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There has been an increased interest for observational studies or randomized controlled
trials exploring the impact of calcium intake on cardiovascular diseases (CVD) including
coronary artery disease (CAD) and ischemic stroke (IS). However, a direct relationship
between total calcium intake and CVD has not been well established and remains
controversial. Mendelian randomization (MR) studies have been performed to evaluate
the causal association between serum calcium levels and CAD risk and found that
increased serum calcium levels could increase the risk of CAD. However, MR analysis
found no significant association between genetically higher serum calcium levels and
IS as well as its subtypes. Hence, three MR studies reported inconsistent effects of
serum calcium levels on CAD and IS. Here, we performed an updated MR study to
investigate the association of serum calcium levels with the risk of IS using large-scale
genome-wide association study (GWAS) datasets. We selected 14 independent genetic
variants as the potential instrumental variables from a large-scale serum calcium GWAS
dataset and extracted summary statistics corresponding to the 14 serum calcium
genetic variants from the MEGASTROKE Consortium IS GWAS dataset. Interestingly, we
found a significant association between serum calcium levels and IS risk using the robust
inverse-variance weighted (IVW) and penalized robust IVW methods, with β = 0.243 and
P = 0.002. Importantly, the MR results from the robust MR-Egger and penalized robust
MR-Egger methods further supported the causal association between serum calcium
levels and IS risk, with β = 0.256 and P = 0.005. Meanwhile, the estimates from other
MR methods are also consistent with the above findings.

Keywords: serum calcium, ischaemic stroke, Mendelian randomization, genome-wide association study,
coronary artery disease

INTRODUCTION

In recent years, there has been an increased interest for observational studies or randomized
controlled trials exploring the impact of calcium intake on cardiovascular diseases (CVD) including
coronary artery disease (CAD) and ischemic stroke (IS; Heaney et al., 2012; Anderson et al., 2016;
Tankeu et al., 2017). In fact, a significant number of studies have reported an association between
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calcium intake and adverse CVD (Bolland et al., 2008, 2010, 2011;
Tankeu et al., 2017). However, these conclusions have been widely
questioned by a number of experts who have raised concerns
about the methodology, potential biases, and confounders (Lappe
and Heaney, 2008; Puccetti, 2008; Ramlackhansingh, 2008; Grove
and Cook, 2010; Heiss et al., 2010; Black, 2011). Until now, a
direct relationship between total calcium intake and CVD has not
been well established and remains controversial, as described in
two recent reviews (Heaney et al., 2012; Tankeu et al., 2017).

Until recently, Mendelian randomization (MR) studies have
been performed to evaluate the causal association between
increased serum calcium levels and CAD risk (Xu et al., 2017;
Larsson et al., 2017a). Xu et al. (2017) selected four independent
variants for the main analysis and 13 correlated variants for
a sensitivity analysis as the included instrumental variables.
All these genetic variants could influence the serum calcium
levels, with the genome-wide significance (P < 5.00E-08) from
a recent genome-wide association study (GWAS) including
20,611 individuals of European ancestry (O’Seaghdha et al.,
2010). Larsson et al. (2017a) selected seven independent genetic
variants influencing serum calcium levels, with the genome-
wide significance (P < 5.00E-08) from a recent GWAS including
61,079 individuals of European ancestry (O’Seaghdha et al.,
2013), as the instrumental variables. Both Xu et al. (2017) and
Larsson et al. (2017a) identified that increased serum calcium
levels could increase the risk of CAD.

Importantly, MR analysis has also been performed to evaluate
the causal association between increased serum calcium levels
and IS risk (Larsson et al., 2019). Larsson et al. (2019) selected
seven independent genetic variants influencing serum calcium
levels and a large-scale IS dataset from the MEGASTROKE
Consortium (34,217 cases and 404,630 controls). However, they
found no significant association between genetically higher
serum calcium levels and IS as well as its subtypes (Larsson et al.,
2019). Hence, these three MR studies reported inconsistent effects
of serum calcium levels on CAD and IS (Xu et al., 2017; Larsson
et al., 2017a, 2019). Here, we performed an updated MR study
to investigate the association of serum calcium levels with the
risk of stroke using large-scale serum calcium GWAS dataset and
IS GWAS dataset.

