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Developing data-driven solutions that address real-world problems requires
understanding of these problems’ causes and how their interaction affects the
outcome–often with only observational data. Causal Bayesian Networks (BN) have
been proposed as a powerful method for discovering and representing the causal
relationships from observational data as a Directed Acyclic Graph (DAG). BNs could
be especially useful for research in global health in Lower and Middle Income Countries,
where there is an increasing abundance of observational data that could be harnessed for
policy making, program evaluation, and intervention design. However, BNs have not been
widely adopted by global health professionals, and in real-world applications, confidence in
the results of BNs generally remains inadequate. This is partially due to the inability to
validate against some ground truth, as the true DAG is not available. This is especially
problematic if a learned DAG conflicts with pre-existing domain doctrine. Here we
conceptualize and demonstrate an idea of a “Causal Datasheet” that could
approximate and document BN performance expectations for a given dataset, aiming
to provide confidence and sample size requirements to practitioners. To generate results
for such a Causal Datasheet, a tool was developed which can generate synthetic Bayesian
networks and their associated synthetic datasets to mimic real-world datasets. The results
given by well-known structure learning algorithms and a novel implementation of the
OrderMCMC method using the Quotient Normalized Maximum Likelihood score were
recorded. These results were used to populate the Causal Datasheet, and
recommendations could be made dependent on whether expected performance met
user-defined thresholds. We present our experience in the creation of Causal Datasheets
to aid analysis decisions at different stages of the research process. First, one was
deployed to help determine the appropriate sample size of a planned study of sexual and
reproductive health in Madhya Pradesh, India. Second, a datasheet was created to
estimate the performance of an existing maternal health survey we conducted in Uttar
Pradesh, India. Third, we validated generated performance estimates and investigated
current limitations on the well-known ALARM dataset. Our experience demonstrates the
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utility of the Causal Datasheet, which can help global health practitioners gain more
confidence when applying BNs.

Keywords: bayesian network, causality, causal modeling, lower middle income country, machine learning, big data

1 INTRODUCTION

To meet ambitious global health and development goals in lower
and middle income countries (LMICs), policy decisions have
been increasingly reliant on data-driven approaches to provide
necessary insights. This has spawned numerous programs
ranging from specific subjects at the sub-national and national
level (e.g., Community Behavior Tracking Survey in Uttar
Pradesh, India, and the Social And Living Standards
Measurement in Pakistan) to broad health topics with
multinational participation (e.g., the Multiple Indicator Cluster
Surveys developed by the United Nations Children’s Fund, and
the USAID-backed Demographic and Health Survey) (Croft
et al., 2018; Khan and Hancioglu, 2019; Huang et al., 2020;
Pakistan Bureau of Statistics, 2020). These programs have a
mandate to collect and disseminate accurate and population-
representative health, nutrition, and population data in the
developing world. These surveys allow governments and
international agencies to monitor trends across health
program areas and set priorities for health policy,
interventions, and program funding (Fabic et al., 2012). As a
result, there has been an explosion of data being generated that
has the potential to be used to not only monitor/evaluate the
status quo but to inform health intervention design.

Global health and development problems are often complex.
An understanding of these complexities is often needed to get the
right intervention to the right person, at the right time and
place–also known as a Precision Public Health approach
(Desmond-Hellmann, 2016; Khoury et al., 2016; Chowkwanyun
et al., 2018). Traditionally, for informing intervention design,
randomized controlled trials (RCT) remain the gold standard.
However, due to cost, lack of infrastructure, and other practical
reasons, RCTs are not always possible in LMICs. As a result, many
of the available data collected are observational only and limited in
scope. Without an RCT, quantifying which variables are the
proximate causes of an outcome or determining causes and
effects for specific set of variables remains a challenge for global
health practitioners. Moreover, RCTs are by design conducted with
the intent to test a narrow set of hypotheses, not to explore
unknown causal structures - a potential missed opportunity to
target public health solutions more precisely.

Causal inference and discovery approaches such as causal
Bayesian Network (BN) can fill this void. BNs readily deal
with observational data, can utilize numerous algorithms to
facilitate automatic causal discovery, allow for expert-specified
constraints, and can infer the causal effects of hypothetical
interventions (Pearl, 1995; Arora et al., 2019; Glymour et al.,
2019). Despite causal Bayesian Network’s many offerings, we
have not seen a wide adoption in real-world problems (Arora
et al., 2019; Kyrimi et al., 2020; Sgaier et al., 2020). We have found
that validating the structure, parameterization, predictive

accuracy, and generalizability of BN presents a significant
hurdle and is subject to considerable debate and interpretation
when applied to data with real-world complexity. Our inability to
communicate uncertainty in structure learning algorithm
performance for specific datasets can call entire models into
question (van der Bles et al., 2019). Generally, practitioners
using BNs must resort to domain expertize to validate model
structure, if they do not forgo validation entirely (Aguilera et al.,
2011; Lewis and McCormick, 2012; Moglia et al., 2018). This
makes BN model results especially difficult to defend when they,
even if just in part, contradict previous domain beliefs or
doctrines. Thus, BN results are often presented as a proof-of-
concept of techniques to show that the method can recover
insights already known rather than as an actionable model for
discovery, change, or intervention (Lewis and McCormick, 2012;
Moglia et al., 2018; Raqeujo-Castro et al., 2018).

The problem of not knowing how well machine learning
algorithms will perform in real-world conditions is not
restricted to causal discovery and inference and has been
subject to a broader debate. One proposed solution is adopting
the standard “datasheet” practice of constructing and
accompanying any given dataset with a full description of the
data, its collection context, operating characteristics (i.e., the
characteristics of the data to which a machine learning
algorithms is applied), and test results (i.e., the expected
performance of the machine learning algorithm) (Gebru et al.,
2018). Measuring the expected causal discovery and inference
performance and their uncertainties for any given dataset is,
however, not straightforward. First, it is not clear what
performance metrics should be used to measure BN algorithms’
ability to recover the ground truth causal structure when the
ground truth is unknown. In addition, such data may not
include the appropriate variables to establish causal or
interventional sufficiency, can have incomplete observations,
and may be imbalanced (Spirtes et al., 2000; Pearl, 2009;
Kleinberg and Hripcsak, 2011; Peters et al., 2017). Lastly, the
sample size of a dataset may be insufficient to support BN
analyses (Wang and Gelfand, 2002). Perhaps due to the data
challenges mentioned above, the evaluation of novel BN
algorithms has been largely based on standard synthetic datasets
such as ALARM, Insurance, Child and others (Beinlich et al., 1989;
Dawid, 1992; Binder et al., 1997; Scutari, 2009), which can have
vastly different characteristics compared to real-world data at
hand. One suggested method for ranking algorithms’
performance is to assume the intersection of the structures
found by a collection of algorithms as the partial ground truth
as in the Intersection-Validation method by Viinikka et al. (2018).
However, the Intersection-Validation method will often neglect to
consider the most complex relationships, and while it provides
relative sample size requirements for each algorithm, it cannot
directly inform the data collection process. We face the following
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quandary: with real-world data we lack the ground truth against
which to evaluate the modeling algorithms, and with synthetic data
we lack the complexity and limitations that are typically imposed in
real-world circumstances (Gentzel et al., 2019).

To solve this quandary and to empower practitioners to estimate
uncertainty levels around the causal structures learned under the
typical contexts and constraints applicable to their analytical
problem of interest, we propose an approach to attach two types
of causal extension to such datasheet proposed by Gebru et al.
(2018) to 1) inform study design at the data collection stage to
enable subsequent causal discovery analysis similar to, in spirit,
conducting power analysis before sample size is determined, and 2)
describe expected causal discovery and inference algorithm
performance and corresponding uncertainty when presented an
existing dataset. The key idea is to generate synthetic data with a
spectrum of properties that mimic the existing or projected real-
world data. We call our instantiation of this capability the ‘Causal
Datasheet Generation Tool’, or CDG-T.

