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Multidimensional medical data classification has recently received increased attention by researchers working onmachine learning
and data mining. In multidimensional dataset (MDD) each instance is associated with multiple class values. Due to its complex
nature, feature selection and classifier built from the MDD are typically more expensive or time-consuming. Therefore, we need
a robust feature selection technique for selecting the optimum single subset of the features of the MDD for further analysis or to
design a classifier. In this paper, an efficient feature selection algorithm is proposed for the classification of MDD. The proposed
multidimensional feature subset selection (MFSS) algorithm yields a unique feature subset for further analysis or to build a classifier
and there is a computational advantage on MDD compared with the existing feature selection algorithms. The proposed work is
applied to benchmarkmultidimensional datasets.Thenumber of features was reduced to 3%minimumand 30%maximumby using
the proposedMFSS. In conclusion, the study results show that MFSS is an efficient feature selection algorithmwithout affecting the
classification accuracy even for the reduced number of features. Also the proposed MFSS algorithm is suitable for both problem
transformation and algorithm adaptation and it has great potentials in those applications generating multidimensional datasets.

1. Introduction

The multidimensional classification problem has been a
popular task, where each data instance is associatedwithmul-
tiple class variables [1]. High-dimensional datasets contain
irrelevant and redundant features [2]. Feature selection is an
important preprocessing step in mining high-dimensional
data [3]. Time complexity is high for selecting the subset of
features and for further analysis or to design the classifier
if the number of features and targets (class variables) in the
dataset is large. Computational complexity is based on three
factors: number of training examples “𝑚,” dimensionality
“𝑑,” and number of possible class labels “𝑞” [4, 5].

The prime challenge for a classification algorithm is that
the number of features is very large, whilst the number of
instances is very small. A common approach to this problem
is to apply a feature selection method in a preprocessing
phase, that is, before applying a classification algorithm
to the data, in order to select a small subset of relevant

features for microarray data classification (high-dimensional
data) [6, 7]. Multidimensional data degrade the performance
of the classifiers and reduce the classifier accuracy and
processing this data is too complex by traditional methods
and needs a systematic approach [8]. Therefore, mining the
multidimensional dataset is a challenging task among the
recent data mining researchers.

Most of the proposed feature selection algorithms sup-
port only single-labelled data classification [9, 10]. The
related feature selection algorithms do not fit into those
applications generating multidimensional datasets [9]. The
effective feature selection algorithm is an important task
for efficient machine learning [11]. Feature selection in the
multidimensional is the challenge task. The solution space,
which is exponential in the number of target attributes,
becomes enormous, even with a limited number of target
attributes.The relationships between the target attributes can
add a level of complexity that needs to be taken into account
[12].
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𝜒
2 statistic is used to rank the features of high-

dimensional textual data by transforming the multilabel
dataset into the single label classification using label pow-
erset transformation [13]. The chi-square test is not suitable
in determining the good correlation between the decision
classes and features. Also, it is not suitable for the high-
dimensional dataset [14]. Pruned problem transformation
is applied to transform multilabel problem to single label
and greedy feature selection employed by considering the
mutual information [15]. REAL algorithm is employed for
selecting the significant symptoms (features) for each syn-
drome (classes) in the multilabel dataset [16]. Classifier
built from the MLD is typically more expensive or time-
consuming with multiple feature subsets. It discusses the
future works related to multidimensional classification such
as studying different single-labelled classifiers and feature
selection [1]. A genetic algorithm is used to identify the most
important feature subset for prediction. Principal component
analysis is used to remove irrelevant and redundant features
[17].

In multidimensional learning tasks, where there are
multiple target variables, it is not clear how feature selection
should be performed. Limited research is only available on
multilabel feature selection [9].Therefore, we are in need of a
robust feature selection technique for selecting the significant
single subset of features from the multidimensional dataset.
In this paper, an efficient feature selection algorithm is
proposed for the multidimensional dataset (MDD).