MATERIALS AND METHODS

Study Design
The MR study design has been well established in recent studies
(Cheng et al., 2018; Zhuang et al., 2019a,b; Sun et al., 2020).
In brief, we only selected the GWAS summary datasets about
serum calcium levels and IS (O’Seaghdha et al., 2013; Malik et al.,
2018). Informed consent was provided by all participants in all
these corresponding original studies (O’Seaghdha et al., 2013;
Malik et al., 2018).

Serum Calcium Genetic Variants
We selected 14 independent genetic variants as the potential
instrumental variables from a large-scale serum calcium GWAS
dataset (O’Seaghdha et al., 2013). In brief, this dataset consisted

of 61,079 individuals of European descent, including 39,400
individuals in the discovery stage and 21,679 individuals in the
replication stage (O’Seaghdha et al., 2013). A linear regression
method was used to evaluate the association of each genetic
variant with serum calcium level using an additive genetic effect
by adjusting some key covariates including age, sex, principal
components, and study center (O’Seaghdha et al., 2013). Of these
14 genetic variants, eight were associated with serum calcium
levels with P < 5.00E-08 and six genetic variants were associated
with serum calcium levels with P < 1.00E-04 (O’Seaghdha et al.,
2013). We provide more detailed information about these 14
variants in Table 1. Recent studies have provided more detailed
information about this dataset (O’Seaghdha et al., 2013; Xu et al.,
2017; Larsson et al., 2017a, 2019).

IS GWAS Dataset
The IS GWAS dataset is from a large-scale multi-ancestry
stroke GWAS of 67,162 cases and 454,450 controls from
the MEGASTROKE Consortium (Malik et al., 2018). The
participants are of multiple ancestries including European,
African, South Asian, mixed Asian, and Latin American
(Malik et al., 2018). Before the normal GWAS analysis, the
MEGASTROKE Consortium conducted genotyping, imputation,
and quality control analyses (Malik et al., 2018). They further
conducted a fixed-effects inverse-variance weighted (IVW) meta-
analysis using METAL in each ancestral group and then
performed a meta-analysis of the ancestry-specific meta-analysis
results (Malik et al., 2018). In order to be consistent with the
serum calcium GWAS dataset, we limit our follow-up analysis
to samples of European ancestry, including 34,217 IS cases and

TABLE 1 | Characteristics of the 14 genetic variants associated with serum
calcium levels.

SNP Nearby
genes

EA NEA EAF β (mg/dl) SE P value R2 (%)

rs10491003 GATA3 T C 0.09 0.027 0.005 4.80E-09 0.05

rs11967485 ARID1B g a 0.9 0.026 0.005 9.40E-07 0.05

rs12150338 WDR81/
SERPINF2

t c 0.09 0.03 0.006 1.50E-06 0.06

rs1550532 DGKD C G 0.31 0.018 0.003 8.20E-11 0.06

rs1570669 CYP24A1 G A 0.34 0.018 0.003 9.10E-12 0.06

rs17711722 VKORC1L1 T C 0.47 0.015 0.003 8.20E-09 0.04

rs1801725 CASR T G 0.15 0.071 0.004 8.90E-86 0.51

rs2281558 PYGB t g 0.25 0.015 0.003 5.10E-06 0.03

rs2885836 RARBTOP2B a g 0.24 0.012 0.003 5.40E-05 0.02

rs4074995 RGS14/
SLC34A1

a g 0.28 0.013 0.003 4.60E-06 0.03

rs7336933 DGKH/
KIAA0564

G A 0.85 0.022 0.004 9.10E-10 0.05

rs7481584 CARS G A 0.7 0.018 0.003 1.20E-10 0.05

rs780094 GCKR T C 0.42 0.017 0.003 1.30E-10 0.06

rs9447004 CD109 a g 0.48 0.012 0.003 3.30E-06 0.03

SNP, single nucleotide polymorphism; EA, effect allele; NEA, non-effect allele;
EAF, effect allele frequency; SE, standard error; β, regression coefficient based
on the effect allele; and R2, proportion of serum calcium variance explained by the
selected 14 genetic variants.
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406,111 controls (Malik et al., 2018). More detailed information
about the MEGASTROKE dataset has been widely described in
the original study (Malik et al., 2018) and in the recent MR study
(Larsson et al., 2019).