In this work, our goal is to provide further confidence in BN
results from the perspective of practitioners’ needs. BNs are
introduced in 2.1 of the Materials and Methods Section. In
Section 2.2 we briefly look at pertinent related work. In Section
2.3, we introduce the approach taken in generating causal datasheets,
including a brief discussion the assumptions that are made.
Following this in Sections 2.4–2.7 we define the data
characteristics used to generate synthetic data, what structure
learning algorithms were explored, definitions of the performance
metrics used in the datasheets, and the two datasheet usage scenarios.
In Section 3, Results, we illustrate the usage of three example
datasheets. First, to inform data collection design in an LMIC
setting, we provide an example on how a Causal Datasheet was
used in planning of a Sexual Reproductive Health survey in Madhya
Pradesh, India, where the performance value is computed over a
range of potential variables and sample sizes. Next, for evaluating
data suitability for BN we provide two example Causal Datasheets
for existing data evaluation: one example for an existing dataset in
the global development domain (a survey about Reproductive
Maternal Neonatal Child Health (RMNCH) that we administered
in Uttar Pradesh, India), and another generated for the well-known
ALARM dataset (Beinlich et al., 1989). Lastly, we note the
implications and future research directions in the Discussion.

2 MATERIALS AND METHODS

2.1 Causal Bayesian Network
A Bayesian network (G,Θ) for a set of variables X consists of two
components: a directed acyclic graph (DAG), and a set of

parameters Θ. The DAG (V , E) of a BN encodes the statistical
dependence among the set of variables X by means of the set of
edges E which connect nodes V (Figure 1). Each node Vi ∈ V
corresponds to one variable Xi ∈ X.

Conversely, the absence of an edge between variables suggests
a statistical (conditional) independence. Thus, a BN induces the
factorization:

P(X|G,Θ) � ∏D
i�1

P(Xi

∣∣∣∣ΠXi,ΘXi)
where the global distribution P(X|G,Θ) factorizes into a set of
local distributions; one for each Xi with parameters ΘXi,
conditional on its parents ΠXi.

Discrete BNs assume that a variable Xi is distributed
multinomially conditioned on a configuration of its parents
(Xi � k

∣∣∣∣ΠXi) ∼ Mul(πik|j), where πik|j � P(Xi � k
∣∣∣∣ΠXi � j) is the

probability when Xi � k conditioned on the jth value of the
possible parent combinations. These discrete conditional
distributions can be represented as conditional probability
tables (CPTs) (Heckerman et al., 1995).

A factorization can represent multiple DAGs, this set of DAGs
is known as the equivalence class and are said to be Markov
equivalent. BNs of the same equivalence class share the same
skeleton: the underlying undirected graph, and V-structures. The
skeleton of a DAG is the undirected graph resulted by ignoring
every edge’s directionality. A V-structure is an unshielded
common effect; that is, for the pattern of edges A → C ← B,
A and B are independent (Figure 2). In this example, by having
two edges pointing at it, C is said to have an in-degree of 2; A and
B are the parent nodes, and C is the child node. The combination
of both skeleton and V-structures is known as a complete partially
directed acyclic graph, or CPDAG, and represents the equivalence
class of DAGs for a factorization. Thus, we believe that how well
structural learning algorithms recover the ground truth from
observational data should include both skeleton and V-structure
recovery.

In order for a Bayesian network to be considered causal, the
parents of each of the nodes must be its direct causes. A node A is
considered a direct cause of C if varying the value of A, while all
other nodes remain unchanged, effects the distribution of C i.e.,:

P(C|do(A � a1), do(B � b1))≠ P(C|do(A � a2), do(B � b1))
Where P(C|do(A � a1)) is the interventional distribution; the
distribution of C given an intervention on A that sets it to a1.
Additionally, the causal Markov assumption must be made to
treat a BN as causal; it is assumed all common causes are present
within G, with each node being independent conditioned on its
direct causes (Hausman and Woodward, 1999).

2.2 Related Work
When learning a Bayesian network we are attempting to model
the underlying generative model behind a given dataset.
Performance of causal discovery algorithms is a function of
both the distance to the underlying causal structure, as well as
the distance to the true parameters. However, measuring the
distance is generally not possible as the ground truth is

FIGURE 1 | A DAG with three variables (A–C) and two edges.
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unavailable. One strategy to obtain some expected level of
Bayesian network performance, in the absence of any ground
truth to compare against, is to construct a proxy of the ground-
truth. Conceptually, this is similar to the previously mentioned
intersection-validation method. In this method a proxy
agreement graph is constructed by taking the intersection of
the output from many structure learning algorithms (Viinikka
et al., 2018). These algorithms are then ranked by how many
samples it takes to reach this agreement graph. This forms a
dependence between the selection of algorithms and the proxy,
and by extension the ranking. Forming a proxy independent of
algorithm choice is desirable.

Synthetic data is system-generated data which is not obtained
by any direct measurement. Generally, the goal of this generated
data is to mimic some real-world data, given some user-defined
parameters. One can create synthetic data by two means; by
modification or generation. Data can be modified, normally
through anonymization, to create a synthetic dataset.
Alternatively, generative models such as Generative
Adversarial Networks, Variational Auto-encoders or
Normalizing Flows can be sampled from to create the data
(Kingma and Welling, 2013; Goodfellow et al., 2014; Rezende
and Mohamed, 2015). In this study, we required a generative
model which could be explicitly represented as a BN, in order to
ascertain how well BN learning procedures performed. As BNs
are generative models themselves, our goal is to directly create
Bayesian networks with similar properties to the underlying
generative model behind the real-world processes.

Previous studies have used synthetic Bayesian networks to
evaluate performance of structure learning algorithms (Tasaki
et al., 2015; Andrews et al., 2018; Gadetsky et al., 2020; Zhang
et al., 2020; Gogoshin et al., 2020) (Table 1). These are often
limited in terms of user-controllable parameters, with structures

being sampled uniformly from the space of DAGs, or limited in
terms of variation in topology. Other studies use standard
benchmark datasets (Scutari et al., 2019; Ramanan and
Natarajan, 2020). A flexible synthetic generation system would
allow the user to specify many parameters which influence the BN
generation, in order to match a given real dataset as closely as
possible.

2.3 Causal Datasheet Generation Tool
There are two primary goals of the Causal Datasheet. The first
goal is to provide some expectation of performance given the
basic, observable, characteristics of a dataset. The second goal is to
provide guidance as to how many samples will be required in
order to meet desired performance levels. The proof-of-concept
approach we employ is described in the subsequent Section,
followed by an outline of the assumptions made using this
method.

2.3.1 Approach
Our general approach is illustrated in Figure 3. In order to
provide a performance estimate of structure and parameter
learning for a given real dataset, we generate a set of synthetic
Bayesian networks to act as a proxy for real data. Because we will
have access to the ground-truths of these synthetic networks, we
can calculate the performance of the structure learning,
parameter learning, and any downstream estimates.
Performance estimates will only be accurate so long as the
generated synthetic datasets are similar enough to the given
real dataset. We therefore generate synthetic BNs, and
corresponding datasets, with matching observable
characteristics of the real dataset. These characteristics include
number of samples, variables, and levels. This corresponds to box
I1 of Figure 3. In addition to the observable characteristics, there

FIGURE 2 | A CPDAG with four variables (A–D), with two possible DAG instantiations. The edges forming the V-structure (A–C) are purple, and the two alternative
(B–D) connections are in red.

TABLE 1 | Existing synthetic Bayesian network generation methods, with network attributes each method implements control over. Properties compared are those known
both to vary, and to influence structure learning performance (✓) signifies a feature is implemented (7) it is not, and (-) a partial implementation. Existing methods do not
support latent confounding or offer control over parameter generation, and offer only random DAGs and at most one pre-defined structure type. Our work presents a step
toward fully flexible structure generation, with these features the main remaining known limitations.

Method/Property Flexible DAG Generation Flexible Parameter Generation Controllable levels Latent confounding

CDG-T (ours) - - ✓ 7

Gogoshin et al. (2020) - 7 ✓ 7

Zhang et al. (2020) - 7 7 7

Andrews et al. (2018) 7 7 ✓ 7

Tasaki et al. (2015) - N/A N/A 7
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are a number of unobservable characteristics which are varied
throughout the BN generation–these are discussed in Section 2.4.
A small Python library which can generate and sample synthetic
BNs was developed, and can be found at: https://pypi.org/project/
BayNet/. An example Jupyter notebook of how to generate a
datasheet can be found at: https://github.com/predictive-
analytics-lab/datasheet_generation.The BN and data
generation, as well as the learning and evaluation process is
described in Algorithm 1, corresponding to boxes A1–A4 in
Figure 3. Box A1 concerns the generation of the synthetic data,
details of which can be found in Section 2.4. Box A2 and A3
concern learning a BN using the synthetic data, details of the
structure learning algorithms used can be found in Section 2.5.
Box A4 concerns the evaluation of the learnedmodels, the metrics
used can be found in Section 2.6.