The rest of this paper is organized as follows. Section 2
briefly presents the basics of multidimensional classifica-
tion and addresses the importance of data preprocessing.
Section 3 describes the proposed multidimensional feature
subset selection (MFSS) which is based on weight of feature-
class interactions. Section 4 presents the experimental results
and analysis to evaluate the effectiveness of the proposed
model. Section 5 concludes our work.

2. Preliminaries

This section presents some basic concepts of multidimen-
sional classification and the importance of preprocessing in
data mining.

2.1. Multidimensional Paradigm. In general, the multidi-
mensional dataset contains “𝑛” independent variables and
“𝑚” dependent variables. Each instance is associated with
multiple class values. The classifier is built from a number
of training samples. Figure 1 shows the relationship between
different classification paradigms, where “𝑚” is the number
of class variables and “𝐾” is the number of values for
each of the “𝑚” variables. Multidimensional classification
assigns each data instance to multiple classes. In multidi-
mensional classification, the problem is decomposed into
multiple, independent classification problems, aggregating
the classification results from all the independent classi-
fiers; that is, one single-dimensional multiclass classifier is
applied to each class variable, called problem transformation
[1].
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Figure 1:The relationship among different classification paradigms.

2.2. Multidimensional Classification. Multilabel classification
(MLC) refers to the problem of instance labelling where each
instance may have more than one correct label. Multilabel
classification has recently received increased attention by
researchers working on machine learning and data mining.
Multilabel classification is becoming increasingly common
in modern applications For example, a news article could
belong to multiple topics, such as politics, finance, and
economics, and also could be related to China and the USA
as the regional categories. Typical examples include medical
diagnosis, gene/protein function prediction and document
(or text) categorization, multimedia information retrieval to
tag recommendation, query categorization, gene function
prediction, medical diagnosis, drug discovery, andmarketing
[18–21].

Traditional single-label classification algorithms refer to
classification tasks that predict only one label. The basic
algorithms are generally known as single-label classification
and it is not suitable for the data structures found in real world
applications. For example, inmedical diagnosis, a patientmay
be suffering from diabetes and prostate cancer at the same
time [18, 22].

Research on MLC has received much less attention
compared to single-labelled classification. MLC problem is
decomposed into multiple, independent binary classification
problems and determines the final labels for each data point
by aggregating the classification results from all the binary
classifiers [23]. Due to its complex nature, the labelling
process of a multilabel data set is typically more expensive
or time-consuming compared to single-label cases. Learning
effectivemultilabel classifiers froma small number of training
instances is important to be investigated [8].

2.3. Handling Missing Values. Raw data collected from dif-
ferent sources in different format are highly susceptible to
noise, irrelevant attributes, missing values, and inconsistent
data.Therefore, data preprocessing is an important phase that
helps to prepare high quality data for efficient data mining
in the large datasets. Preprocess improves the data mining
results and ease of the mining process. Missing values exist
in many situations, where there are no values available for
some variables. Missing values affect the data mining results.
Therefore, it is important to handlemissing values to improve
the classifier accuracy in data mining tasks [24–27].
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2.4. Feature Selection. Feature selection [FS] is an important
and critical phase in pattern recognition and machine learn-
ing. This task aims to select the essential features to discard
the less significant features from the analysis. It is used to
achieve various objectives: reducing the cost of data storage,
by facilitating data visualization, reducing the dimension of
the dataset for the classification process in order to optimize
the time, and improving the classifier accuracy by removing
the redundant and irrelevant variables [28–30].

It is classified into threemain categories: filters, wrappers,
and embedded methods. In the filter method, selection
criterion is independent of the learning algorithm. On the
other hand, the selection criterion of the wrapper method
depends on the learning algorithm and uses its performance
index as the evaluation criterion. The embedded method
incorporates feature selection as part of the training process
[28–30].