Pleiotropy Analysis
Using the summary results of these 14 genetic variants in both
serum calcium levels and IS GWAS datasets, we first conducted
a pleiotropy analysis using two statistical methods including the
MR-Egger intercept test and the MR pleiotropy residual sum and
outlier (MR-PRESSO) test (Verbanck et al., 2018). Both methods
have been widely used in recent MR studies (Liu et al., 2018;
Larsson et al., 2019; He et al., 2020; Wang et al., 2020). The
statistical significance for evidence of pleiotropy is P < 0.05.

MR Analysis
For MR analysis, we selected 11 MR methods including simple
median, weighted median, penalized weighted median, IVW,
penalized IVW, robust IVW, penalized robust IVW, MR-Egger,
penalized MR-Egger, robust MR-Egger, and penalized robust MR-
Egger (Larsson et al., 2019; He et al., 2020). IVW is a standard MR
analysis method. For multiple independent genetic variants, IVW
could weigh the average of these single causal estimates using
the inverse of their approximate variances as weights (Burgess
and Thompson, 2017; Larsson et al., 2019; He et al., 2020). The
causal estimate from the MR-Egger is obtained using the same
regression model as the weighted linear regression described
above, but allowing the intercept to be estimated as part of
the analysis (Burgess and Thompson, 2017). The simple median
estimator is calculated as the median of the Wald ratio estimates
[ratio of single nucleotide polymorphism (SNP) on outcome to
SNP on calcium]. A weighted median of these causal estimates
could be considered to account for differences in the precision
of estimates and could provide consistent estimates even if 50%
of the instrumental variables are invalid (Burgess et al., 2017).
The robust option, penalized option, and the penalized option of
the weighted median, IVW, and MR-Egger are all improved MR
methods (Yavorska and Burgess, 2017).

Statistical Analysis
The odds ratio (OR) as well as the 95% confidence interval (CI)
of IS correspond to per 0.5 mg/dl increase [about 1 standard
deviation (SD)] in serum calcium levels. The significance
threshold was P < 0.05. All statistical tests were completed
by R (version 3.5.1) and R package “MendelianRandomization”
(Yavorska and Burgess, 2017).

Power Analysis
The proportion of serum calcium variance explained by the
selected 14 genetic variants could be estimated using R2.

R2
=

14∑
i=1

β2
i × 2×MAFSNPi

(
1−MAFSNPi

)
SD2

where β is the effect size (beta coefficient) between SNPi and
the serum calcium levels, MAFSNPi is the minor allele frequency

for SNPi, and SD = 0.5 mg/dl (Larsson et al., 2017a; He et al.,
2020). Using R2 and other necessary information, we performed
a power analysis using mRnd: Power calculations for MR1 (Brion
et al., 2013). The input variables include the sample size, type I
error rate, proportion of cases in the study, true odds ratio of the
outcome variable per standard deviation of the exposure variable,
and the proportion of variance explained for the association
between the SNP and the exposure variable (Brion et al., 2013).

RESULTS

Association of 14 Serum Calcium
Variants With IS
In the IS GWAS dataset from the MEGASTROKE Consortium,
we extracted the summary statistics corresponding to the 14
serum calcium genetic variants. The results indicated that
none of these 14 variants was significantly associated with IS
(P < 0.05; Table 2).

Statistical Analysis
The pleiotropy analysis using the MR-Egger intercept test
indicated no significant pleiotropy, with intercept = −0.004 and
P = 0.574. The pleiotropy analysis using the MR-PRESSO test
further indicated no significant pleiotropy, with P = 0.669. Hence,
all these 14 variants are valid instrumental variables and could be
used in the MR analysis.

Inverse-variance weighted indicated no significant association
between serum calcium levels and IS risk, with β = 0.096
and P = 0.499. Interestingly, we found a significant association
between serum calcium levels and IS risk using the robust IVW
and penalized robust IVW methods, with β = 0.243 and P = 0.002
(Table 3). Importantly, the MR results from the robust MR-Egger
and penalized robust MR-Egger methods further supported the

1https://shiny.cnsgenomics.com/mRnd/

TABLE 2 | Characteristics of the 14 genetic variants associated with IS risk.