The synthetic BN generation is performed T times per set of
data characteristics, where T is a user-defined number of trials,
in order to capture performance variation. While we attempt
to capture as much of the space of possible BNs as we can, the
number of experiments that can be performed are limited by
finite computation resources. In our experiments, we set T to
10 to balance the total computation time for generating the
data sets and learning the model spanning across
configurations and to capture result uncertainty simply due
to random seeding.

We envision that this extensive evaluation is synthesized into a
digestible Causal Datasheet for Existing Datasets or Causal
Datasheet for Data Collection format (Figure 3, Box O1).
Domain experts can then assess whether this level of
performance is sufficient for a particular application. Due to
the flexibility of this system, we can not only construct proxies of
existing datasets, but of datasets we plan to collect. In this
manner, data collection can be designed around desired
performance of our models. This concept is extensible to other
systems with the capability to produce and evaluate synthetic data
sets and structural learning algorithms. As the capability and
flexibility of these systems increase, so too will the accuracy of the
estimates within the Causal Datasheet.

2.3.2 Assumptions
A number of assumptions are made in the generation of this
synthetic data: A) we introduce no latent confounders. In order for
a BN to be considered causal, one must assume there are no
confounders absent. There are potentially complex repercussions
of having confounders latent in a BN, but this is currently not
examined. B) parameters are generated from a Dirichlet
distribution assuming the α vector is uniform. The implications
of this simplification are, given sufficient samples, the mean of the
distributions drawn will be uniform. Therefore, generally, the
marginal distributions of all nodes in the synthetic BNs will be
uniform–this can make the BN learning process easier, potentially
inflating performance estimates for cases where variables are highly
imbalanced. This is further discussed in Section 4. Initial work has
been performed to go beyond this simplification, and can be found
in the supplementary material. C) it is assumed that the
unobervable characteristics of a real dataset have been
appropriately selected. We have assumed the used structure
types can sufficiently represent the underlying DAG of a given
real dataset. In the case these are incorrectly set, this could lead to
incorrect performance estimates. D) we assume that synthetic data
can sufficiently mimic a real dataset. Initial work has been
performed to guide whether Assumptions C and D hold, and
can be found in the supplementarymaterial. These assumptions do
not invalidate the concept of the Causal Datasheet, but must be
kept in mind when interpreting results of a datasheet generated
using CDG-T.

2.4 Dataset Characteristics
To study the variability of structural learning performance with
different synthetic data properties, we defined two classes of
dataset characteristics that can be varied to produce a
distribution of synthetic data: observable and non-observable
(Table 2).

Observable characteristics are those which the designer of the
dataset has control and can be easily calculated (e.g., sample size
and number of variables). Non-observable characteristics are
properties of the underlying truth (e.g., degree distribution,

FIGURE 3 | Illustration of the approach used to create the Causal Datasheets presented in Section 3. Algorithm 1 refers to the algorithm labelled Algorithm 1:
CDG-T Overview below.
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type of structure, or imbalance). Non-observable characteristics
can be estimated, but doing so introduces modeling assumptions.
When evaluating a real-world dataset in practice, one could look
up a Causal Datasheet with corresponding observable
characteristics, to estimate performance uncertainty from the
unobservable characteristics. Number of samples, number of
variables, and average variable levels are straightforward; we
describe the other characteristics below.

2.4.1 Structure Type
We make use of five existing graph generation algorithms when
creating synthetic Bayesian networks (Figure 4):

• Forest Fire: A growing network model which resembles how
forest fires spread to nearby nodes (Leskovec et al., 2005).

• IC-DAG: A graph generation algorithm which samples
uniformly from the set of DAGs (Ide and Cozman, 2002).

• Barabasi-Albert An evolving graph generation algorithm
which adds edges to a new node dependent on current in-
degree (Barabási and Albert, 1999).

• Waxman: Nodes are placed uniformly in a rectangular
domain (Waxman, 1988).

• Small-World: A type of graph where most nodes are not
direct neighbors, but the shortest path between any two
nodes is generally low (Watts and Strogatz, 1998).

BNs decompose into a set of local distributions P(Xi

∣∣∣∣ΠXi). This
property is utilized in structure learning algorithms; local scores or
conditional independence tests are used to test a parent → child
relationship. The difficulty in correctly identifying an edge is a
function of the data-to-parameter ratio. The DAG has a direct
effect on the number of parameters, as the higher the in-degree
for a node, themore parameters it will have: (ri − 1)qi, where qi is the
product of number of parent levels. It follows then, that the DAG
influences the difficulty of learning a BN by its distribution of node
in-degrees. Having some control over this distribution is essential in
order to complete a comprehensive evaluation. Gogoshin et al.
(2020), Andrews et al. (2018), and Zhang et al. (2020) generate
random networks with caps on maximum in-degree (Table 1).
Tasaki et al. (2015) use graph generation algorithms in order to

create synthetic BNs, but limit their use to a single type of topology.
Here, we make use of multiple graph generation algorithms, allowing
us to model many different realistic distributions of in-degrees,
without having to specify them explicitly. Knowledge of what type
of graphs are present in a particular domain can be incorporated by
stratifying the structure type.New structure types can also be added in
the case where current structure types do not sufficiency represent the
topology of a specific domain.

2.4.2 Maximum In-degree
Maximum in-degree is the parameter which controls the cap on the
number of parents each node can have within a network. We have
found structures with high in-degrees have a major effect on the
performance of structure learning algorithms. Having a parameter
which can control this is crucial given prior knowledge about
maximum in-degree is available. Unlike other studies, in the
absence of domain knowledge we did not specifically cap the
maximum in-degree in addition to what structural type would
implicitly generate as previously mentioned.

2.4.3 Conditional Probability Table Imbalance: α
The CPT for each node Xi in the synthetic Bayesian network are
populated from parameters drawn from aDirichlet distribution, with
αi � α

qiri
. Where ri is the cardinality of variable Xi, and qi is the

product of cardinalities of parent set of Xi. A hyper-parameter, α,
controls the over-all conditional imbalance, and thus connection
strength, in the network. Consider an example of populating a CPT
for a node with three levels and one parent. In the case the parent has
two levels, two multinomial distributions must be drawn. One for
each parent configuration. For example, using an α value of 12,
applying the normalization: αi � 12

3·2 � 2. Given this low value, the
Dirichlet will likely draw a two low entropymultinomial distributions
such as [.8, .1, .1] and [.2, .7, .1]. As these distributions are
substantially different from one another, the relationship between
the parent and child should be relatively easy to observe once data has
been drawn conditioned on the parent value. Note that αi is a vector
αi ∈ R+, and the simplifying assumption has been made that it is
uniform. Thus, the α controls the imbalance of the distributions
drawn, but does not enforce any consistency as to which values are
imbalanced across the conditional distribution. While we currently

Algorithm 1: CDG-T Overview.
Given:

• The observable properties of a real dataset (sample size n, number of variables p, average levels l)
• The unobservable estimates of a real dataset (structure type t, CPT imbalance α)
• The number of trials T
• Hyper-parameters of structure learning algorithms
For i � 1→ T

1. Generate a DAG G with variables V where |V | � p according to user-specified structure-types
2. Sample number of levels for each variable from U(2,M) where l � (2 +M)/2
3. Populate the parameters of the BN B � (G,Θ) with multinomial distributions θVi drawn from a Dirichlet distribution with αVi � α

qVi ·rVi for each variable Vi ∈ V
4. Draw s synthetic samples from synthetically created BN B to create synthetic dataset XS

5. Learn a DAG using a set of structure learning algorithms using the synthetic samples
6. Learn the parameters with maximum likelihood estimation (MLE) using the learned DAG and synthetic samples
7. Record the structural performance (skeleton/v-structure precision, recall) and interventional performance (PCOR)
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present results from a uniform α estimate within the datasheets, we
have completed preliminary work to estimate a non-uniform α from
any given dataset. Descriptions of this method, as well as results, can
be found in the Supplementary Material.

