvement of
attraction between polymer chains and

solvent molecules (resulting in less
degradation of adhesive-dentin bond)

[109]

7. Zirconia (Zr) based fillers
√ Improved radiopacity and

micro-hardness [110]

8. Quaternary ammonium salts
(QAS)

√
Antibacterial effect [111]

4. Conclusions

This review concludes that the addition of various bioactive inorganic fillers can
improve multiple properties of DAs. These improvements can be seen in the form of
improved hardness, higher modulus of elasticity, enhanced bond, flexural, and ultimate
tensile strength, improved fracture toughness, reduced nanoleakage, remineralization of
adhesive–dentin interface, improved resin tag formation, greater radiopacity, and improved
DC (observed for some fillers), and antibacterial effect. Most of the studies dealing with
the subject area are in vitro. Future in situ and in vivo studies are recommended to attest
to the results of laboratory findings.
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