SNP EA NEA EAF β SE P value

rs11967485 a g 0.1093 −0.0063 0.0169 0.7097

rs1801725 t g 0.1379 0.018 0.0151 0.2341

rs2281558 t g 0.2614 0.0068 0.0113 0.5473

rs12150338 t c 0.0979 0.0037 0.0186 0.8415

rs4074995 a g 0.2943 0.0009 0.011 0.9363

rs9447004 a g 0.4968 −0.0047 0.0109 0.6674

rs17711722 t c 0.3936 0.0048 0.0129 0.710

rs1570669 a g 0.6604 0.0191 0.0105 0.06948

rs7481584 a g 0.2974 −0.0105 0.0112 0.3489

rs7336933 a g 0.148 −0.0014 0.0135 0.9146

rs10491003 t c 0.0913 −0.0327 0.0178 0.06655

rs2885836 a g 0.2278 0.0058 0.0122 0.6333

rs780094 t c 0.3917 0.0059 0.0111 0.5976

rs1550532 c g 0.3201 0.0022 0.0106 0.8345

SNP, single nucleotide polymorphism; EA, effect allele; NEA, non-effect allele; EAF,
effect allele frequency; β, regression coefficient based on the effect allele; SE,
standard error; and IS, ischemic stroke.
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TABLE 3 | MR analysis results using different methods.

95% CI 95% CI

MR method β SE (Down) (Up) P value

Simple median 0.183 0.223 −0.254 0.62 0.412

Weighted median 0.249 0.19 −0.124 0.622 0.19

Penalized weighted median 0.25 0.191 −0.123 0.624 0.189

IVW 0.096 0.142 −0.182 0.375 0.499

Penalized IVW 0.096 0.142 −0.182 0.375 0.499

Robust IVW 0.243 0.078 0.089 0.396 0.002

Penalized robust IVW 0.243 0.078 0.089 0.396 0.002

MR-Egger 0.224 0.268 −0.302 0.75 0.404

Penalized MR-Egger 0.224 0.268 −0.302 0.75 0.404

Robust MR-Egger 0.256 0.091 0.076 0.435 0.005

Penalized robust MR-Egger 0.256 0.091 0.076 0.435 0.005

MR, Mendelian randomization; IVW, inverse-variance weighted; β, regression
coefficient; SE, standard error; and CI, confidence interval. Significance level 0.05.

causal association between serum calcium levels and IS risk, with
β = 0.256 and P = 0.005 (Table 3). Meanwhile, the estimates from
the other MR methods are also consistent with the above findings,
as provided in Table 3. We also provided the single MR estimates
from each of the 14 genetic variants using 11 MR methods, as
described in Figure 1.

Statistical Power
These 14 genetic variants could explain 1.10% of the serum
calcium variance (R2 = 1.10%). Power analysis using mRnd

indicated that our MR study had 80% power to detect effect
sizes of moderate magnitude, with ORs as low as 0.83 and as
high as 1.15 per SD (0.5 mg/dl) increase in serum calcium levels
for IS. The power is 100% to detect the causal association, with
OR = 1.28 (β = 0.243).

DISCUSSION

Until now, meta-analyses of randomized controlled trials have
not demonstrated convincing evidence that calcium intake (diet
and supplements) could improve stroke (Heaney et al., 2012;
Tankeu et al., 2017). Some studies even reported an association
between calcium intake and adverse stroke outcomes (Bolland
et al., 2008, 2010, 2011). In 2018, Jenkins et al. (2018) performed
a meta-analysis of individual randomized controlled trials from
previous meta-analyses and additional searches. They found
that calcium supplements showed no consistent benefit for
the prevention of stroke, nor was there a benefit for all-cause
mortality to support their continued use (Jenkins et al., 2018).

Until recently, MR studies have been performed to evaluate
the causal effects of high serum calcium levels on the risk of
CAD and IS. However, these MR studies reported inconsistent
findings. Some studies indicated that high serum calcium levels
contributed to an increased risk of CAD (Xu et al., 2017;
Larsson et al., 2017a). One MR study indicated no significant
association between high serum calcium levels and IS as well as its
subtypes (Larsson et al., 2019). Hence, these inconsistent findings
drove us to conduct an updated MR analysis, and we found a

FIGURE 1 | Single MR estimates from each of the 14 genetic variants using 11 MR methods. MR, Mendelian randomization; IVW, inverse-variance weighted. The
black scatter plots indicate single causal estimates from each of the 14 genetic variants associated with serum calcium levels on the x-axis and IS risk on the y-axis.
The continuous line represents the causal effect of serum calcium levels on IS risk.
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significant association between high serum calcium levels and
increased IS risk.