2.5 Structure Learning Algorithms
The causal discovery step of training a causal Bayesian network is
performed by structure learning algorithms (Glymour et al.,
2019). In the current iteration of the Causal Datasheet three
state-of-the-art structure learning algorithms are used. Each of
the algorithms represents an example of constraint-based, score-
based, and hybrid class of structural learning algorithms:

• Peter-Clark (PC): A Constraint-based algorithm. This
algorithm starts with the graph fully connected, then uses
(conditional) independence tests to iteratively prune edges.

The chi-square test with mutual information is used (Spirtes
et al., 2000).

• Greedy Equivalence Search (GES): A greedy Score-based
algorithm, which goes through phases of adding then
removing edges where doing so increases the score,
alternating until the score no longer improves
(Chickering, 1995). A commonly used information
theoretic score, the Bayesian Information Criterion (BIC),
is used (Schwarz, 1978).

• OrderMCMC: A Hybrid algorithm. This optimizes a score
in the space of topological node orderings, rather than
DAGs. This is an implementation of Markov Chain
Monte Carlo method in the topological node ordering
space (Friedman and Koller, 2003), based on
modifications proposed by Kuipers et al. (2018). Each
order is scored by summing the maximum score for each

TABLE 2 | A table on the observability of the properties of BNs, as well as the values the synthetic generation tool can use.

Characteristic Observable Possible values

Number of Samples ✓ 1–1,000,000
Number of variables ✓ 1–500
Average variable levels ✓ 1–10
Structure type 7 Forest fire, IC-DAG, barabasi-albert, waxman, Small world
Maximum in-degree 7 1–∞
α (imbalance) 7 0–∞

FIGURE 4 | 20-node examples of the five structure types used to generate synthetic BNs. As the waxman structure type is a random geometric graph, the
connectivity is proportional to the number of nodes–at 20 nodes the DAG remains sparse.
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node, out of parent sets falling in the intersection of those
permitted by the order and those in a candidate set. This set
is typically initialized using a constraint-based method, such
as PC, however we instead use pairwise mutual information
in an effort to decouple the algorithm’s performance from
that of PC. This candidate parent set is greedily expanded to
improve recall. This combination of constrained global
search with greedy means performance should be lower
bounded by GES, but at much higher computation cost. For
consistency with the GES algorithm the BIC score is used.
We were also interested in a novel application of
OrderMCMC using a recently developed score–the
Quotient Normalized Maximum Likelihood (qNML)
score; we included this to demonstrate differences due to
choice of score (Silander et al., 2018).

These algorithms were selected in order to include one of
each constraint-based, score-based, and hybrid structure
learning algorithms. PC and GES were used as the
constraint-based and score-based representatives as they are
easily available algorithms, in terms of implementation
(Scutari, 2009; Kalainathan and Goudet, 2019). OrderMCMC
was used as the hybrid representative as it is the algorithm
which is currently employed for the real-world examples in
Section 3. The OrderMCMC implementation is currently
proprietary; access can be granted from the authors on a
per-request basis.

2.5.1 Score Functions
Score-based and hybrid structure learning algorithms’
performance is highly dependent on choice of score function.
While equivalent in the infinite data limit, the qNML and BIC
scores differ significantly for small sample sizes (Silander et al.,
2018). This is due to the difference in penalization; while both are
based on the minimum description length (MDL) principle, they
take differing approaches. The BIC takes a Bayesian approach to
the penalization, using the number of parameters scaled by the
log of the sample size (Schwarz, 1978); while the qNML is based
on the NML (Normalized Maximum Likelihood), an exact
formulation of the minimax code length regret (Grünwald and
Grunwald, 2007). Both are score equivalent and free of tuning
hyper-parameters.

Another score function prominent in literature is Bayesian
Dirichlet equivalent uniform (BDeu) (Buntine, 1991), however it
has been shown to be highly sensitive to its hyper-parameter, the
effective sample size (Silander et al., 2012)–it is therefore
impossible to give a reasonable estimate of performance, thus
making it unsuitable for use in a datasheet.

2.6 Metrics
2.6.1 Structural Performance
Discovery of the entire causal topology through structure learning
algorithms is an appealing feature of BNs in global health settings.
This sets it apart from simply testing causality between a candidate
cause and the outcome interest (bivariate causal discovery), where a
practitioner would be ignorant of the interaction of the system as a
whole. To empirically evaluate structure learning methods with

different synthetic characteristics, we measure the precision and
recall of the learned structure with respect to the ground truth
structure. This allowed us to separate errors into learning false edges
v not identifying true edges, as opposed to quantifying aggregated
structural distance measures (e.g., Structural Hamming Distance (de
Jongh andDruzdzel, 2009)). For the same reason, we did not include
a summarization of precision and recall, such as the F1 score. Having
a clear separation of precision and recall is important in decision
making; situationsmay arise where practitionersmust favor one over
the other, and the two are often a trade-off.

Structure learning algorithms estimate a DAG up to the
equivalence class (CPDAG). Therefore, we do not calculate the
precision and recall with respect to the true DAG, but the learned
skeleton and V-structures to their ground truth counterparts.
Evaluating with respect to the DAG, while helpful from an ease-
of-interpretability standpoint, introduces randomly directed
edges correlated to the infrequency of V-structures. This
correlation can lead to misleading hypothesis when
performing experiments across many different types of
structure with varying prevalence of V-structures.

Precision and recall for the skeleton and V-structures of a
structure are calculated in the standard manner:

Precision � TP
TP + FP

, Recall � TP
TP + FN

In the case of the skeleton true positives (TPs) are the number
of undirected edges which are in both the true and learnt
structure. False positives (FPs) are the number of undirected
arcs which are in the learnt, yet not present in the true structure.
False negatives (FNs) are the number of undirected arcs which are
in the true, but not in the learnt structure. For V-structures, true
positives are the number of V-structures which are present in
both the learnt CPDAG and the true DAG. False positives are the
number of V-structures in the learnt CPDAG while not in the
true DAG. False negatives are present in the true DAG, but not
the learnt CPDAG.

2.6.2 Interventional Performance
One of the key uses of a causal Bayesian Network model is that,
for a given outcome variable of interest, one can test hypothetical
interventions on each variable. One can then compute the
interventional odds ratio (OR) of how the outcome may
change based on the intervention.

OR � P(A � a1|do(B � b1))
P(A � a1|do(B � b2))/

P(A � a2|do(B � b1))
P(A � a2|do(B � b2)) �

a
c
/b
d

The results of this intervention encompasses both the causal
structure learned, and the parameters (estimated by Maximum
Likelihood) of the conditional probability tables at each variable.
We calculate the standard error for the odds ratios by:

SE � 1
aN

+ 1
bN

+ 1
cN

+ 1
dN

where N is the number of samples in the training data. 95%
Confidence intervals are then obtained by log(OR) ± ����

1.96
√ · SE.

In our Causal Datasheet we also wish to estimate how well we
can approximate the true impact of interventions. A metric has
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been developed to measure the proportion of correct
interventional odds ratios (PCOR) to quantify the impact of
different learned structures on the interventional odds ratios.
The measure was designed to provide an answer the question to
practitioners: how trustworthy should these interventional odds
ratios be with my dataset?

We calculate this metric by first splitting odds ratios into three
types of effect: Protective (less than 1), detrimental (greater than
1), and neutral where the confidence interval crosses 1 (Figure 5).
This is represented by the piecewise function in Eq. 2. The
piecewise function is then used within PCOR (Eq. 1) to
calculate the proportion of correctly categorized ORs.

PCOR(O, Ô) � ∑ |O|
i�1max(f (Oi) · f (Ôi), 0)

∑ |O|
i�1f (Oi)2

(1)

with, f (O) �
⎧⎪⎨⎪⎩

−1 if protective,
0 if neutral,
1 if detrimental,

(2)

where O is the set of odds ratios obtained by performing all
possible interventions on target T on the true BN B and Ô are the
corresponding odds ratio estimates from the learnt BN B̂. For a
synthetic Bayesian network, the target is heuristically selected as
the variable with the maximum number of ancestors.