3. Proposed Multidimensional Feature Subset
Selection Algorithm

In this section, the proposed algorithm for selecting the single
subset of features from the MDD is presented. The block
diagram of the proposed MFSS is shown in Figure 2.

MFSS has three phases. In the first phase, calculate the
feature-class correlation, and assign weight for the features
based on the feature-class correlation for each class. In the
second phase, aggregate the results of feature weight of each
class using proposed overall weight. In the third phase, select
the optimal feature subset based on the proposed overall
weight for further analysis or to build classifier.The proposed
algorithm is developed from the correlation based attribute
evaluation. A proposed MFSS algorithm for MDD is shown
as follows.

Algorithm 1 (multidimensional feature subset selection
(MFSS)).

Input. There is multidimensional dataset (MDD).

Output. Optimal single unique subset of “𝑠” number of
features from “𝑙” features: 𝑠 < 𝑙.

Step 1. Compute Pearson’s correlation between feature and
class using the equation

𝑟
𝑓𝑗𝑐𝑖
=

𝑛 (∑𝑓
𝑗𝑘
𝑐
𝑖𝑘
) − (∑𝑓

𝑗𝑘
) (∑ 𝑐
𝑖𝑘
)

√[𝑛∑𝑓
𝑗𝑘

2
− (∑𝑓

𝑗𝑘
)

2

] [𝑛∑ 𝑐
𝑖𝑘

2
− (∑ 𝑐

𝑖𝑘
)
2

]

, (1)

where

𝑐
𝑖
—𝑖th class 𝑖 = 1 ⋅ ⋅ ⋅ 𝑚 “𝑚” is the number of classes,
𝑓
𝑗
—𝑗th feature𝑗 = 1 ⋅ ⋅ ⋅ 𝑙 “𝑙” is the number of features,

“𝑛” is the number of observations, and
𝑟
𝑓𝑗𝑐𝑖

is the (Pearson’s correlation) between the 𝑗th
feature and 𝑖th class.
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Figure 2: Proposed MFSS for multidimensional dataset.

Pearson’s Correlation between the 𝑗th feature and 𝑖th class
is represented as (𝑙 × 𝑚) matrix having “l” rows and “m”

columns; that is, 𝑟
𝑓𝑗𝑐𝑖
= [

𝑟𝑓1𝑐1
⋅⋅⋅ 𝑟𝑓1𝑐𝑚

.

.

. d
.
.
.

𝑟𝑓𝑙𝑐1
⋅⋅⋅ 𝑟𝑓𝑙𝑐𝑚

].

Step 2. Sort 𝑟
𝑓𝑗𝑐𝑖

into descending order for each class 𝑐
𝑖
, 𝑖 =

1 ⋅ ⋅ ⋅ 𝑚.

Step 3. Let the weight of feature 𝑓
𝑗
for class 𝑐

𝑖
be 𝑤
𝑓𝑗𝑐𝑖

.
For each class 𝑐

𝑖
, 𝑖 = 1 ⋅ ⋅ ⋅ 𝑚.

{

Consider that “𝑙” is the number of features in the
dataset.
Assign the weight “𝑙” for the feature 𝑓

𝑗
, which con-

tains the highest value of 𝑟
𝑓𝑗𝑐𝑖

.

That is, 𝑙 = max{𝑟
𝑓𝑗𝑐𝑖
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.

And assign the weight “𝑙 − 1” for the feature 𝑓
𝑗
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contains the next highest value of 𝑟
𝑓𝑗𝑐𝑖

, and so on.

That is, 𝑙 − 1 = nextmax{𝑟
𝑓𝑗𝑐𝑖
} = 𝑤

𝑓𝑗𝑐𝑖
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𝑓
𝑗
.

}.

Step 4. Compute the overall weight for each feature using the
equation

𝑤
𝑓𝑗
=

∑
𝑚

𝑖=1
𝑤
𝑓𝑗𝑐𝑖
𝑟
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; 𝑗 = 1 ⋅ ⋅ ⋅ 𝑙. (2)

Step 5. Rank the features, according to the overall weight𝑤
𝑓𝑗
.