There are two main differences between our MR study and
previous MR studies (Xu et al., 2017; Larsson et al., 2017a, 2019).
Firstly, we selected 14 genetic variants associated with serum
calcium levels as the potential instrumental variables, as these
14 genetic variants could explain 1.10% of the serum calcium
variance. In 2017, Larsson et al. (2017a) selected seven genetic
variants and excluded the rs780094 variant to evaluate the causal
association between serum calcium levels and CAD, as it had
a pleiotropic association with cardiometabolic risk factors. The
remaining six genetic variants only explained about 0.8% of
the variation in serum calcium levels (Larsson et al., 2017a).
In 2019, Larsson et al. (2019) selected seven genetic variants
to evaluate the causal association between serum calcium levels
and IS risk, which could explain 0.9% of the variance in serum
calcium levels. In 2017, Xu et al. (2017) only selected four variants
influencing serum calcium levels as the instrumental variables.
Hence, our MR study has the largest explained variation in
serum calcium levels, which may further contribute to identify
positive findings.

Secondly, we selected more MR methods than did the previous
MR studies (Xu et al., 2017; Larsson et al., 2017a, 2019). In
our MR study, we selected a total of 11 MR methods including
simple median, weighted median, penalized weighted median,
IVW, penalized IVW, robust IVW, penalized robust IVW, MR-
Egger, penalized MR-Egger, robust MR-Egger, and penalized
robust MR-Egger. Importantly, all these MR estimates were
consistent with each other in terms of direction and magnitude,
as provided in Table 3. In 2017, Larsson et al. (2017a) selected
three MR methods including IVW, weighted median, and MR-
Egger. In 2017, Xu et al. (2017) selected four MR methods
including weighted generalized linear regression, IVW, weighted
median, and MR-Egger regression. In 2019, Larsson et al.
(2019) selected five MR methods including IVW, weighted
median, heterogeneity-penalized model averaging method, MR-
Egger, and MR-PRESSO.

Hence, our findings are consistent with recent findings
from MR analysis in CAD (Xu et al., 2017; Larsson et al.,
2017a). Meanwhile, our findings are consistent with previous
observational studies (Chung et al., 2015). Chung et al. measured
the levels of serum calcium and albumin-corrected calcium in
1,915 participants (Chung et al., 2015). They found that the
serum calcium level was significantly associated with increased
modified Rankin scale (MRS) [1.19 (1.03–1.38)]. The albumin-
corrected calcium level was also significantly associated with
increased MRS [1.21 (1.01–1.44)] (Chung et al., 2015). The

authors further identified that a high albumin-corrected serum
calcium level could cause a poorer short-term outcome and
increase the long-term mortality in acute IS (Chung et al., 2015).
In 2017, de Abajo et al. (2017) performed a nested case–control
study to evaluate the risk of IS with calcium supplement using
2,690 IS cases and 19,538 controls. Their results showed that
calcium supplement was associated with an increased trend of IS
risk in the whole population (OR = 1.18, 95% CI = 0.86–1.61,
and P = 0.31).

Our MR study also has some limitations. One limitation is
that not all of the selected 14 genetic variants are associated with
serum calcium levels with genome-wide significance threshold
P < 5.00E-08. Only eight genetic variants were associated with
serum calcium levels with P < 5.00E-08 and six genetic variants
were associated with serum calcium levels with P < 1.00E-04
(O’Seaghdha et al., 2013). The other limitation is that we only
selected two statistical methods—the MR-Egger intercept test and
the MR-PRESSO test—to conduct a pleiotropy analysis and test
the confounders. Interestingly, we did not find any significant
pleiotropy using both methods. However, the statistical methods
could not completely exclude all confounders. It is a general
challenge in current MR studies (Emdin et al., 2017; Larsson
et al., 2017a, 2019; He et al., 2020). Hence, follow-up studies are
necessary to replicate our findings.

In summary, our MR study provides genetic evidence that
high serum calcium levels are significantly associated with an
increased risk of IS in the general population.
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