Due to variation in importance of interventions vs. outcomes,
we allow the user to specify a threshold of PCOR.
Recommendations from the Causal Datasheet should then be
based off whether this threshold was met. Ultimately, because
PCOR relies on both the structure and parameters of the network
being learnt sufficiently well, these do not need to be individually
assessed.

2.7 Causal Datasheet for Datasets
There are two types of Causal Datasheets one may follow
dependent on usage: a Causal Datasheet for Data
Collection and a Causal Datasheet for Existing Datasets.
CDG-T is designed to allow the adjustment of numerous
characteristics of synthetic data to mimic that a real-world
dataset. For existing datasets, as well as the user-defined
characteristics, the structure types are varied in order to
capture variation in performance due to differing causal
structures. For data collection, the sample size and number
of variables are also varied so a user could decide what
combinations of sample size and number of variables (and if
applicable, structural learning algorithm) best meet the user’s
analytic needs in a lookup table.

2.7.1 Causal Datasheet for Data Collection
If researchers are designing their own survey or evaluation
instrument, determining the sample size is a critical step.
Researchers want to include a sufficient number of samples so
that they can have confidence in their model results, but do not
want to waste time, money, or effort by collecting unnecessarily
large numbers of samples. Researchers are often constrained by
budgetary concerns in low-resource settings, and adding an extra
thousand samples may end up costing thousands of extra dollars
in effort.

In traditional public health and medical studies, a priori power
analysis is the preferred tool for quantifying the samples size
needed to sufficiently detect changes, treatment effects, or
associations between variables (Pourhoseingholi et al., 2013).
The Datasheet for Data Collection can fill a similar role for
BN analysis. In the Datasheet for Data Collection, users can
specify a range of desired, potential sample size and variable size
and then estimate performance for models of interest.

The resulting datasheet is organized in four main sections:
Recommendations, Proportion of Correct Odds Ratios,
Skeleton Precision and Recall, and V-structure Precision and
Recall. The recommendations Section outlines the main
takeaways and suggestions from the data creator/curator who
examined the expected performance across a given range of
sample sizes and variable sizes, and should be treated as a guide.
Proportion of Correct Odds Ratios, Skeleton and V-structure
performance sections allow a user to look up combinations of
sample sizes and variable sizes that would fit the analysis
requirement for correctness of intervention effect, correct
edges ignoring directions, and correct edges considering
directions accordingly. The resulting datasheet produces
surface plots so a user can explore in either or both sample
size or variable size dimensions that may maximize expected
(median) model learning performance given the user’s desired
study design. One should also consider the variation of measure
performances - lower variation is better, as it suggests an
algorithm is less sensitive to the unobserved characteristics.
This is provided as Inter-Quartile Range (IQR) in tables
corresponding to the surface plots. If two algorithms, and/or
two combination of sample size and variable sizes result in
similar distribution of performance measures (median and
IQR), then one may choose either one. This datasheet
provides a general guidance for determining the best
combination of sample size and number of variables to
maximize BN model performance.

FIGURE 5 | Illustration demonstrating the three categories of odds ratio
types. Protective effects are within the bounds of the yellow Section,
Detrimental within red, and neutral where the confidence intervals intersect 1
(examples within the purple boxes).
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2.7.2 Causal Datasheet for Existing Datasets
The Datasheet for Existing Datasets assists researchers in
determining the suitability of using BNs to meet research
objectives, given they already know their sample size and
number of variables. The goal of this datasheet is to provide
insight into howmuch confidence they should have in BNmodels
learnt from this dataset. Additionally, researchers may use this
datasheet to determine which algorithms to use, and howmuch of
a ground truth DAG they can expect to recover. For example,
researchers in global health often rely on previously deployed
datasets to generate insights. A public health researcher might
want to use data from an existing survey to generate causal
insights around health decisions in a particular area. They could
use the Datasheet for Existing Datasets to evaluate its suitability
for generating insights and to inform feature engineering
decisions.

This type of Causal Datasheet starts with the data
characteristics used to generate the synthetic data sets and to
compute the various metrics followed with recommendations to a
potential audience who may be considering using the data set to
infer causal relationships. This leading section outlines the main
takeaways and suggestions from the data creator/curator who
examined the data set. The main body of the datasheet is then
broken down to 1. Correctness of causal effects, 2. Learning the
Skeleton, 3. Learning the Direction, 4. Improving with More
Samples, and 5. Improving with Less Variables. The goal is to
offer the potential data user the best guesses of expected
performance from different perspectives, recognizing that
different applications may call for choosing an algorithm or
feature engineering approach optimized for different measures.
These measures are described above and on a scale from 0 to 1,
with 1 being perfect. They are depicted with violin plots to aid
assessment of expected uncertainties given a measure. If there are
multiple “bumps” in the violin plots, in our experience, this is
because of different structural learning performance as results of
learning different data sets generated with different structure
types. If desired, performance stratification by structure type and
further investigation may be warranted; however this is beyond
the scope of the current work. In Correctness of Causal Effects, the
PCOR metrics is used as an attempt to estimate how well we can
approximate intervention impact using different structural
learning algorithms where 1 represents all protective, neutral
and detrimental intervention effects are likely to be correctly
captured. In Learning the Skeleton Section, the precision and
recall of edges, ignoring the directions, are presented. In Learning
the Direction Section, edge directions (as a V-structures) are also
considered in the precision and recall. Skeleton learning
performance measures are usually better than V-structure
learning performance; if one is not too concerned with
learning the causal directions, one may be satisfied with good
skeleton learning performance alone. Moreover, one may care
more about recall over precision (e.g., in an exploratory study
aiming to identify all potential relationships between variables) or
vice versa. Lastly, the Improving with More Samples and
Improving with Less Variables sections show how much more
data or how many variables to reduce to improve structure
learning performance for different algorithms, assuming

relevant causal statistics is not degraded by the reduction of
variables in the latter.

2.8 Meta-Feature Similarity Between
Synthetic Datasets and Existing Dataset of
Interest
Our approach makes the assumption that we could tune the
characteristics of the synthetic datasets such that the synthetic
datasets are similar to the dataset of interest, and thus it is
reasonable to suggest that expected performance on the
dataset of interest could be approximated by metrics
computed on the synthetic datasets. How similar are the
synthetic datasets to the existing dataset of interest? We
should not compare them using only data characteristics that
are used to generate the synthetic datasets. Instead, we borrow the
concept of defining meta-features and computing dataset
similarities from the Bayesian optimization hyperparameter
initialization literature (Wistuba et al., 2015). For categorical
datasets, information theoretic meta-features (i.e., Shannon’s
entropy and Concentration Coefficient) are computed for both
the real and synthetic datasets (Michie et al., 1994; Alexandros
and Melanie, 2001). The similarity between them then is
computed as the mean cosine similarity, with 0 being
completely dissimilar and 1 being identical. For additional
details, please refer to the Supplementary Material.

3 RESULTS

3.1 Causal Datasheet for Data Collection
Example: Survey Design of a Study of
Sexual and Reproductive Health
We first used a Datasheet for Data Collection, generated using
CDG-T, to determine the appropriate sample size of a survey we
deployed in Madhya Pradesh, India (Supplementary Material
A). In 2019, we had the opportunity to use the CDG-T to
determine the sample size of a large-scale survey of sexual and
reproductive health (SRH) we conducted in Madhya Pradesh,
India. Determining sample size of this study was important
because it had implications for the overall budget and timeline
of our project. Typically we wish to have a survey to capture as
many variable as possible (provided the survey is not too long)
with as few samples as possible. Our survey sought to quantify a
wide range of causal drivers around family planning decisions.
These variables included demographics, knowledge and beliefs,
risk perceptions, past experiences, and structural determinants
such as accessibility. We estimated that we would have between
30–60 variables that would be critical causal drivers of sexual and
reproductive health decisions. From previous work, we estimated
that causal variables would have, on average, three levels. We
decided to use the Datasheet for Data Collection to determine
model performance for between 5,000 and 15,000 survey
respondents before commissioning the field study. While we
had determined that 5,000 respondents was likely a large
enough sample to have sufficient power for predictive
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regression models, we did not know whether this sample size
would have sufficient performance for a causal Bayesian network
model. The range of 5,000 to 15,000 samples represented the
budget constraints of our survey.