Step 6. Select top “𝑠 = log
2
𝑙” number of features based on the

overall weight 𝑤
𝑓𝑗
.

4. Experimental Evaluation

This section illustrates the evaluation of proposed MFSS
algorithm in terms of the various evaluation metrics and the
number of selected features in those applications generating
multidimensional datasets.
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Table 1: Details of the dataset used in experiments.

Dataset Number of
instance

Number of
features

Number of
target classes

Thyroid 9172 29 7
Solar flare 1389 10 3
Scene 2407 294 6
Music 593 72 6
Yeast 2417 103 14

4.1. Dataset. In this study, five different multidimensional
benchmark datasets are used to evaluate the effectiveness of
proposedMFSS [31, 32]. Table 1 summarizes the details of the
dataset.

4.2. EvaluationMetrics. In this study, multidimensional clas-
sification with super classes (MDCSC) algorithms is used,
namely, Naive Bayes, J48, IBk, and SVM. The evaluation
metrics of a classification model onMDD is entirely different
from the binary classification [33]. The accuracy of a classi-
fication model on a given test set is the percentage of test set
that is correctly classified by the classier [34, 35]. Various eval-
uationmetrics formultidimensional classification is available
in the literature Hamming loss (HL), Hamming score (HS)
precision, recall, 𝐹

1
, exact match (EM), and zero-one loss

(ZOL) [33, 36–38].

4.3. Results and Discussion. This section explores the infer-
ences of the proposed MFSS and classification algorithms
which are adopted in this study. A proposedMFSS algorithm
uses threshold “𝑠 = log

2
𝑙” to select the top features, where

𝑙 is the number of features in the data set [39–41]. In our
experiment, various evaluation metrics, namely, Hamming
loss, Hamming score, exact match, and zero-one loss are
calculated before feature selection (BFS) and after applying
the proposed MFSS for each of the four classifiers, namely,
J48, Naive Bayes, SVM, and IBk for MDCSC. In this work
Hamming score and exact match are used to evaluate the
effectiveness of the proposed MFSS [33, 37].

Tables 2, 3, 4, and 5 show the experimental results of five
datasets for the four classifiers J48, Naive Bayes, SVM, and
IBk for raw and selected features using the proposed MFSS.
Hamming loss is the fraction of misclassified instance, label
pairs. It is a loss function and it is inferred that before and
after applying the proposedMFSS it is nearer to zero. Figures
3, 4, 5, 6, 7, 8, 9, and 10 show the relationship between the BFS
and MFSS for the evaluation metrics HS and EM for the four
classifiers.

Hamming score is the accuracy measure in the multilabel
setting. The highest Hamming score was 99% before feature
selection (BFS) and 97.8% after applying MFSS obtained
using J48 compared with the other algorithms. An exact
match is the percentage of samples that labels correctly
classified. The highest exact match was 94.8% before feature
selection (BFS) and 89.6% after applying MFSS obtained
using J48 compared with the other algorithms. For solar flare
dataset highest Hamming score was 91.2% before and after

Table 2: Evaluation metrics for J48 algorithm.

Metrics HS EM HL ZOL
Dataset BFS MFSS BFS MFSS BFS MFSS BFS MFSS
Thyroid 0.99 0.978 0.948 0.896 0.01 0.022 0.052 0.104
Solar
flare 0.912 0.912 0.791 0.791 0.088 0.088 0.209 0.209

Scene 0.849 0.75 0.525 0.261 0.151 0.25 0.475 0.739
Music 0.723 0.748 0.213 0.233 0.277 0.252 0.787 0.767
Yeast 0.713 0.725 0.142 0.145 0.287 0.275 0.858 0.855

Table 3: Evaluation metrics for Naive Bayes algorithm.