For simplicity, we varied the potential number of variables to
be included in the model and the potential sample sizes while
keep other synthetic data property constant (Table 3).

The datasheet revealed insights around the optimal sample
size for our study. We found that, in general, the OrderMCMC
algorithm was the best for PCOR, skeleton precision and recall,
and V-structure precision (Table 4) and recall (Table 5). When
comparing model performance metrics, we found that 5,000
samples would likely not be enough to build robust BN
models for designing interventions because, across all numbers
of variables, the V-structure recall was low (<0.42, GES and PC)
or was high but had high IQR with both OrderMCMC
instantiations > 0.40. Our datasheet showed that as we
increased sample size, the IQR of V-structure recall for the
OrderMCMC algorithm decreased. In order to have better
confidence in our Bayesian network models, we determined
that we would need a sample of around 15,000 respondents to
balance our desire of having at least 50 variables while minimizing
the IQR of V-structure recall (Table 5).

Fortunately, our budget constraints allowed us to expand our
sample size to meet this constraint. However, in many cases,
organizations operating in LMICs would not be able to treble
their sample size. Here, the CDG-T also provides useful advice.
For example, if our sample size remained at 5,000, reducing the
number of causal variables from 60 to 30 would cause V-structure
recall to increase for all algorithms and V-structure IQR to
decrease. This would significantly improve confidence in the
produced BN models, but with the implication that a
potentially different analytical question may be necessary.

The CDG-T Datasheet for Data Collection provides useful
information even if researchers decide that they do not want to
reduce variables or increase sample size by estimating the
performance of a DAG before a survey is carried out. This
allows researchers to know what kind of insights and results
they will be able to generate.

3.2 Causal Datasheet for Existing Datasets
Example: Analysis of an Existing Global
Health Survey (Surgo Household Dataset)
As the second example, we generated a Causal Datasheet for a
global development dataset we administered in Uttar Pradesh,
India in 2016 (Smittenaar et al., 2020) (Supplementary Material
B). For simplicity, we refer to this dataset as Surgo Household
survey or SHH. It sought to quantify household reproductive,
maternal, neonatal, and child health (RMNCH) journeys and to
understand the drivers of various RMNCH behaviors. In all, we
surveyed over 5,000 women on various RMNCH behaviors and
outcomes. From this survey, we initially identified 41 variables we
thought represented critical causal drivers of RMNCH outcomes
and behaviors such as birth delivery locations and early
breastfeeding initiation. We were interested in understanding
which interventions might be most important for different health

outcomes. While it was possible to use our datasets to generate
DAGs, we could not validate their structures, nor could we assign
confidence to graphs generated using different structural learning
algorithms.

Using survey dataset characteristics, we generated synthetic
dataset experiments with similar properties (Table 6). Using a
method described in Section 2.8, we computed information
theoretic similarity between the synthetic datasets and the
SHH data; the result is that they are indeed similar with a
similarity score of 0.89. This is supportive of the assumption
that the expected performance on the SHH data can be
reasonably approximated by computing the metrics on the
corresponding synthetic datasets.

The expected BN algorithm skeleton (Figures 6A,B),
V-structure (Figures 6C,D), and PCOR score (Figure 7A)
were then attached to the datasheet for each of the structure
learning algorithms. As our primary goal was to successfully
simulate interventions, we set a threshold of 0.8 on the PCOR
score. Meeting this threshold would imply we could have
reasonable confidence in our model and the estimates it
produced.

The outputs from the Causal Datasheet provided a number of
key insights for this dataset:

1. While all structure learning algorithms could achieve high
skeleton precision and recall (Figures 6A,B), the
OrderMCMC algorithms (with either BIC or qNML)
had superior median predicted performance for
V-structure precision and recall (Figures 6C,D).

2. The median PCOR for OrderMCMC (qNML) (0.89) and
OrderMCMC (BIC) met our threshold test of 0.8
(Figure 7A). There are cases when the PCOR is 0 due
to target variables being determined as independent
during structure learning. This is not a major concern
as it will be clear to a practitioner when this has occurred
once the DAG has been visualized.

3. Decreasing the number of variables from 40 to 20 could
improve the mean V-structure recall by ≈ 0.08
(Supplementary Material B) and PCOR by (Figure 7B).

4. Structure type, specifically the distribution of in-degree,
has a large effect on expected performance levels,
particularly on V-structure precision (Figure 6C). This
leads to a multi-modal distribution of performance where
similar structures are grouped. If a practitioner can

TABLE 3 | The values used for each property when creating synthetic BNs (and
their associated datasets) for the SRH datasheet. Combinatorial total of 175
property values, Each configuration of properties was repeated 10 times. In total
1750 Bayesian networks and datasets were created.

Property Values

Variables 30, 35, 40, 45, 50, 55, 60
Samples 5,000, 7,500, 10,000, 12,500, 15,000
Average levels 3
Structure types Forest fire, barabasi-albert, IC-DAG, waxman, Small-world
Maximum in-degree Uncapped
α 20
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ascertain the ground truth structure type or the
distribution of in-degree, even if he/she cannot ascertain
the ground truth structure itself, the uncertainty of the
performance estimation can be reduced.

Specifically on ground truth skeleton recovery, we found that
PC may provide marginally higher performance on skeleton
precision (1 vs. 0.98), but performs poorly in recall by
comparison with OrderMCMC (qNML) (0.75 vs. 1).
OrderMCMC (BIC) had the highest median skeleton precision
at 1. OrderMCMC (qNML), PC and GES were at 0.97, 0.91 and
0.36 respectively. However, the precision with PC is less sensitive
with a IQR of 0.02, whereas OrderMCMC (qNML) was 0.21 and
OrderMCMC (BIC) was 0.05.

On ground truth V-structure recovery, OrderMCMC (BIC)
performs best in terms of V-structure precision, but suffers with

V-structure recall compared to OrderMCMC (qNML).
Particularly on structure types with higher in-degrees, forest
fire and Barabasi-Albert. PC recall for V-structures is much
worse than OrderMCMC (qNML) (0.37 vs. 1). Overall GES
with BIC is a poor performer for our needs, especially when
V-structure is concerned despite having the same score function
as OrderMCMC (BIC).

These insights were invaluable for decision making in the
relevant context and showed us that we would need to further
reduce our number of variables or seek expert input before we
could have confidence in our understanding of the effects of
interventions on maternal health outcomes. The results also
suggested that the OrderMCMC algorithm qNML would
generally provide the best overall model performance among
those tested. Ultimately, given we had a clear outcome variable of
interest, we used multivariate regression to select 18 out of 40

TABLE 4 | Pivot Table of V-structure precision. Rows stratify by number of variables. Columns are over samples size. V-structure Precision performance is provided as:
Median (IQR). Highest precision in each sample/variable combination is in bold.

Number of
variables

Algorithm 5,000 7,500 10,000 12,500 15,000

30 GES 0.37 (0.31) 0.39 (0.31) 0.47 (0.37) 0.39 (0.31) 0.41 (0.31)
30 OrderMCMC (BIC) 1.00 (0.04) 1.00 (0.00) 1.00 (0.04) 1.00 (0.02) 1.00 (0.00)
30 OrderMCMC (qNML) 1.00 (0.65) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)
30 PC 0.86 (0.24) 0.89 (0.13) 0.89 (0.13) 0.89 (0.12) 0.89 (0.13)
40 GES 0.37 (0.24) 0.36 (0.29) 0.36 (0.21) 0.38 (0.27) 0.32 (0.37)
40 OrderMCMC (BIC) 1.00 (0.03) 1.00 (0.02) 1.00 (0.02) 1.00 (0.03) 1.00 (0.02)
40 OrderMCMC (qNML) 0.97 (0.50) 1.00 (0.02) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)
40 PC 0.89 (0.16) 0.87 (0.13) 0.88 (0.15) 0.89 (0.14) 0.88 (0.16)
50 GES 0.32 (0.20) 0.33 (0.32) 0.35 (0.25) 0.32 (0.28) 0.34 (0.30)
50 OrderMCMC (BIC) 0.98 (0.04) 1.00 (0.03) 1.00 (0.03) 0.99 (0.04) 1.00 (0.03)
50 OrderMCMC (qNML) 0.97 (0.61) 0.99 (0.06) 1.00 (0.01) 1.00 (0.01) 1.00 (0.00)
50 PC 0.86 (0.16) 0.87 (0.12) 0.88 (0.12) 0.88 (0.16) 0.88 (0.15)
60 GES 0.34 (0.20) 0.34 (0.22) 0.32 (0.24) 0.30 (0.26) 0.34 (0.25)
60 OrderMCMC (BIC) 0.98 (0.03) 0.99 (0.03) 1.00 (0.02) 0.98 (0.03) 0.99 (0.03)
60 OrderMCMC (qNML) 0.93 (0.50) 0.98 (0.23) 1.00 (0.02) 1.00 (0.02) 1.00 (0.02)
60 PC 0.86 (0.20) 0.87 (0.20) 0.86 (0.17) 0.90 (0.17) 0.88 (0.16)

TABLE 5 | Pivot Table of V-structure recall. Rows stratify by number of variables. Columns are over samples size. V-structure Recall performance is provided as: Median
(IQR). Highest recall in each sample/variable combination is in bold.

Number of
variables

Algorithm 5,000 7,500 10,000 12,500 15,000

30 GES 0.21 (0.25) 0.28 (0.33) 0.30 (0.34) 0.31 (0.25) 0.33 (0.36)
30 OrderMCMC (BIC) 0.94 (0.33) 0.95 (0.28) 0.95 (0.24) 0.99 (0.21) 0.99 (0.17)
30 OrderMCMC (qNML) 1.00 (0.02) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)
30 PC 0.43 (0.49) 0.49 (0.49) 0.54 (0.42) 0.56 (0.44) 0.56 (0.45)
40 GES 0.26 (0.19) 0.31 (0.25) 0.30 (0.26) 0.33 (0.25) 0.36 (0.23)
40 OrderMCMC (BIC) 0.84 (0.47) 0.91 (0.43) 0.92 (0.43) 0.94 (0.39) 0.97 (0.28)
40 OrderMCMC (qNML) 1.00 (0.20) 1.00 (0.03) 1.00 (0.03) 1.00 (0.00) 1.00 (0.00)
40 PC 0.37 (0.26) 0.41 (0.33) 0.47 (0.23) 0.46 (0.28) 0.48 (0.27)
50 GES 0.25 (0.17) 0.28 (0.13) 0.32 (0.20) 0.32 (0.17) 0.36 (0.22)
50 OrderMCMC (BIC) 0.86 (0.42) 0.90 (0.43) 0.91 (0.40) 0.93 (0.39) 0.94 (0.38)
50 OrderMCMC (qNML) 0.97 (0.40) 1.00 (0.33) 1.00 (0.19) 1.00 (0.21) 1.00 (0.05)
50 PC 0.36 (0.17) 0.38 (0.22) 0.39 (0.31) 0.40 (0.32) 0.39 (0.30)
60 GES 0.24 (0.17) 0.27 (0.18) 0.29 (0.17) 0.30 (0.21) 0.33 (0.26)
60 OrderMCMC (BIC) 0.72 (0.39) 0.80 (0.38) 0.84 (0.35) 0.84 (0.34) 0.86 (0.35)
60 OrderMCMC (qNML) 0.93 (0.34) 0.98 (0.33) 0.99 (0.31) 0.98 (0.29) 1.00 (0.30)
60 PC 0.34 (0.29) 0.35 (0.33) 0.35 (0.34) 0.38 (0.35) 0.39 (0.34)
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variables based on significance of regression coefficients from the
original dataset; this reduction in the number of variables allowed
us to have more confidence in our resulting DAG structures. It
should be pointed out that there are many general-purpose
feature selection schemes, but feature selection with the intent
for subsequent causal structural discovery is not well understood
and beyond the scope of this study (Guyon et al., 2007).

3.3 Causal Datasheet for Existing Datasets
Example: ALARM
As a third example, a Causal Datasheet for the well-known
ALARM dataset was generated for the purpose of validating
the estimates being produced by CDG-T (Supplement C). The
characteristics of this dataset were approximated, mimicking how
a researcher might use the Causal Dataset Generation Tool. The
ALARM dataset has 37 variables, and an average of 2.8 levels per
variable (Beinlich et al., 1989). Aside from a few binary variables,
most variables have ordinal values. In this test case a sample size
of 5,000 was used. Synthetic BNs with similar characteristics were
then generated, the exact values used can be found in Table 7.
Using a method described in Section 2.8, we computed
information theoretic similarity between the synthetic datasets
and the ALARM data; the result is that they are indeed similar
with a similarity score of 0.91. This is supportive of the
assumption that the expected performance on the ALARM
dataset can be reasonably approximated by computing the
metrics on the corresponding synthetic datasets. Experiments
using these Synthetic BNs were then performed, with the results
summarized in the datasheet.

TABLE 6 | The values used for each property when creating synthetic BNs (and
their associated datasets) for the SHH datasheet. Combinatorial total of 80
property values, Each configuration of properties was repeated 10 times. In total
800 Bayesian networks and datasets were created. Italicized values were only
used when presenting results pertaining to increasing samples or decreasing
variables.

Property Values

Variables 40, 30, 20, 10
Samples 5,000, 7,500, 10,000, 12,500
Average levels 3
Structure types Forest fire, barabasi-albert, IC-DAG, waxman, Small-world
Maximum in-degree Uncapped
α 20

FIGURE 6 | Performance obtained running the structure learning algorithms on the datasets produced for the Surgo Household datasheet (Datasheet for Existing
Datasets). The width of the violin plots are the kernel density estimates of the distribution, the white dots represent the median, and the vertical thick and thin lines
represent the IQRs and ranges respectively. (A): Skeleton Precision; (B): Skeleton Recall; (C): V-structure Precision; (D): V-structure Recall. From this figure we can see
good skeleton performance can be obtained using OrderMCMC, but V-Structures are more likely to be correct (precision) when using the BIC and less likely to be
missed (recall) when using the qNML score.
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While the synethetic datasets are similar to the ALARM
dataset, they are not identical. As the ALARM dataset has a
known corresponding ground-truth, it can be used to test the
limitations of our current approach due the assumptions wemake
when generating synethetic datasets.

One such assumption is that when sampling parameters from
a Dirichlet distribution we have assumed α is uniform, this means
(on average) the marginal distributions of the variables will be
balanced. Imbalanced marginal distributions can degrade
structure learning performance, as information supporting
conditional dependence becomes more scarce with the same
amount of data.

Comparing the CDG-T estimate generated with the uniform
α assumption to the actual performance obtained on the
ALARM dataset shows general alignment with the PC and
GES algorithms, but an overestimation of performance with
OrderMCMC (Figure 8). This difference can be observed when
looking at V-structure recall (Figure 8D). Our preliminary
analysis suggests that when α is not assumed to be uniform,
such misalignment decreases. Moreover, information theoretic
similarity also increases (Supplementary Material D) from 0.91
to 0.99.

4 DISCUSSION

Having a Causal Datasheet that describes the expected
performance in recovering ground truth structures for any
given dataset can be tremendously valuable to both machine
learning scientists and practitioners. We were particularly
interested in scenarios where data characteristics are sub-
optimal for data-driven causal BN learning, which is often
the case for LMIC scenarios. This perspective differs from

other evaluative reviews of algorithm in the sense that we are
not only concerned with different structural learning
algorithms’ (and score function choices’) maximum capacity
to recover the ground truth, but also how they differ in more
constrained cases (Raghu et al., 2018). We have shown how
Causal Datasheets can aid in the planning of studies that have
the analytical goal of causal discovery and inference, and in
analysis of studies after existing data have been collected. Our
general approach of creating synthetic datasets that
approximate the real-world data should accommodate other
causal inference methods such as Neyman-Rubin causal
models (the potential outcomes framework) in theory
(Rubin, 2005).