Metrics HS EM HL ZOL
Dataset BFS MFSS BFS MFSS BFS MFSS BFS MFSS
Thyroid 0.946 0.967 0.668 0.83 0.054 0.033 0.332 0.17
Solar
flare 0.879 0.9 0.709 0.782 0.121 0.1 0.291 0.218

Scene 0.862 0.769 0.527 0.302 0.138 0.231 0.473 0.698
Music 0.782 0.767 0.297 0.248 0.218 0.233 0.703 0.752
Yeast 0.713 0.737 0.142 0.127 0.287 0.263 0.858 0.873

Table 4: Evaluation metrics for SVM algorithm.

Metrics HS EM HL ZOL
Dataset BFS MFSS BFS MFSS BFS MFSS BFS MFSS
Thyroid 0.968 0.967 0.792 0.788 0.032 0.033 0.208 0.212
Solar
flare 0.912 0.912 0.791 0.791 0.088 0.088 0.209 0.209

Scene 0.91 0.774 0.695 0.315 0.09 0.226 0.305 0.685
Music 0.808 0.772 0.356 0.267 0.192 0.228 0.644 0.733
Yeast 0.791 0.769 0.251 0.173 0.209 0.231 0.749 0.827

Table 5: Evaluation metrics for IBk algorithm.

Metrics HS EM HL ZOL
Dataset BFS MFSS BFS MFSS BFS MFSS BFS MFSS
Thyroid 0.973 0.969 0.834 0.833 0.027 0.031 0.166 0.167
Solar
flare 0.888 0.912 0.736 0.791 0.112 0.088 0.264 0.209

Scene 0.886 0.76 0.626 0.276 0.114 0.24 0.374 0.724
Music 0.753 0.74 0.243 0.233 0.247 0.252 0.757 0.767
Yeast 0.762 0.722 0.214 0.123 0.238 0.278 0.786 0.877

applying the MFSS obtained using J48 and SVM compared
with the other two algorithms. For scene dataset highest
Hamming score was 91% before feature selection (BFS) and
77.4% after applying MFSS obtained using SVM. For music
dataset highest Hamming score was 80.8% before feature
selection (BFS) and 77.2% after applyingMFSS obtained using
SVM. For yeast dataset highest Hamming score was 79.1%
before feature selection (BFS) and 76.9% after applyingMFSS
obtained using SVM.

Also, it is inferred that the exact match was nearer before
BFS and after applying MFSS for four classifiers for the four
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Figure 4: Hamming score-SVM.

datasets, namely, thyroid, solar flare, music, and yeast dataset.
But for scene dataset the exactmatch is very less after applying
the MFSS for all the four classifiers. Compared with other
three algorithms SVM performs well for all the five datasets.
From Figures 3, 4, 5, 6, 7, 8, 9, and 10 it is inferred that the
proposed MFSS is superior to another regarding the aspects
of Hamming score and exact match. Also MFSS achieves
slightly poor exact match on the scene dataset for all the four
classifiers.

Proposed algorithm needs to be validated by comparing
the results of classifier before and after feature selection using
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Figure 6: Hamming score-J48.

statistical methods [42]. Correlation analysis is a technique
used to measure the strength of the association between
two or more variables. Correlation coefficient values always
lie between −1 and +1. If the value is positive it indicates
that the two variables are perfectly associated with positive
linear and the value is negative, and it indicates that two
variables are perfectly associated with negative linear. If the
values are zero, there is no association between the variables.
Evans classified the correlation coefficient into five categories
such as very weak, weak, moderate, strong, and very strong
[43]. Table 6 gives the details of Evans correlation coefficient
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Table 6: Evans correlation coefficient classification.