In addition to the number of variables and sample size
demonstrated in the case studies, we have also observed that
extreme imbalance of levels, in-degree and structure type all
affect structural learning performance. In practice, even
observable characteristics may be beyond the modeler’s
control. Sometimes the sample size is restricted by resources
such as survey budget or similar data have already been
collected. Sometimes a variable may be very imbalanced
(e.g., very few unhealthy samples vs. many healthy samples).
Often, data are collected with specific questions in mind and
may not contain all the right variables for another specific
outcome of interest. However, upon referring to such Causal
Datasheets, there may be scenarios where seemingly imperfect
dataset could still yield useful insights, given a tolerable level of
error. Moreover, one’s tolerance may be different for precision
and recall errors. In constrained scenarios, our results suggest
that practitioners may be able to increase algorithm
performances by additional feature engineering or
transformation of the data by reducing the number of
variables for example. However, one should be cautioned

FIGURE 7 | (A): The PCOR score obtained running the structure learning algorithms on the datasets produced for the Surgo Household dataset datasheet.
Performance for OrderMCMC is generally above the set threshold. There are cases where the there are no paths to the target variable, causing the PCOR to be 0. (B):
The PCOR scores obtained by reducing the number of variables. Median performance passes the threshold on the OrderMCMC results when variables are ≤ 20.
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against too much data processing as it runs the risk of
transforming the ground truth represented by the data as well.

We briefly discuss the potential impact of our Causal
Datasheet work on algorithmic fairness research. Gebru et al.
(2018) advocated that every dataset is accompanied with a
datasheet to promote transparency and accountability,
including to highlight if the dataset has unwanted bias
toward a particular demographic. It is important for us to
understand how and why demographic information,
especially protected characteristics (e.g., race, gender, age),
influences other variables in a dataset. Causal reasoning has
recently been shown to be a powerful tool for understanding
sources of algorithmic bias, and for mitigating bias in an

algorithmic decision system (Chiappa and Isaac, 2018; Loftus
et al., 2018; Sharmanska et al., 2020). Most existing causality-
based algorithmic fairness methods require knowledge of the
causal graph. One option is to learn causal structure from
observational data. It is important to acknowledge that
potentially very misleading conclusions might be drawn if
incorrect causal structure is used (Kilbertus et al., 2020). Our
Causal Datasheet can be used to help researchers and
practitioners assess whether they can have confidence in the
inferred structure.

4.1 Assumptions and Limitations
While we believe the datasheet has utility in its current form,
there are still a number of improvements to be made.
Assumptions are made when building the Causal Datasheets.
In order to present the results from synthetic experiments as
performance which can be expected on empirical data, we must
assume that synthetic data can act as a proxy for empirical data.
Furthermore, the synthetic data in use can be improved upon;
there may be other pertinent data characteristics that we had not
considered or considered but incorrectly assumed. These
include the assumed ground truth structure types, where the
five graph generation algorithms used offer no guarantee of
orthogonality. While using known structure types can be an
advantage if a practitioner suspects their DAG may be of a
particular distribution, using multiple can clearly bias results if

TABLE 7 | The values used for each property when creating synthetic BNs (and
their associated datasets) for the ALARM datasheet. Combinatorial total of five
property values, Each configuration of properties was repeated 10 times. In total
50 Bayesian networks and datasets were created.

Property Values

Variables 40
Samples 5,000
Average levels 3
Structure types Forest fire, barabasi-albert, IC-DAG, waxman, Small-world
Maximum in-degree Uncapped
α 6

FIGURE 8 | The performance obtained on CDG-T datasets vs. the ALARM dataset over 100 runs. (A): Skeleton Precision; (B): Skeleton Recall; (C): V-structure
Precision; (D): V-structure Recall. There is a general alignment on the skeleton estimates, but V-Structure Recall is overestimated for the OrderMCMC methods.
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they generate in-degree distributions which are too similar. A
future direction of research would be to use generative graph
models which when seeded with an initial DAG can preserve
degree distribution, among other properties (Leskovec and
Faloutsos, 2007). How to form a DAG as a seed in an
unbiased and useful way is non-trivial. A high-recall DAG
could be used in an attempt to provide an upper-bound on
difficulty, under the assumption the in-degree distribution
would be at least on par with reality. Alternatively an
agreement graph, as in the Intersection-Validation paper,
could be used as a seed to provide a DAG with less bias to
any one structure learning algorithm. For simplicity we have
also assumed that the conditional imbalance parameter applies
to the entire dataset, but it is entirely possible that a real dataset
has a large variance around the imbalance of parameters.
Validating our tool with ALARM demonstrates there are
special cases which are not yet entirely modeled in our
synthetic data generation. The current simplifying
assumption of uniform α values when sampling parameters
from a Dirichlet distribution can clearly lead to overestimation
of performance in some scenarios. Development of α-estimation
techniques, or other methods of incorporating non-uniform α
values is a clear next step. Some initial work can be found in the
supplementary material. Introducing further modeling
assumptions, whether by generative graph or α estimation
techniques, can increase the specificity of the provided
estimates. However, introducing bias in this way must be
done with caution. As it could yield certain, yet incorrect,
performance estimates. A method of determining whether
introduced assumptions are correct, and to address the gap
between real and synthetic data must be developed. Some initial
work on this can again be found in the supplementary material.
Others have shown that algorithm outputs are sensitive to
hyper-parameters specific to that algorithm. For example,
BDeu is a popular score but it is highly sensitive to its only
hyper-parameter, the equivalent sample size (Scutari, 2018).
This is part of the reason we included qNML and BIC in the
current study as they do not have hyper-parameters. Estimation
of hyper-parameters is often not trivial and may challenging to
generalize across a spectrum of real-world data. Additionally,
we have only considered BN here, which cannot accommodate
cyclical causal relationships. Finally, we have assumed that the
input datasets had no latent confounders and the datasets are at
least meet the interventional sufficiency criteria (Pearl, 2009;
Peters et al., 2017), which is known to be a problem.

There are also practical limitations as well. We had
considered data with discrete variables only; however this
approach can be extended to algorithms that deal with
continuous variables as well. We did not consider
computational power needed for different algorithms. While
we bear a faithful optimism that computation power of current
hardware will increase to eventually overcome this barrier, this
is a useful addition to the Causal Datasheet. Similarly the
computation time to generate the synthetic data sets is also
highly dependent on the hardware. However, since it took about
1 min to generate 50 synthetic data sets (40 variables, 5,000
samples, five structure types and 10 repetitions) on a

workstation equipped with an AMD EPYC 7742 CPU and
256 GB of RAM, we think this will not be a big problem for
most in the long run as cloud computing solutions become
democratized and cheaper. With ten repeats (i.e., T � 10), our
largest set of experiments had 1,750 datasets to generate, learn,
and evaluate; taking around 40 h to complete. Running times are
highly dependent on configuration, as well as the machine being
used, and should be selected appropriately for individual
circumstances. Whether 10 repeats of each experiment are
required, or is sufficient, remains unknown. While the
synthetic BN and datasets generation is inexpensive (time-
wise), structure learning on the data is not, and by-far takes
the most time of any component in our datasheet generation
pipeline. For example, while data generation for the ALARM
dataset takes 1 min, the structure learning takes close to an hour.
Another clear direction of future work is to perform analysis to
determine when enough experiments have taken place to reach
some performance convergence. We have made assessments
based on purely precision and recall of the ground truth,
ignoring the fact that our OrderMCMC implementation takes
longer than PC and GES; however there may be circumstances
where computational speed outweighs the benefit of accuracy
gains. Real-world data often come with missingness that are
either random (MAR), completely at random (MCAR), and
missing not at random (MNAR) (Rubin, 1976). We have
developed the capacity to produce synthetic datasets with
missingness. Determining missingness characteristics along
with the appropriate imputation method for use in the
datasheet is a future research direction. Lastly, we were
inspired by the problem of inferring causality from global
development datasets and have estimated the range of data
characteristics subjectively in that domain. By all means, the
range of data characteristics considered in this study may be
very different for a different sub-domain. For example, the
number of variables for agricultural data may be many more
than that of a disease treatment survey. We leave these
theoretical and practical limitations as potential areas for
improvement to further the usage of Bayesian networks in
practice.

In summary, a standard practice of reporting projected range
of causal discovery and inference performance can help
practitioners 1) during the experimental design phase, when
they are interested in designing experiments with characteristics
suitable for BN analysis, 2) during the analysis phase, when they
are interested in choosing optimal structural learning
algorithms and assigning confidence to DAGs, and 3) at the
policy level, when they must justify their insights generated
from BN analysis. We believe that this type of evaluation should
be a vital component to a general causal discovery and inference
work flow.
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