Correlation coefficient value Strength of correlation
0.80–1.00 Very strong
0.60–0.79 Strong
0.40–0.59 Moderate
0.20–0.39 Weak
0.00–0.19 Very weak

classification. Pearson’s correlation coefficient (𝑟) is given
by

𝑟
𝑎𝑝
=

𝑛 (∑𝑎𝑝) − (∑ 𝑎) (∑𝑝)

√[𝑛∑𝑎
2
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2
] [𝑛∑𝑝
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, (3)

where 𝑎 is metrics before feature selection (BFS) and 𝑝 is
metrics of proposed MFSS
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Table 7: Correlation between BFS and MFSS for four classifiers.

Metrics J48 Naive Bayes SVM IBk
Hamming score 0.914 0.867 0.801 0.859
Exact match 0.943 0.908 0.853 0.878

The correlation coefficients between BFS and MFSS for
the evaluation metrics, Hamming score, and exact match
are depicted in Table 7. It indicates that the strength of
association between the BFS and MFSS is very strong for all
the four classifiers (𝑟 = 0.93, 0.868, 0.868, and 0.930 for HS
and 𝑟 = 0.947, 0.909, 0.909, and 0.947 for EM) based on Evans
categorization.

The paired 𝑡-test is used for the comparison of two
different methods of measurements that are taken from the
same subject before and after some manipulation. To test the
efficiency of the proposed feature selection algorithm paired
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Table 8: Paired 𝑡-test results of different evaluation metrics before and after applying MFSS for four classifiers.

Metrics J48 Accept/reject
𝐻
0

Naive
Bayes

Accept/reject
𝐻
0

SVM Accept/reject
𝐻
0

IBk Accept/reject
𝐻
0

Hamming score 0.675 Accept 0.376 Accept 1.549 Accept 1.239 Accept
Exact match 1.111 Accept 0.166 Accept 1.577 Accept 1.110 Accept

𝑡-test is used and the results are depicted in Table 8. The
paired 𝑡-test statistic is given by

𝑡 =

∑𝑑

√(𝑛 (∑𝑑
2
) − (∑𝑑)

2
) / (𝑛 − 1)

. (4)

Hypothesis for evaluation of proposed MFSS: consider
the following.

𝐻
0
: there is no significant difference between the

performance of the classifier before feature selection
(BFS) and after applying MFSS.
𝐻
1
: there is a significant difference between the

performance of the classifier before feature selection
(BFS) and after applying MFSS.

From the paired 𝑡-test for result, it is inferred that there
is no significant difference between the performance of the
classifier before feature selection and after MFSS for all the
datasets with the critical value (2.7764,∝= 0.05) and (4.6041,
∝ = 0.01) for the degrees of freedom 4. Table 9 gives the
detail of features selected using the proposedMFSS. Figure 11
shows the relationship between the features selected using
BFS and MFSS. From Table 9, it can be observed that the
proposed MFSS selects only a less percentage of features
(minimum 3% and maximum 30%) for further analysis or
to build a classifier and have the computational advantage of
multidimensional classification.

Multilabel classification is categorized into two types,
namely, problem transformation and algorithm adaptation.
Problem transformation is to decompose the multilabel
learning problem into a number of independent binary clas-
sification problems. Algorithm adaptation methods tackle
multilabel learning problem by adapting popular learning
techniques to deal with multilabel data directly [5]. The
feature selection method is categorized into global and local.
Selecting the same subset of features from all classes is called
global and that identifies a unique subset of features for each
class called local [44]. An existing feature selection technique
in the literature concentrates only on problem transformation
(i.e., first transforming the multilabel data into single-label,
which is then used to select features using traditional single-
label feature selection techniques) [13–16]. It does not remove
all the features because the union of the identified subsets of
features from all classes is equal to the full feature subset [44].

An existing feature selection technique is compared with
the proposed MFSS in terms of time complexity for further
analysis or to build classifier in the multilabel setting which
is depicted in Table 10. “𝑚” is the number of classes, “𝑙” is the
number of features, and “𝑠” is the number of features selected
using proposed MFSS in the MDD. From Table 10, the

Table 9: Features selected using proposed MFSS.

Dataset
Number of
features in
the dataset

Number of
features

selected using
MFSS

Percentage of
selected

features using
MFSS

Thyroid 28 5 18
Solar flare 10 3 30
Scene 294 8 3
Music/emotions 71 6 8
Yeast 103 7 7
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Figure 11: Features selected using proposed MFSS.

time complexity is high when the existing feature selection
techniques used are compared with the proposed MFSS
for further analysis or to build a classifier. Existing feature
selection algorithm is suitable only for single label dataset;
thereforemultidimensional dataset is transformed into single
label using problem transformation for feature selection. It
results in “𝑚” feature subset after problem transformation
(i.e., a relevant feature subset for each class) but MFSS results
only in a single unique feature subset. It is computationally
high and complex because of “𝑚” times required for further
analysis or to build a classifier. Algorithmadaptationmethods
deal with multilabel data directly, and it requires only one
feature subset for further analysis or to build a classifier. The
highlight of proposed MFSS is that it yields only a single
unique feature subset. Also the proposed MFSS algorithm
is suitable for both problem transformation and algorithm
adaptation and has great potentials in those applications
generating multidimensional datasets.
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Table 10: Comparison of time complexity.

Existing feature selection
techniques in the literature Proposed MFSS

𝑂(𝑛𝑐
𝑖
fs
𝑖
) 𝑂(𝑛𝑐

𝑖
fs
𝑜
)

fs𝑖: feature subset for class 𝑐𝑖 after problem transformation, 𝑖 = 1 ⋅ ⋅ ⋅ 𝑚; “𝑚”:
the number of classes.
fs𝑜: optimal single unique feature subset using proposedMFSS for all the “𝑚”
classes.

To diagnose a disease, the physician has to consider
many factors from the data obtained from the patients.
Most researchers’ aim is to identify the predictors which
are used for diagnosis and prediction. The most important
predictor is always increasing the predictive accuracy of the
model. To diagnose the thyroid disease, physicians use the
most important clinical experiments TSH, TT4, and T3.
Experiment result of proposed MFSS shows that T3, FTI,
TT4, T4U, and TSH are the top ranked feature. This reveals
that the selected features obtained from the proposedmethod
are same as the clinical experiments used by specialists to
diagnose thyroid diseases. In almost all cases, classification
results obtained using the proposed MFSS were significantly
better than using the raw features. In conclusion, the study
results indicate that the proposed MFSS is an effective and
reliable feature subset selection method without affecting the
classification accuracy even for the least number of features
for the multidimensional dataset.

5. Conclusions

The prime aim is to select the optimum single subset of
the features of the MDD for further analysis or to design a
classifier. It is a challenging task to select the features with
the interaction between feature and class in the MDD. In
this paper, an efficient and reliable algorithm for feature
subset selection fromMDDbased on class-feature interaction
weight is proposed and the effectiveness of this algorithm is
verified by statisticalmethods.The proposedmethod consists
of three phases. Firstly, for each class feature-class correlation
is calculated to identify the importance of feature for each
class. Secondly, the weight is assigned to features based on
the feature-class correlation for each class. Finally the overall
feature weight is calculated based on the proposed weight
method and selects the single subset “𝑠 = log

2
𝑙” number

of features for further analysis or to design a classifier. The
proposed MFSS algorithm selects only a less percentage
of features (minimum 3% and maximum 30%) and yields
unique feature subset for further analysis or to build a
classifier and has the computational advantage of multi-
dimensional classification. The experimental results of this
work (MFSS) on five multidimensional benchmark datasets
have improved prediction accuracy by considering only the
least number of features. The proposed MFSS algorithm
is suitable for both problem transformation and algorithm
adaptation. Also, it reveals some interesting conclusion that
the proposed MFSS algorithm has great potentials in those
applications generating multidimensional datasets.
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